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Last time: Supervised learning

Untrained Classifier “CAT”

No, it was a dog.
Adjust classifier 
parameters
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Supervised learning: Weight updates
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Reinforcement Learning: 
Infrequent Feedback

50 chess moves later You lost

Update chess-
playing strategy



How do we update our system now? 
We don’t know the error.
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Example



The reinforcement learning problem
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The reinforcement learning problem
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The reinforcement learning problem
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“Move piece from J1 to H1” 



The reinforcement learning problem

10

You took an opponent’s piece.
Reward=1



The reinforcement learning problem
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The reinforcement learning problem
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Learning is guided by the reward

• An infrequent numerical feedback indicating 
how well we are doing

• Problems:
– The reward does not tell us what we should have 

done

– The reward may be delayed – does not always 
indicate when we made a mistake.
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The reward function

• Corresponds to the fitness function of an 
evolutionary algorithm

is a function of 

• The reward is a numeric value. Can be 
negative (“punishment”).

• Can be given throughout the learning 
episode, or only in the end

• Goal: Maximize total reward
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Maximizing total reward
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Discounted rewards example
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t

1 0.99 0.95
2 0.9801 0.9025
4 0.960596 0.814506
8 0.922745 0.66342

16 0.851458 0.440127
32 0.72498 0.193711
64 0.525596 0.037524



What do we need to estimate the next 
state and reward?
• If we only need to know the current state, this 

problem has the Markov property.

) = 
)
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Markov Decision Processes
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Value
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• The expected future reward is known as the 
value

• Two ways to compute the value:
– The value of a state – V(s) – averaged over all 

possible actions in that state

– The value of a state/action pair Q(s,a)

• Q and V are initially unknown, and learned 
iteratively as we gain experience



Q-learning
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Q-learning example

• Credits: Arjun Chandra
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Action selection
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Action selection

• The function deciding which action to take in 
each state is called the policy, Examples:
– Greedy: Always choose most valuable action

– ϵ-greedy: Greedy, except small probability (ϵ) of 
choosing the action at random

• The q-learning we just saw is an example of 
off-policy learning:
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On-policy vs off-policy learning

• Q-learning (off-policy):

• Sarsa (on-policy):
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On-policy vs off-policy learning
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Start The Cliff Goal

• Reward structure: Each move: -1. Move to 
cliff: -100.

• Policy: 90% chance of choosing best action 
(exploit). 10% chance of choosing random 
action (explore).



On-policy vs off-policy learning: 
Q-learning
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Start The Cliff Goal

• Always assumes optimal action -> does not 
visit cliff often while learning. Therefore, does 
not learn that cliff is dangerous.

• Resulting path is efficient, but risky.



On-policy vs off-policy learning: 
sarsa
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Start The Cliff Goal

• During learning, we more frequently end up 
outside the cliff (due to the 10% chance of 
exploring in our policy).

• That info propagates to all states, generating 
a safer plan.



Which plan is better?
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Start The Cliff Goal

Start The Cliff Goal

• sarsa (on-policy):

• Q-learning (off-policy):


