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Last time: Supervised learning

N

> Untrained Classifie> “CAT"

No, it was a dog.

'Adjust classifier
parameters
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Supervised learning: Weight updates

inputs
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Reinforcement Learning:
Infrequent Feedback

-~ 50 chess moves Iater> You IOSt

BN

-Update chess-
playing strategy
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How do we update our system now?
We don’t know the error.

/ Learning rate /’”Wt

Aw;j; = "7'5753' —yg")'i"?:

Actual output
Desired output

Error
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Example

Robot Motor Skill
Coordination with EM-based
Reinforcement Leaming

Petar Kormushev, Sylvain Calinon,
and Darwin G. Caldwell

Italian Institute of Technology
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The reinforcement learning problem

Agent
~tate Eeward Action
Environment
=1 ] Ao
=0 - =1 - o -
1 I Ia

iroal: learn to choose actions that maximize:
m+yrn ¥+, where 0=y < ]
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The reinforcement learning problem

Agent
/ Reward \&ction
Fnvironment
a0 d] az
N 1 ————p 2 —————p
1 I 2

Joal: learn to choose actions that maximize:
mE+vyn+¥nt . where 0sy=1
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The reinforcement learning problem

Agent
Stat//Reward “Move pieCe from J1 to H1”
Environment
an aj an
S0 e B e B2
1 I 2

Joal: learn to choose actions that maximize:
mE+vyn+¥nt . where 0sy=1
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The reinforcement learning problem

Agent
Stat// \;&ction YOU tOOk an 0pp0nent’3 piece-
Reward=1
Environment
an aj an
S0 e B e B2
1 I 2

Joal: learn to choose actions that maximize:
mE+vyn+¥nt . where 0sy=1
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The reinforcement learning problem

Agent
~tate Eeward Action
Environment
=1 ] Ao
=0 - =1 - o
I I

iroal: learn to choose actions that maximize:
m+yrn ¥+, where 0=y < ] 1
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The reinforcement learning problem

Agent
~tate Eeward Action
Environment
=1 ] Ao
=0 - =1 - o -
1 I Ia

iroal: learn to choose actions that maximize:
m+yrn ¥+, where 0=y < ] 12
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Learning is guided by the reward

* An infrequent numerical feedback indicating
how well we are doing

 Problems:

— The reward does not tell us what we should have
done

— The reward may be delayed — does not always
iIndicate when we made a mistake.

13
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The reward function

« Corresponds to the fithess function of an
evolutionary algorithm

e 1:.41S a function of (s;, a;)

* The reward is a numeric value. Can be
negative (“punishment”).

« Can be given throughout the learning
episode, or only in the end

 Goal: Maximize total reward

2016.10.11 b
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Maximizing total reward

 Total reward:
1

R=).

t=0

* Future rewards may be uncertain -> We care
more about rewards that come soon

« Solution: Discount future rewards:

Tt+1

R=) Y14,  0<y<l
t=0
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Discounted rewards example

o B~ N -

32
64

(00]
R = Ly
- Y t+1»
t=0

0.99
0.9801
0.960596
0.922745
0.851458
0.72498
0.525596

0.95
0.9025
0.814506
0.66342
0.440127
0.193711
0.037524
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What do we need to estimate the next
state and reward?

 If we only need to know the current state, this
problem has the Markov property.

P(rt = r,'St+1 = S’l S0, Ao, 1oy -+ Te—1, St at) -
P(ry =71',Se41 = 8'| s¢, a¢)
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Markov Decision Processes

18
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Value

* The expected future reward is known as the
value
* Two ways to compute the value:

— The value of a state — V(s) — averaged over all
possible actions in that state

— The value of a state/action pair Q(s,a)

 Qand V are initially unknown, and learned
iteratively as we gain experience

2016.10.11

19



UiO ¢ Department of Informatics
University of Oslo

Q-learning

* Values are learned by “backing up” values
from the current state to the previous one:

learned value

N

Q(st,at) «— Q(st,a¢)+ U | req + 9 - maxQ(s¢41,0) — Q(s¢,a4)
, S S N ~~ @ B  S—
old value learning rate reward  discount factor " old value

estimate of optimal future value

e The same can be done for v-values:
V(St) « V(St) + u(reeq + YV(5t+1) — V(St))
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Q-learning example

« Credits: Arjun Chandra

2016.10.11
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toy problem




expected long term value of taking
some action in each state, E
under some action selection scheme?
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E{R}  E{R}E{R}  E{R}E{R} E{R}

E{R} E{R}
E{R} JE E{R}

E{R} E{R} E{R} E{R}

E{R} E{R}
E{R} E{R}

E{R} h E{R} E{(R}  E{R}
E{R} E{R}




-

RO
0 0O
O ®
. o
e
> D
O X
+ O
“ O
5 =
@,




reward
structure?

move...

to any cell except 5 and 7: out of bounds: : to 7/home:
-1 -5 10




ol
-
1
=
—
-
1
= 1
X
J—
....S
e
Y




episode 1 begins...




Q(st,a:) — Q(st,a:) + U
S S~

old value

learning rate

learned value
t——\

Tt+1 + Y . mc?x Q(St-l-l:a’) - Q(St: at)

~~ ~~ N———
reward discount factor N old value

estimate of optimal future value
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Q(st,a:) — Q(st,a:) + U
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let’s work out the next
episode, starting at
state 4

go WEST and then SOUTH

how does the table change?




Q(st,a:) — Q(st,a:) + U
S S~

old value

learning rate

learned value
t——\

Tt+1 + Y . mc?x Q(St-l-l:a’) - Q(St: at)

~~ ~~ N———
reward discount factor N old value

estimate of optimal future value




and the next episode,
starting at state 3

go WEST -> SOUTH -> WEST -> SOUTH

how does the table change?




Q(st,a:) — Q(st,a:) + U
S S~

old value

learning rate

learned value
t——\

Tt+1 + Y . mc?x Q(St-l-l:a’) - Q(St: at)

~~ ~~ N———
reward discount factor N old value

estimate of optimal future value
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Action selection

- Estimate the value of each action: Q, .(a)

 Decide whether to:
— Explore, or
— exploit

20
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Action selection

» The function deciding which action to take in
each state is called the policy, m. Examples:
— Greedy: Always choose most valuable action

— e-greedy: Greedy, except small probability (€) of
choosing the action at random

* The g-learning we just saw is an example of

off-policy learning:
lea,rnei value
Q(st,at) < Q(s¢,az) + U thH + Y ’ max Q(s¢+1,a) — Q(st,at)
N, e’ ~ Moo ~~ @ N, e’

Ny >

old value learning rate reward  discount factor . Ve old value
estimate of optimal future value

2016.10.11 *
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On-policy vs off-policy learning

* Q-learning (off-policy):

learned value

N

Tyl +

Q(St,at) <—Q(3t,at)+ U Y maXQ(3t+1:a) _Q(St:at)
N—— \/ ~~ . a J ——’
old value learning rate reward discount factor SN old value

estimate of optimal future value

« Sarsa (on-policy):

Q(st,ar) +— Q(st,at) + Urep1r +YQ(St41,ai41) — Q(5t, at)]

2016.10.11 *
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On-policy vs off-policy learning

« Reward structure: Each move: -1. Move to
cliff: -100.

* Policy: 90% chance of choosing best action
(exploit). 10% chance of choosing random
action (explore).

Start The CIiff Goal

50
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On-policy vs off-policy learning:
Q-learning

* Always assumes optimal action -> does not

visit cliff often while learning. Therefore, does
not learn that cliff is dangerous.

» Resulting path is efficient, but risky.

Zlart The Cliff GonY
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On-policy vs off-policy learning:

sarsa

* During learning, we more frequently end up
outside the cliff (due to the 10% chance of
exploring in our policy).

« That info propagates to all states, generating
a safer plan.

Pl L]

ﬁt/ The CIiff XG\E/Z
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Which plan is better?

« sarsa (on-policy):
/ &
A
ﬁt The CIiff é}/?
* Q-learning (off-policy):
/ \
lart The CIiff Goany




