























UiO: Department of Informatics

## Learning is guided by the reward

- · An infrequent numerical feedback indicating how well we are doing
- Problems:
  - The reward does not tell us what we should have done
  - The reward may be delayed does not always indicate when we made a mistake.

2016.10.11

UiO : Department of Informatics

University of Oslo

# **Maximizing total reward**

Total reward:

$$R = \sum_{t=0}^{N-1} r_{t+1}$$

- Future rewards may be uncertain -> We care more about rewards that come soon
- · Solution: Discount future rewards:

$$R = \sum_{t=0}^{\infty} \gamma^t \ r_{t+1}, \qquad 0 \le \gamma \le 1$$

UiO: Department of Informatics

### The reward function

- · Corresponds to the fitness function of an evolutionary algorithm
- $r_{t+1}$  is a function of  $(s_t, a_t)$
- The reward is a numeric value. Can be negative ("punishment").
- · Can be given throughout the learning episode, or only in the end
- Goal: Maximize total reward

2016.10.11

UiO : Department of Informatics University of Oslo

# **Discounted rewards example**

$$R = \sum_{t=0}^{\infty} \gamma^t \ r_{t+1}, \qquad 0 \le \gamma \le 1$$

|    | 0.99 <sup>t</sup> | 0.95 <sup>t</sup> |
|----|-------------------|-------------------|
| 1  | 0.99              | 0.95              |
| 2  | 0.9801            | 0.9025            |
| 4  | 0.960596          | 0.814506          |
| 8  | 0.922745          | 0.66342           |
| 16 | 0.851458          | 0.440127          |
| 32 | 0.72498           | 0.193711          |
| 64 | 0.525596          | 0.037524          |

UiO Department of Informatics

# What do we need to estimate the next state and reward?

• If we only need to know the current state, this problem has the *Markov property*.



$$P(r_t = r', s_{t+1} = s' | s_0, a_0, r_0, \dots, r_{t-1}, s_t, a_t) = P(r_t = r', s_{t+1} = s' | s_t, a_t)$$

17



UiO Department of Informatics

### **Value**

- The expected future reward is known as the *value*
- Two ways to compute the value:
  - The value of a state V(s) averaged over all possible actions in that state
  - The value of a state/action pair Q(s,a)
- Q and V are initially unknown, and learned iteratively as we gain experience

2016.10.11

UiO : Department of Informatics University of Oslo

# **Q-learning**

 Values are learned by "backing up" values from the current state to the previous one:

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\mu}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{old value}}$$

• The same can be done for v-values:  $V(s_t) \leftarrow V(s_t) + \mu(r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$ 

20

















| 0 1 0 -0.1 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|----------------------------------------------------|
| 0 0 0                                              |
| 0 0                                                |
| TAKES                                              |
| 0 4 0 6 0 0 6 0                                    |
| AND ALL                                            |
| 0 73-6 0                                           |
| 0 0 0                                              |
| 0 7 0 0 8 0 0 9 0<br>home                          |
| 0 0 0                                              |















|   | -0.5 |    |      | 0          |   |   | 0 |   |  |
|---|------|----|------|------------|---|---|---|---|--|
| o | 1    | 0  | -0.1 | 2          | 0 | 0 | 3 | 0 |  |
|   | -0.1 |    |      | 0          |   |   | 0 |   |  |
|   | 0    |    |      | 0          |   |   | 0 |   |  |
| 0 | 4    | -1 | 0    | 5          | o | 0 | 6 | 0 |  |
|   | 0    |    | 7    | <b>9</b> 0 | L |   | 0 |   |  |
|   | 0    |    |      | 0          |   |   | 0 |   |  |
| 0 | 7    | 0  | 0    | 8          | 0 | 0 | 9 | 0 |  |
|   | ome  | =  |      | 0          |   |   | 0 |   |  |







| -0.5                                                         |   |           |    |      |      |   |   |   |   |  |
|--------------------------------------------------------------|---|-----------|----|------|------|---|---|---|---|--|
| -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                     |   | -0.5      |    |      | 0    |   |   | 0 |   |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                        | 0 | 1         | 0  | -0.1 | 2    | 0 | 0 | 3 | 0 |  |
| 0 4 -1 0 5 0 0 6 0<br>0 0 0 0 0<br>0 7 0 0 8 0 0 9 0<br>home |   | -0.1      |    |      | 0    |   |   | 0 |   |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                        |   | 0         |    |      | 0    |   |   | 0 |   |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                        | o | 4         | -1 | 0    |      | 0 | o | 6 | 0 |  |
| 0 7 0 0 8 0 0 9 0<br>home 9 0                                |   | 0         |    | 13   | -0.1 |   |   | 0 |   |  |
| home Me                                                      |   | 0         |    |      | 0    |   |   | 0 |   |  |
| 0 0 0                                                        | ٥ | 7<br>nome | o  | 0    | 8    | 0 | 0 | 9 | 0 |  |
|                                                              |   | 0         |    |      | 0    |   |   | 0 |   |  |
|                                                              |   |           |    |      |      |   |   |   |   |  |
|                                                              |   |           |    |      |      |   |   |   |   |  |







# and the next episode, starting at state 3

go WEST -> SOUTH -> WEST -> SOUTH

how does the table change?



UiO Department of Informatics

### **Action selection**

- Estimate the *value* of each action:  $Q_{s,t}(a)$
- Decide whether to:
  - Explore, or
  - exploit

20



UiO : Department of Informatics
University of Oslo

## **Action selection**

- The function deciding which action to take in each state is called the policy, π. Examples:
  - Greedy: Always choose most valuable action
  - $\varepsilon\text{-}greedy:$  Greedy, except small probability ( $\varepsilon$ ) of choosing the action at random
- The q-learning we just saw is an example of off-policy learning:

$$Q(s_{t}, a_{t}) \leftarrow \underbrace{Q(s_{t}, a_{t})}_{\text{old value}} + \underbrace{\frac{\mu}{\text{learning rate}}}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{\frac{\text{learned value}}{r_{t+1} + \gamma} \cdot \max_{a} Q(s_{t+1}, a)}_{\text{reward discount factor}} - \underbrace{\frac{\alpha}{\alpha} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{\frac{Q(s_{t}, a_{t})}{\text{old value}}}_{\text{48}}\right)}_{\text{48}}$$

12

UiO Department of Informatics

## On-policy vs off-policy learning

· Q-learning (off-policy):

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\mu}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1} + \underbrace{\gamma}_{t+1} + \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{old value}} - \underbrace{\left(\underbrace{r_{t+1} + \underbrace{\gamma}_{t+1} + \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{old value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{old value}} - \underbrace{\left(\underbrace{r_{t+1} + \underbrace{\gamma}_{t+1} + \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{old value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{old value}} - \underbrace{\left(\underbrace{r_{t+1} + \underbrace{\gamma}_{t+1} + \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{old value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{old value}} - \underbrace{\left(\underbrace{r_{t+1} + \underbrace{\gamma}_{t+1} + \underbrace{\gamma}_{t+1} + \underbrace{\alpha}_{t+1} + \underbrace$$

• Sarsa (on-policy):

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \mu[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

2016.10.11

UiO Department of Informatics

# On-policy vs off-policy learning

- Reward structure: Each move: -1. Move to cliff: -100.
- Policy: 90% chance of choosing best action (exploit). 10% chance of choosing random action (explore).



50

UiO : Department of Informatics
University of Oslo

# On-policy vs off-policy learning: Q-learning

- Always assumes optimal action -> does not visit cliff often while learning. Therefore, does not learn that cliff is dangerous.
- · Resulting path is efficient, but risky.



UiO Department of Informatics
University of Oslo

# On-policy vs off-policy learning: sarsa

- During learning, we more frequently end up outside the cliff (due to the 10% chance of exploring in our policy).
- That info propagates to all states, generating a safer plan.



