

UiO Department of Informatics
University of Oslo

INF3490 - Biologically inspired computing

Lecture 12th October 2016

Reinforcement Learning

Kai Olav Ellefsen

Last time: Supervised learning

UiO Department of Informatics University of Oslo

Supervised learning: Weight updates

$$\Delta w_{ij} = \eta \cdot (t_j - y_j) \cdot ilde{x_i}$$
 $extstyle extstyle e$

3

UiO Department of Informatics
University of Oslo

Reinforcement Learning: Infrequent Feedback

How do we update our system now? We don't know the error.

Example

Robot Motor Skill Coordination with EM-based Reinforcement Learning

Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell

Italian Institute of Technology

2016.10.11

Goal: learn to choose actions that maximize:

 $r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$, where $0 \le \gamma \le 1$

"Move piece from J1 to H1"

You took an opponent's piece. Reward=1

Goal: learn to choose actions that maximize:

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
, where $0 \le \gamma \le 1$

Learning is guided by the reward

- An infrequent numerical feedback indicating how well we are doing
- Problems:
 - The reward does not tell us what we should have done
 - The reward may be delayed does not always indicate when we made a mistake.

The reward function

- Corresponds to the fitness function of an evolutionary algorithm
- r_{t+1} is a function of (s_t, a_t)
- The reward is a numeric value. Can be negative ("punishment").
- Can be given throughout the learning episode, or only in the end
- Goal: Maximize total reward

Maximizing total reward

Total reward:

$$R = \sum_{t=0}^{N-1} r_{t+1}$$

- Future rewards may be uncertain -> We care more about rewards that come soon
- Solution: Discount future rewards:

$$R = \sum_{t=0}^{\infty} \gamma^t \ r_{t+1}, \qquad 0 \le \gamma \le 1$$

UiO Department of Informatics University of Oslo

Discounted rewards example

$$R = \sum_{t=0}^{\infty} \gamma^t \ r_{t+1}, \qquad 0 \le \gamma \le 1$$

t	0.99 ^t	0.95 ^t
1	0.99	0.95
2	0.9801	0.9025
4	0.960596	0.814506
8	0.922745	0.66342
16	0.851458	0.440127
32	0.72498	0.193711
64	0.525596	0.037524

What do we need to estimate the next state and reward?

 If we only need to know the current state, this problem has the Markov property.

$$P(r_t = r', s_{t+1} = s' | s_0, a_0, r_0, \dots, r_{t-1}, s_t, a_t) = P(r_t = r', s_{t+1} = s' | s_t, a_t)$$

Markov Decision Processes

Value

- The expected future reward is known as the value
- Two ways to compute the value:
 - The value of a state V(s) averaged over all possible actions in that state
 - The value of a state/action pair Q(s,a)
- Q and V are initially unknown, and learned iteratively as we gain experience

19

Q-learning

 Values are learned by "backing up" values from the current state to the previous one:

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \left(\underbrace{r_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}
ight)$$

The same can be done for v-values:

$$V(s_t) \leftarrow V(s_t) + \mu(r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$$

UiO Department of Informatics
University of Oslo

Q-learning example

Credits: Arjun Chandra

2016.10.11

toy problem

expected long term value of taking some action in each state, under some action selection scheme?

E{	R}	E{	R}	E{R}		
E{R}	E{R}	E{R}	E{R}	E{R}	E{R}	
E{	R}	E{	R}	E{R}		
E{	R}	₹	R}	E{R}		
E{R}	E{R}	E{F	E{R}	E{R}	E{R}	
E{	R}	儿	R}	Ε{	R}	
E{	R}	E{R}		E{	R}	
E{R}	ր E{R}	E{R}	E{R}	E{R}	E{R}	
E{	R}	E{	R}	E{R}		

our toy problem lookup table

to any cell except 5 and 7:

-1

out of bounds:

-5

to 5:

to 7/home:

.

10

let's fix $\mu = 0.1$, $\gamma = 0.5$

	0			0			0	
o	1	0	0	2	0	0	3	0
	0			0			0	
	0			0			0	
o	4	0	0	5	0	0	6	o
	0		13	0			0	
	0			0			0	
o h	7 iom	0	0	8	0	0	9	0
	0			0			0	

episode 1 begins...

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

	0			0			0	
o	1	0	-0.1	2	0	0	3	0
	0			0			0	
	0			0			0	
o	4	0	0	5	0	o	6	0
	0		13	0			0	
	0			0			0	
0 h	7 iome	0	0	8	0	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}
ight)}_{ ext{old value}}$$

	-0.5			0			0	
o	1	0	-0.1	2	0	0	3	0
	0			0			0	
	0			0			0	
o	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
0 F	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
o	1	0	-0.1	2	0	0	3	0
	0			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
0 h	7 nom	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	?		-1	0			0	
	0 4			0			0	
o	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
o h	7 iome	0	0	8	0	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward discount factor}}^{ ext{learned value}}_{ ext{estimate of optimal future value}}^{ ext{learned value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
o	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
0 	7 nome	0	o	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0	-	-10	0	
	0			0 4			0	
0	4	?	0	5	o	0	6	o
	0		13	0			0	
	0			0			0	
0 F	7 nome	0	o	8	0	0	9	o
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	O	o	6	o
	0		13	0			0	
	0			0			0	
0 F	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
0 F	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
o	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		13	5	,-	-1	0	
	0			0 🚽			0	
٥	7 nome	0	0	8	0	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward discount factor}}^{ ext{learned value}}_{ ext{estimate of optimal future value}}^{ ext{learned value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
o	4	-1	0	5	0	0	6	0
	0		13	-0.1			0	
	0			0			0	
o F	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
o	4	-1	0	5	0	0	6	0
	0		13	-0.1			0	
	0			0			0	
٥	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		13	-0.1			0	
	0	-	-10	0			0	
o F	7 nome	0	?	8	0	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}
ight)}_{ ext{old value}}$$

let's work out the next episode, starting at state 4

go WEST and then SOUTH

how does the table change?

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
-0.5	4	-1	0	5	0	0	6	0
	1			-0.1			0	
	0			0			0	
0	7	0	1	8	0	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward discount factor}}^{ ext{learned value}}_{ ext{estimate of optimal future value}}^{ ext{learned value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

and the next episode, starting at state 3

go WEST -> SOUTH -> WEST -> SOUTH

how does the table change?

	-0.5			0			0	
0	1	0	-0.1	2	0	-0.1	3	0
	-0.1			-1			0	
	0			0			0	
-0.5	4	-1	-0.05	5	o	0	6	0
	1.9			-0.1			0	
	0			0			0	
0	7	0	1	8	0	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward discount factor}}^{ ext{learned value}}_{ ext{estimate of optimal future value}}^{ ext{learned value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

Action selection

- Estimate the *value* of each action: $Q_{s,t}(a)$
- Decide whether to:
 - Explore, or
 - exploit

Action selection

- The function deciding which action to take in each state is called the policy, π . Examples:
 - Greedy: Always choose most valuable action
 - ε-greedy: Greedy, except small probability (ε) of choosing the action at random
- The q-learning we just saw is an example of off-policy learning:

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \left(\underbrace{r_{t+1} + \underbrace{\gamma}_{ ext{reward discount factor}}_{ ext{discount factor}} \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}
ight)$$

48

On-policy vs off-policy learning

Q-learning (off-policy):

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

Sarsa (on-policy):

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \mu[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

On-policy vs off-policy learning

- Reward structure: Each move: -1. Move to cliff: -100.
- Policy: 90% chance of choosing best action (exploit). 10% chance of choosing random action (explore).

Start	The Cliff							

On-policy vs off-policy learning: Q-learning

- Always assumes optimal action -> does not visit cliff often while learning. Therefore, does not learn that cliff is dangerous.
- Resulting path is efficient, but risky.

On-policy vs off-policy learning: sarsa

- During learning, we more frequently end up outside the cliff (due to the 10% chance of exploring in our policy).
- That info propagates to all states, generating a safer plan.

Which plan is better?

• sarsa (on-policy):

• Q-learning (off-policy):

