
INF3490 - Biologically inspired computing

Lecture 28th September 2016
Multi-Layer Neural Networks

Kai Olav Ellefsen

Classification

Trained Classifier “DOG”

3

Perceptron



x1

x2

xn

.

.

.

w1

w2

wn

a=i=1
n wi xi

1 if a  q
y =

0 if a < q

y

{

inputs
weights

activation

output

q

Training a classifier (supervised learning)

Untrained Classifier “CAT”

Training a classifier (supervised learning)

Untrained Classifier “CAT”

No, it was a dog.
Adjust classifier
parameters

6

Training a perceptron



x1

x2

xn

.

.

.

w1

w2

wn

a=i=1
n wi xi

1 if a  q
y =

0 if a < q

y

{

inputs
weights

activation

output

q

7

Decision Surface

x1

x2

Decision line
w1 x1 + w2 x2 = q

1

1 1

0

0

00

0

1

8

A Quick Overview

• Linear Models are easy to understand.

• However, they are very simple.

– They can only identify flat decision boundaries
(straight lines, planes, hyperplanes, ...).

• Majority of interesting data are not linearly
separable. Then?

9

A Quick Overview

• Learning in the neural networks (NN) happens in
the weights.

• Weights are associated with connections.

• Thus, it is sensible to add more connections to
perform more complex computations.

• Two ways for non-lin. separation (not exclusive):
– Recurrent Network: connect the output neurons to

the inputs with feedback connections.

– Multi-layer perceptron network: add neurons
between the input nodes and the outputs.

Multi-Layer Perceptron (MLP)

10

Input Layer

Hidden Layer Output Layer

-1 -1

11

XOR Problem

XOR (Exclusive OR) Problem

Perceptron does not work here.

Single layer generates a linear decision boundary.

12

Minsky & Papert (1969) offered solution to XOR problem by combining
perceptron unit responses using a second layer of units.

1

2

+1

+1

3

Solution for XOR : Add a Hidden Layer !!

13

XOR Again

Inputs

Hidden Layer

Output

A B

DC

E
-0.5

1 -1

-0.5

1 11 1
-1

-1

-1

XOR Again

A B Cin Cout Din Dout Ein

0 0 -0.5 0 -1 0 -0.5

0 1 0.5 1 0 0 0.5

1 0 0.5 1 0 0 0.5

1 1 1.5 1 1 1 -0.5
A B

DC

E
-0.5

1 -1

-0.5

1 11 1
-1

-1

-1

MLP Decision Boundary – Nonlinear
Problems, Solved!

15

In contrast to perceptrons, multilayer networks can learn not
only multiple decision boundaries, but the boundaries may
also be nonlinear.

Input nodes Internal nodes Output nodes

X2

X1

16

Multilayer Network Structure

• A neural network with one or more layers of nodes between
the input and the output nodes is called multilayer network.

• The multilayer network structure, or architecture, or topology,
consists of an input layer, one or more hidden layers, and one
output layer.

• The input nodes pass values to the first hidden layer, its nodes
to the second and so until producing outputs.

• A network with a layer of input units, a layer of hidden
units and a layer of output units is a two-layer network.

• A network with two layers of hidden units is a three-
layer network, and so on.

• No connections within a single layer.

• No direct connections between input and output
layers.

• Fully connected; all nodes in one layer connect to all
nodes in the next layer.

• Number of output units need not equal number of
input units.

• Number of hidden units per layer can be more or less
than input or output units.

Properties of the Multi-Layer
Perceptron

How to Train MLP?

• How we can train the network, so that
– The weights are adapted to generate correct (target

answer)?

• In Perceptron, errors are computed at the output.

• In MLP,
– Don’t know which weights are wrong:

– Don’t know the correct activations for the neurons in
the hidden layers.

18

x1 (tj - yj)

19

Then…

The problem is: How to train Multi Layer
Perceptrons??

Solution: Backpropagation Algorithm (Rumelhart
and colleagues,1986)

Backpropagation

Rumelhart, Hinton and Williams (1986) (though actually invented
earlier in a PhD thesis relating to economics)

xk

xi

wki

wjk

dj

dk

yj Backward step:
propagate errors from
output to hidden layer

Forward step:
Propagate activation
from input to output layer

21

Training MLPs

Forward Pass

1. Put the input values in the input layer.

2. Calculate the activations of the hidden nodes.

3. Calculate the activations of the output nodes.

22

Training MLPs

Backward Pass

1. Calculate the output errors

2. Update last layer of weights.

3. Propagate error backward, update hidden weights.

4. Until first layer is reached.

23

Error Function

• Single scalar function for entire network.

• Parameterized by weights (objects of interest).

• Multiple errors of different signs should not cancel out.

• Sum-of-squares error:

24

• The backpropagation training algorithm uses
the gradient descent technique to minimize
the mean square difference between the
desired and actual outputs.

• The network is trained initially selecting small
random weights and then presenting all
training data incrementally.

• Weights are adjusted after every trial until
they converge and the error is reduced to an
acceptable value.

Back Propagation Algorithm

25

Gradient Descent

E

w

26

Error Terms

• Need to differentiate the error function

• The full calculation is presented in the book.

• Gives us the following error terms (deltas)
• For the outputs

• For the hidden nodes

)(')(kkkk agty d


k

ikkii wug dd)('

27

Update Rules

• This gives us the necessary update rules

• For the weights connected to the outputs:

• For the weights on the hidden nodes:

• The learning rate  depends on the application.
Values between 0.1 and 0.9 have been used in many
applications.

jkjkjk zww d

ijijij xvv d

28

Y

BackPropagation Algorithm

X

E



T

y1

y2

y4

y3

e1

e2

e4

e3

x1

x2

x3

x4

x5

(X,T)

Algorithm (sequential)

1. Apply an input vector and calculate all activations, a and u

2. Evaluate deltas for all output units:

3. Propagate deltas backwards to hidden layer deltas:

4. Update weights:

)(')(kkkk agty d


k

ikkii wug dd)('

jkjkjk zww d

ijijij xvv d

30

y1

y2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

v01= 1
v02= 1

w11= 1

w12= -1

w21= 0

w22= 1

Use identity activation function (ie g(a) = a) for simplicity of example

Example: Backpropagation

31

All biases set to 1. Will not draw them for clarity.

Learning rate h = 0.1

y1

y2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1

Have input [0 1] with target [1 0].

x1= 0

x2= 1

Example: Backpropagation

32

Forward pass. Calculate 1st layer activations:

y1

y2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1
u2 = 2

u1 = 1

u1 = -1x0 + 0x1 +1 = 1

u2 = 0x0 + 1x1 +1 = 2

x1= 0

x2= 1

Example: Backpropagation

33

Calculate first layer outputs by passing activations through
activation functions

y1

y2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1
z2 = 2

z1 = 1

z1 = g(u1) = 1

z2 = g(u2) = 2

Example: Backpropagation

34

Calculate 2nd layer outputs (weighted sum through activation
functions):

y1= 2

y2= 2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1

y1 = a1 = 1x1 + 0x2 +1 = 2

y2 = a2 = -1x1 + 1x2 +1 = 2

Example: Backpropagation

z1 = 1

z2 = 2

35

Backward pass:

d1= 1

d2= 2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1

Target =[1, 0] so t1 = 1 and t2 = 0. So:
d1 = (y1 - t1)= 2 – 1 = 1
d2 = (y2 - t2)= 2 – 0 = 2

Example: Backpropagation

)(')(kkkk agty d

36

Calculate weight changes for 1st layer:

d1 z1 =-1x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 1

w12= -1

w21= 0

w22= 1

z2 = 2

z1 = 1

d1 z2 =-2

d2 z1 =-2

d2 z2 =-4

Example: Backpropagation

jkjkjk zww d

37

Weight changes will be:

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

w11= 0.9

w12= -1.2

w21= -0.2

w22= 0.6

Example: Backpropagation

jkjkjk zww d

38

Calculate hidden layer deltas:

D1 = 1

D2 = 2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

D1 w11= 1

D2 w12= -2
D1 w21= 0

D2 w22= 2

Example: Backpropagation

 D
k

ikkii wug)('d

39

Deltas propagate back:

D1= 1

D2= 2

x1

x2

v11= -1

v12= 0

v21= 0

v22= 1

d1= -1

d2 = 2

d1 = 1 - 2 = -1
d2 = 0 + 2 = 2

Example: Backpropagation

 D
k

ikkii wug)('d

40

And are multiplied by inputs:

D1= -1

D2= -2

v11= -1

v12= 0

v21= 0

v22= 1

d1 x1 = 0

d2 x2 = -2

x2= 1

x1= 0

d2 x1 = 0

d1 x2 = 1

Example: Backpropagation

ijijij xvv d

41

Finally change weights:

v11= -1

v12= 0

v21= 0.1

v22= 0.8x2= 1

x1= 0 w11= 0.9

w12= -1.2

w21= -0.2

w22= 0.6

Note that the weights multiplied by the zero input are unchanged as they
do not contribute to the error

We have also changed biases (not shown)

Example: Backpropagation

ijijij xvv d

42

Now go forward again (would normally use a new input vector):

v11= -1

v12= 0

v21= 0.1

v22= 0.8x2= 1

x1= 0 w11= 0.9

w12= -1.2

w21= -0.2

w22= 0.6

z2 = 1.6

z1 = 1.2

Example: Backpropagation

43

Now go forward again (would normally use a new input vector):

v11= -1

v12= 0

v21= 0.1

v22= 0.8x2= 1

x1= 0 w11= 0.9

w12= -1.2

w21= -0.2

w22= 0.6
y2 = 0.32

y1 = 1.66

Outputs now closer to target value [1, 0]

Example: Backpropagation

44

Activation Function

• We need to compute the derivative of activation function g

• What do we want in an activation function?

• Differentiable

• Nonlinear (more powerful)

• Bounded range (for numerical stability)

45

Hard Limit Function

1.0

-1.0

x

y

Discontinuity where the
value changes from 0 to 1.

46

A Quick Overview (Activation Functions)

a

y

a

y

a

y

a

y

threshold linear

piece-wise linear sigmoid

47

Sigmoidal Function - Common in MLP

iak
i

i eak
ag 





1

1

)exp(1

1
)(

• Where k is a positive
constant.

• The sigmoidal function gives
a value in range of 0 to 1.

• Alternatively can use
tanh(ka) which is same shape
but in range –1 to 1.

48

Network Training

• Training set shown repeatedly until stopping
criteria are met.

• When should the weights be updated?

• After all inputs seen (batch)

• After each input is seen (sequential)

• Both ways, need many epochs - passes
through the whole dataset

Batch Training

Insert all
training

data

Calculate
average

error

Calculate
deltas

Update
weights

49

• One loop is called an
epoch

• More accurate estimate
of gradient

• Faster convergence to
local optimum

Sequential Training

Insert
one

training
data

Calculate
error

Calculate
deltas

Update
weights

50

• Simpler to program
• Can avoid local optima

Compromise: Minibatch

Insert
one

minibatch

Calculate
average

error

Calculate
deltas

Update
weights

51

• Split all data into N
minibatches

• Feed each minibatch to
the network

• Shuffle data and repat

• May lead to the benefits
of both batch-learning
and sequential learning:
– Rapid convergence
– Avoiding local minima

52

Risk: Gradient descent takes us to local
minimum

E

w

How can we avoid the local minimum?

• Initialize training many times with random
weights

• Use momentum:

53

1DD t
ijijijij wzww 

PRACTICAL ISSUES
54

55

Amount of Training

• How much training data is
needed?

– Count the weights
– Rule of thumb: use 10 times

more data than the number
of weights

56

How many hidden layers do we need?

Output of one sigmoid
Addition of two sigmoids

57

How many hidden layers do we need?

Addition of two ridges
Unique maximum

Addition of more ridges:
Localised response

58

Learning Capacity

Universal approximation theorem: Any continuous function
can be approximated by a neural network with a single
hidden layer

59

Network Topology

• How many layers?

• How many neurons per layer?

• No good answers

• At most 3 weight layers, usually 2

• Test several different networks

• Possible types of adaptive algorithms (not default in MLP):
– start from a large network and successively remove some

neurons and links until network performance degrades.
– begin with a small network and introduce new neurons until

performance is satisfactory.

GENERALIZATION, TRAINING
AND TESTING

60

61

Generalisation

• Aim of neural network learning:

• Generalise from training examples to all possible
inputs.

• The objective of learning is to achieve good
generalization to new cases; we cannot train on all
possible data.

• Under-training is bad.

• Over-training is also bad.

62

Generalisation - example

63

• Overfitting occurs when a model begins to learn the bias

of the training data rather than learning to generalize.

• Overfitting generally occurs when a model is excessively

complex in relation to the amount of data available.

• A model which overfits the training data will generally

have poor predictive performance, as it can exaggerate

minor fluctuations in the data.

Overfitting

64

Overfitting

65

• The training data contains information about the regularities in
the mapping from input to output.

• Training data also contains bias:
– There is sampling bias. There will be accidental

regularities due to the finite size of the training set.
– The target values may also be unreliable or noisy.

• When we fit the model, it cannot tell which regularities are
relevant and which are caused by sampling error.
– So it fits both kinds of regularity.
– If the model is very flexible it can model the sampling error

really well. This is not what we want.

Overfitting

66

The Problem of Overfitting

• Approximation of the function y = f(x) :

2 neurons in hidden layer

5 neurons in hidden layer

40 neurons in hidden layer

x

y

67

The Solution: Cross-Validation

To maximize generalization and avoid overfitting, split data
into three sets:

• Training set: Train the model.

• Validation set: Judge the model’s generalization ability
during training.

• Test set: Judge the model’s generalization ability after
training.

68

Validation set

• Data unseen by training algorithm – not used for
backpropagation.

• Network is not trained on this data, so we can use it to
measure generalization ability.

• Goal is to maximize generalization ability, so we should
minimize the error on this data set.

69

Early Stopping

Error

Training

Number of epochs

Validation

Time to stop training

Testing set

• Data unseen during training and validation.
• Has no influence on when to stop training.
• With early stopping, we’ve maximized the ability

to generalize to the validation set;
• To judge the final result, we should measure its

ability to generalize to completely unseen data.

70

k-Fold Cross Validation

• Validation and testing leaves less training data.
• Solution: repeat over many different splits.

71

Source: Wikimedia Commons

Validation data

72

Leave-one-out Cross Validation

