

UiO: Department of Informatics University of Oslo
 Classification

\qquad "DOG"

UiO: Department of Informatics
University of Oslo
Training a classifier (supervised learning)

Untrained Classifie
"CAT"

UiO : Department of Informatics
 University of Oslo
 Training a classifier (supervised learning)

"CAT"

No, it was a dog. Adjust classifier parameters

UiO : Department of Informatics University of Oslo

Training a perceptron

$$
\Delta w_{i j}=\eta^{\text {Learning rate }} \cdot\left(t_{j}-y_{j}\right) \cdot x_{i}^{\text {Input }}
$$

$$
\text { Desired output } \backslash_{\text {Error }}^{\text {Actual }}
$$

UiO : Department of Informatics
University of Oslo

A Quick Overview

- Linear Models are easy to understand.
- However, they are very simple.
- They can only identify flat decision boundaries (straight lines, planes, hyperplanes, ...).
- Majority of interesting data are not linearly separable. Then?
$\mathrm{UiO}:$ Department of Informatics

University of Oslo
 A Quick Overview

- Learning in the neural networks (NN) happens in the weights.
- Weights are associated with connections.
- Thus, it is sensible to add more connections to perform more complex computations.
- Two ways for non-lin. separation (not exclusive):
- Recurrent Network: connect the output neurons to the inputs with feedback connections.
- Multi-layer perceptron network: add neurons between the input nodes and the outputs.

A	B	Out
0	0	0
0	1	1
1	0	1
1	1	0

Perceptron does not work here.
Single layer generates a linear decision boundary

UiO: Department of Informatics

University of oslo

Multi-Layer Perceptron (MLP)

UiO: Department of Informatics
 Solution for XOR : Add a Hidden Layer !!

Minsky \& Papert (1969) offered solution to XOR problem by combining perceptron unit responses using a second layer of units


```
iO : Department of Informatics
    University of Oslo
```


XOR Again

UiO: Department of Informatics University of Oslo

XOR Again

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\text {in }}$	$\mathbf{C}_{\text {out }}$	$\mathbf{D}_{\text {in }}$	$\mathbf{D}_{\text {out }}$	$\mathbf{E}_{\text {in }}$
0	0	-0.5	0	-1	0	-0.5
0	1	0.5	1	0	0	0.5
1	0	0.5	1	0	0	0.5
1	1	1.5	1	1	1	-0.5

UiO: Department of Informatics
University of oslo

Multilayer Network Structure

- A neural network with one or more layers of nodes between the input and the output nodes is called multilayer network
- The multilayer network structure, or architecture, or topology, consists of an input layer, one or more hidden layers, and one output layer.
- The input nodes pass values to the first hidden layer, its nodes to the second and so until producing outputs.
- A network with a layer of input units, a layer of hidden units and a layer of output units is a two-layer network.
- A network with two layers of hidden units is a threelayer network, and so on.

UiO: Department of Informatics

Properties of the Multi-Layer Perceptron

- No connections within a single layer.
- No direct connections between input and output layers.
- Fully connected; all nodes in one layer connect to all nodes in the next layer.
- Number of output units need not equal number of input units.
- Number of hidden units per layer can be more or less than input or output units.

JiO : Department of Informatics

University of Oslo

How to Train MLP?

- How we can train the network, so that
- The weights are adapted to generate correct (target answer)?

- In Perceptron, errors are computed at the output.
- In MLP,
- Don't know which weights are wrong:
- Don't know the correct activations for the neurons in the hidden layers.

UiO : Department of Informatics
 University of Oslo
 Backpropagation

Rumelhart, Hinton and Williams (1986) (though actually invented earlier in a PhD thesis relating to economics)

Backward step propagate errors from output to hidden layer

Solution: Backpropagation Algorithm (Rumelhart and colleagues,1986)

iO : Department of Informatics
 University of Oslo
 Training MLPs

Forward Pass

1. Put the input values in the input layer.
2. Calculate the activations of the hidden nodes.
3. Calculate the activations of the output nodes.

UiO : Department of Informatics

 University of Oslo
Training MLPs

Backward Pass

1. Calculate the output errors
2. Update last layer of weights.
3. Propagate error backward, update hidden weights.
4. Until first layer is reached.

JiO : Department of Informatics

University of Oslo

Back Propagation Algorithm

- The backpropagation training algorithm uses the gradient descent technique to minimize the mean square difference between the desired and actual outputs.
- The network is trained initially selecting small random weights and then presenting all training data incrementally.
- Weights are adjusted after every trial until they converge and the error is reduced to an acceptable value.

$\mathrm{HiO}:$ Department of Informatics

University of Oslo

Gradient Descent

UiO: Department of Informatics
University of Oslo

Error Terms

- Need to differentiate the error function
- The full calculation is presented in the book.
- Gives us the following error terms (deltas)
- For the outputs

$$
\delta_{k}=\left(y_{k}-t_{k}\right) g^{\prime}\left(a_{k}\right)
$$

- For the hidden nodes

$$
\delta_{i}=g^{\prime}\left(u_{i}\right) \sum_{k} \delta_{k} w_{i k}
$$

UiO: Department of Informatic

University of Oslo

BackPropagation Algorithm

Update Rules

- This gives us the necessary update rules
- For the weights connected to the outputs:

$$
\mathcal{W}_{j k} \leftarrow \mathcal{w}_{j k}-\eta \delta_{k} z_{j}
$$

- For the weights on the hidden nodes:

$$
v_{i j} \leftarrow v_{i j}-\eta \delta_{j} x_{i}
$$

- The learning rate η depends on the application. Values between 0.1 and 0.9 have been used in many applications.

UiO: Department of Informatics
University of Oslo

Algorithm (sequential)

1. Apply an input vector and calculate all activations, a and u 2. Evaluate deltas for all output units:

$$
\delta_{k}=\left(y_{k}-t_{k}\right) g^{\prime}\left(a_{k}\right)
$$

3. Propagate deltas backwards to hidden layer deltas:

$$
\delta_{i}=g^{\prime}\left(u_{i}\right) \sum_{k} \delta_{k} w_{i k}
$$

4. Update weights:

$$
\begin{gathered}
w_{j k} \leftarrow w_{j k}-\eta \delta_{k} z_{j} \\
v_{i j} \leftarrow v_{i j}-\eta \delta_{j} x_{i}
\end{gathered}
$$

$\mathrm{UiO}:$ Department of Informatics
 Example: Backpropagation

All biases set to 1 . Will not draw them for clarity.
Learning rate $\mathrm{h}=0.1$

Have input [0 1] with target [1 0]

UiO: Department of Informatics

Example: Backpropagation

Use identity activation function (ie $g(a)=a)$ for simplicity of example

$\mathrm{UiO}:$ Department of Informatics

Example: Backpropagation

Forward pass. Calculate $1^{\text {st }}$ layer activations

$u_{1}=-1 \times 0+0 \times 1+1=1$
$\mathrm{u}_{2}=0 \mathrm{x} 0+1 \mathrm{x} 1+1=2$

iO : Department of Informatic
 University of Oslo
 Example: Backpropagation

Calculate first layer outputs by passing activations through activation functions

$$
\begin{aligned}
& z_{1}=\mathrm{g}\left(\mathrm{u}_{1}\right)=1 \\
& \mathrm{z}_{2}=\mathrm{g}\left(\mathrm{u}_{2}\right)=2
\end{aligned}
$$

iO : Department of Informatics
 University of Oslo
 Example: Backpropagation

Backward pass

$$
\text { Target }=[1,0] \text { so } t_{1}=1 \text { and } t_{2}=0 \text {. So }
$$

$\delta_{1}=\left(\mathrm{y}_{1}-\mathrm{t}_{1}\right)=2-1=1$
$\delta_{2}=\left(y_{2}-t_{2}\right)=2-0=2$

UiO: Department of Informatics University of Oslo

Example: Backpropagation

Calculate $2^{\text {nd }}$ layer outputs (weighted sum through activation functions):

$$
\begin{aligned}
& y_{1}=a_{1}=1 \times 1+0 \times 2+1=2 \\
& y_{2}=a_{2}=-1 \times 1+1 \times 2+1=2
\end{aligned}
$$

UiO : Department of Informatic

Example: Backpropagation

Calculate weight changes for $1^{\text {st }}$ layer:

$\mathrm{UiO}:$ Department of Informatics
 University of Oslo
 Example: Backpropagation

Weight changes will be:

$$
w_{j k} \leftarrow w_{j k}-\eta \delta_{k} z_{j}
$$

UiO: Department of Informatics
 University of Oslo
 Example: Backpropagation

Deltas propagate back: $\delta_{i}=g^{\prime}\left(u_{i}\right) \sum_{k} \Delta_{k} w_{i k}$

$$
\begin{aligned}
& \delta_{1}=1-2=-1 \\
& \delta_{2}=0+2=2
\end{aligned}
$$

UiO : Department of Informatics University of Oslo

Example: Backpropagation

Calculate hidden layer deltas:

$$
\delta_{i}=g^{\prime}\left(u_{i}\right) \sum_{k} \Delta_{k} w_{i k}
$$

JiO : Department of Informatics
 University of Oslo

Example: Backpropagation

And are multiplied by inputs

ViO : Department of Informatics
 University of Oslo
 Example: Backpropagation

Finally change weights: $\quad v_{i j} \leftarrow v_{i j}-\eta \delta_{j} x_{i}$

Note that the weights multiplied by the zero input are unchanged as they do not contribute to the error
We have also changed biases (not shown)

UO: Department of Informatic

Example: Backpropagation

Now go forward again (would normally use a new input vector):

UiO : Department of Informatics

University of oslo

Activation Function

- We need to compute the derivative of activation function g
- What do we want in an activation function?
- Differentiable
- Nonlinear (more powerful)
- Bounded range (for numerical stability)

$\mathrm{JiO}:$ Department of Informatics
 University of Oslo
 Hard Limit Function

$\mathrm{UiO}:$ Department of Informatics
A Quick Overview (Activation Functions)

$\mathrm{UiO}: \begin{aligned} & \text { Department of Informatics } \\ & \text { University of Oslo }\end{aligned}$

Network Training

- Training set shown repeatedly until stopping criteria are met.
- When should the weights be updated?
- After all inputs seen (batch)
- After each input is seen (sequential)
- Both ways, need many epochs - passes through the whole dataset

UiO : Department of Informatics

University of Oslo

Sequential Training

Update weights	Insert one training data	- Simpler to program • Can avoid local optima
Calculate deltas	Calculate error	

UiO : Department of Informatics
University of Oslo
Risk: Gradient descent takes us to local minimum

UiO: Department of Informatics
University of Oslo

How can we avoid the local minimum?

- Initialize training many times with random weights
- Use momentum:

$$
w_{i j} \leftarrow w_{i j}-\eta \Delta_{j} z_{i}+\alpha \Delta w_{i j}^{t-1}
$$

$\mathrm{UiO}:$ Department of Informatics
 University of Oslo

Amount of Training

- How much training data is needed?
- Count the weights
- Rule of thumb: use 10 times more data than the number of weights

UiO : Department of Informatics
How many hidden layers do we need?

UiO: Department of Informatics
 University of Oslo
 Network Topology

- How many layers?
- How many neurons per layer?
- No good answers
- At most 3 weight layers, usually 2
- Test several different networks
- Possible types of adaptive algorithms (not default in MLP):
- start from a large network and successively remove some neurons and links until network performance degrades.
- begin with a small network and introduce new neurons until performance is satisfactory.

$\mathrm{ViO}:$ Department of Informatics

University of Oslo

Generalisation

- Aim of neural network learning:
- Generalise from training examples to all possible inputs.
- The objective of learning is to achieve good generalization to new cases; we cannot train on all possible data.
- Under-training is bad.
- Over-training is also bad.

$\mathrm{UiO}:$ Department of Informatics

University of Oslo
Generalisation - example

Given: training images and their categories What are the categories of these test images?

UO : Department of Informatics

Overfitting

- Overfitting occurs when a model begins to learn the bias of the training data rather than learning to generalize.
- Overfitting generally occurs when a model is excessively complex in relation to the amount of data available.
- A model which overfits the training data will generally have poor predictive performance, as it can exaggerate minor fluctuations in the data.

```
UiO: Department of Informatics
    University of Oslo
        Overfitting
```



```
\(\mathrm{UiO}:\) Department of Informatics
```


University of Oslo
 Overfitting

- The training data contains information about the regularities in the mapping from input to output.
- Training data also contains bias:
- There is sampling bias. There will be accidenta regularities due to the finite size of the training set
- The target values may also be unreliable or noisy.
- When we fit the model, it cannot tell which regularities are relevant and which are caused by sampling error.
- So it fits both kinds of regularity.
- If the model is very flexible it can model the sampling erro really well. This is not what we want.

JiO : Department of Informatics

University of Oslo

The Problem of Overfitting

- Approximation of the function $y=f(x)$:

2 neurons in hidden layer
/ 5 neurons in hidden layer
40 neurons in hidden layer

UiO : Department of Informatic
 University of Oslo
 Validation set

- Data unseen by training algorithm - not used for backpropagation.
- Network is not trained on this data, so we can use it to measure generalization ability.
- Goal is to maximize generalization ability, so we should minimize the error on this data set.

UiO: Department of Informatics
University of Oslo

The Solution: Cross-Validation

To maximize generalization and avoid overfitting, split data into three sets:

- Training set: Train the model.
- Validation set: Judge the model's generalization ability during training.
- Test set: Judge the model's generalization ability after training.

```
NO: Department of Informatics
    University of Oslo
    Early Stopping
```


$\mathrm{UiO}:$ Department of Informatic

 University of Oslo
Testing set

- Data unseen during training and validation.
- Has no influence on when to stop training.
- With early stopping, we've maximized the ability to generalize to the validation set;
- To judge the final result, we should measure its ability to generalize to completely unseen data.

UiO : Department of Informatics

k-Fold Cross Validation

- Validation and testing leaves less training data.
- Solution: repeat over many different splits.

UiO: Department of Informatics
University of Oslo

Leave-one-out Cross Validation

For $\mathrm{k}=1$ to R

1. Let $\left(x_{k}, y_{k}\right)$ be the $k^{\text {th }}$ record
2. Temporarily remove $\left(x_{k}, y_{k}\right)$ from the dataset
3. Train on the remaining R-1 datapoints
4. Note your error (x_{k}, y_{k})

When you've done all points, report the mean error.

