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Classification

Trained Classifier “DOG”
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Perceptron
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Training a classifier (supervised learning)

Untrained Classifier “CAT”



Training a classifier (supervised learning)

Untrained Classifier “CAT”

No, it was a dog.
Adjust classifier 
parameters
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Training a perceptron
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A Quick Overview 

• Linear Models are easy to understand.

• However, they are very simple.

– They can only identify flat decision boundaries
(straight lines, planes, hyperplanes, ...).

• Majority of interesting data are not linearly
separable. Then?



9

A Quick Overview

• Learning in the neural networks (NN) happens in
the weights.

• Weights are associated with connections.

• Thus, it is sensible to add more connections to
perform more complex computations.

• Two ways for non-lin. separation (not exclusive):
– Recurrent Network: connect the output neurons to

the inputs with feedback connections.

– Multi-layer perceptron network: add neurons
between the input nodes and the outputs.



Multi-Layer Perceptron (MLP)
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XOR Problem

XOR (Exclusive OR) Problem

Perceptron does not work here.

Single layer generates a linear decision boundary.
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Minsky & Papert (1969) offered solution to XOR problem by combining
perceptron unit responses using a second layer of units.
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Solution for XOR : Add a Hidden Layer !!
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XOR Again
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XOR Again
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MLP Decision Boundary – Nonlinear 
Problems, Solved!
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In contrast to perceptrons, multilayer networks can learn not
only multiple decision boundaries, but the boundaries may
also be nonlinear.

Input nodes Internal nodes Output nodes

X2

X1
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Multilayer Network Structure

• A neural network with one or more layers of nodes between
the input and the output nodes is called multilayer network.

• The multilayer network structure, or architecture, or topology,
consists of an input layer, one or more hidden layers, and one
output layer.

• The input nodes pass values to the first hidden layer, its nodes
to the second and so until producing outputs.

• A network with a layer of input units, a layer of hidden
units and a layer of output units is a two-layer network.

• A network with two layers of hidden units is a three-
layer network, and so on.



• No connections within a single layer.

• No direct connections between input and output
layers.

• Fully connected; all nodes in one layer connect to all
nodes in the next layer.

• Number of output units need not equal number of
input units.

• Number of hidden units per layer can be more or less
than input or output units.

Properties of the Multi-Layer 
Perceptron



How to Train MLP?

• How we can train the network, so that
– The weights are adapted to generate correct (target

answer)?

• In Perceptron, errors are computed at the output.

• In MLP,
– Don’t know which weights are wrong:

– Don’t know the correct activations for the neurons in
the hidden layers.

18

x1 (tj - yj)
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Then…

The problem is: How to train Multi Layer
Perceptrons??

Solution: Backpropagation Algorithm (Rumelhart
and colleagues,1986)



Backpropagation

Rumelhart, Hinton and Williams (1986) (though actually invented 
earlier in a PhD thesis relating to economics)
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yj Backward step: 
propagate errors from 
output to hidden layer

Forward step: 
Propagate activation 
from input to output layer
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Training MLPs

Forward Pass

1. Put the input values in the input layer.

2. Calculate the activations of the hidden nodes.

3. Calculate the activations of the output nodes.
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Training MLPs

Backward Pass

1. Calculate the output errors

2. Update last layer of weights.

3. Propagate error backward, update hidden weights.

4. Until first layer is reached.
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Error Function

• Single scalar function for entire network.

• Parameterized by weights (objects of interest).

• Multiple errors of different signs should not cancel out.

• Sum-of-squares error:
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• The backpropagation training algorithm uses
the gradient descent technique to minimize
the mean square difference between the
desired and actual outputs.

• The network is trained initially selecting small
random weights and then presenting all
training data incrementally.

• Weights are adjusted after every trial until
they converge and the error is reduced to an
acceptable value.

Back Propagation Algorithm
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Gradient Descent

E
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Error Terms

• Need to differentiate the error function

• The full calculation is presented in the book.

• Gives us the following error terms (deltas)
• For the outputs

• For the hidden nodes

)(')( kkkk agty d
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Update Rules

• This gives us the necessary update rules

• For the weights connected to the outputs:

• For the weights on the hidden nodes:

• The learning rate  depends on the application. 
Values between 0.1 and 0.9 have been used in many 
applications.

jkjkjk zww d

ijijij xvv d
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BackPropagation Algorithm
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Algorithm (sequential)

1. Apply an input vector and calculate all activations, a and u

2. Evaluate deltas for all output units:

3. Propagate deltas backwards to hidden layer deltas:

4. Update weights:

)(')( kkkk agty d
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y1

y2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

v01= 1
v02= 1

w11= 1

w12= -1

w21= 0

w22= 1

Use identity activation function (ie g(a) = a) for simplicity of example

Example: Backpropagation
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All biases set to 1. Will not draw them for clarity. 

Learning rate h = 0.1

y1

y2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1

Have input [0 1] with target [1 0]. 

x1= 0

x2= 1

Example: Backpropagation
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Forward pass. Calculate 1st layer activations:

y1

y2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1
u2 = 2

u1 = 1

u1 = -1x0 + 0x1 +1 = 1

u2 = 0x0 + 1x1 +1 = 2

x1= 0

x2= 1

Example: Backpropagation
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Calculate first layer outputs by passing activations through 
activation functions

y1

y2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1
z2 = 2

z1 = 1

z1 = g(u1) = 1

z2 = g(u2)  = 2

Example: Backpropagation
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Calculate 2nd layer outputs (weighted sum through activation
functions):

y1= 2

y2= 2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1

y1 = a1 = 1x1 + 0x2 +1 = 2

y2 = a2 = -1x1 + 1x2 +1 = 2

Example: Backpropagation

z1 = 1

z2 = 2
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Backward pass:

d1= 1

d2= 2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1

Target =[1, 0] so t1 = 1 and t2 = 0. So:
d1 = (y1 - t1 )= 2 – 1 = 1
d2 = (y2 - t2 )= 2 – 0 = 2

Example: Backpropagation

)(')( kkkk agty d
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Calculate weight changes for 1st layer:

d1 z1 =-1x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1

z2 = 2

z1 = 1

d1 z2 =-2

d2 z1 =-2

d2 z2 =-4

Example: Backpropagation

jkjkjk zww d
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Weight changes will be:

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 0.9

w12= -1.2

w21= -0.2

w22= 0.6

Example: Backpropagation

jkjkjk zww d
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Calculate hidden layer deltas:

D1 = 1

D2 = 2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

D1 w11= 1

D2 w12= -2
D1 w21= 0

D2 w22= 2

Example: Backpropagation

 D
k

ikkii wug )('d
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Deltas propagate back:

D1= 1

D2= 2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

d1= -1

d2 = 2

d1 = 1 - 2 = -1
d2 = 0 + 2 = 2

Example: Backpropagation

 D
k

ikkii wug )('d
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And are multiplied by inputs:

D1= -1

D2= -2

v11= -1

v12= 0

v21= 0

v22= 1

d1 x1 = 0

d2 x2 = -2

x2= 1

x1= 0

d2 x1 = 0

d1 x2 = 1

Example: Backpropagation

ijijij xvv d
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Finally change weights:

v11= -1

v12= 0

v21= 0.1

v22= 0.8x2= 1

x1= 0 w11= 0.9

w12= -1.2

w21= -0.2

w22= 0.6

Note that the weights multiplied by the zero input are unchanged as they
do not contribute to the error

We have also changed biases (not shown)

Example: Backpropagation

ijijij xvv d
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Now go forward again (would normally use a new input vector):

v11= -1

v12= 0

v21= 0.1

v22= 0.8x2= 1

x1= 0 w11= 0.9

w12= -1.2

w21= -0.2

w22= 0.6

z2 = 1.6

z1 = 1.2

Example: Backpropagation
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Now go forward again (would normally use a new input vector):

v11= -1

v12= 0

v21= 0.1

v22= 0.8x2= 1

x1= 0 w11= 0.9

w12= -1.2

w21= -0.2

w22= 0.6
y2 = 0.32

y1 = 1.66

Outputs now closer to target value [1, 0]

Example: Backpropagation



44

Activation Function

• We need to compute the derivative of activation function g

• What do we want in an activation function?

• Differentiable

• Nonlinear (more powerful)

• Bounded range (for numerical stability)
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Hard Limit Function

1.0

-1.0

x

y

Discontinuity where the
value changes from 0 to 1.
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A Quick Overview (Activation Functions)

a

y

a

y

a

y

a

y

threshold linear

piece-wise linear sigmoid
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Sigmoidal Function - Common in MLP
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• Where k is a positive
constant.

• The sigmoidal function gives
a value in range of 0 to 1.

• Alternatively can use
tanh(ka) which is same shape
but in range –1 to 1.
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Network Training

• Training set shown repeatedly until stopping
criteria are met.

• When should the weights be updated?

• After all inputs seen (batch)

• After each input is seen (sequential)

• Both ways, need many epochs - passes
through the whole dataset



Batch Training

Insert all 
training 

data

Calculate 
average  

error

Calculate 
deltas

Update 
weights
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• One loop is called an
epoch

• More accurate estimate
of gradient

• Faster convergence to
local optimum



Sequential Training

Insert 
one 

training 
data

Calculate 
error

Calculate 
deltas

Update 
weights
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• Simpler to program
• Can avoid local optima



Compromise: Minibatch

Insert 
one 

minibatch

Calculate 
average 

error

Calculate 
deltas

Update 
weights
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• Split all data into N
minibatches

• Feed each minibatch to
the network

• Shuffle data and repat

• May lead to the benefits
of both batch-learning
and sequential learning:
– Rapid convergence
– Avoiding local minima
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Risk: Gradient descent takes us to local 
minimum

E

w



How can we avoid the local minimum?

• Initialize training many times with random 
weights

• Use momentum:

53

1DD t
ijijijij wzww 



PRACTICAL ISSUES
54
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Amount of Training

• How much training data is 
needed?

– Count the weights
– Rule of thumb: use 10 times                        

more data than the number                               
of weights
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How many hidden layers do we need?

Output of one sigmoid
Addition of two sigmoids
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How many hidden layers do we need?

Addition of two ridges
Unique maximum

Addition of more ridges: 
Localised response
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Learning Capacity

Universal approximation theorem: Any continuous function
can be approximated by a neural network with a single
hidden layer
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Network Topology

• How many layers?

• How many neurons per layer?

• No good answers

• At most 3 weight layers, usually 2

• Test several different networks

• Possible types of adaptive algorithms (not default in MLP):
– start from a large network and successively remove some

neurons and links until network performance degrades.
– begin with a small network and introduce new neurons until

performance is satisfactory.



GENERALIZATION, TRAINING 
AND TESTING

60
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Generalisation

• Aim of neural network learning:

• Generalise from training examples to all possible
inputs.

• The objective of learning is to achieve good
generalization to new cases; we cannot train on all
possible data.

• Under-training is bad.

• Over-training is also bad.
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Generalisation - example
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• Overfitting occurs when a model begins to learn the bias

of the training data rather than learning to generalize.

• Overfitting generally occurs when a model is excessively

complex in relation to the amount of data available.

• A model which overfits the training data will generally

have poor predictive performance, as it can exaggerate

minor fluctuations in the data.

Overfitting
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Overfitting
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• The training data contains information about the regularities in
the mapping from input to output.

• Training data also contains bias:
– There is sampling bias. There will be accidental

regularities due to the finite size of the training set.
– The target values may also be unreliable or noisy.

• When we fit the model, it cannot tell which regularities are
relevant and which are caused by sampling error.
– So it fits both kinds of regularity.
– If the model is very flexible it can model the sampling error

really well. This is not what we want.

Overfitting
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The Problem of Overfitting

• Approximation of the function y = f(x) :

2 neurons in hidden layer

5 neurons in hidden layer

40 neurons in hidden layer

x

y
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The Solution:  Cross-Validation

To maximize generalization and avoid overfitting, split data
into three sets:

• Training set: Train the model.

• Validation set: Judge the model’s generalization ability
during training.

• Test set: Judge the model’s generalization ability after
training.
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Validation set

• Data unseen by training algorithm – not used for
backpropagation.

• Network is not trained on this data, so we can use it to
measure generalization ability.

• Goal is to maximize generalization ability, so we should
minimize the error on this data set.
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Early Stopping

Error

Training

Number of epochs

Validation

Time to stop training



Testing set

• Data unseen during training and validation.
• Has no influence on when to stop training.
• With early stopping, we’ve maximized the ability 

to generalize to the validation set;
• To judge the final result, we should measure its 

ability to generalize to completely unseen data.

70



k-Fold Cross Validation

• Validation and testing leaves less training data.
• Solution:  repeat over many different splits.

71

Source: Wikimedia Commons

Validation data
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Leave-one-out Cross Validation


