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Biologically inspired computing — Lecture 19 October 2016

Support Vector Machines (Marshall Chpt 8)
Ensembles (Marshall Chpt 13)
Dimensionality (Marshall Chpt 6.2)
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This lecture

1. Support vector machines
— Optimal separation
— Kernels

2. Ensemble learning

3. Dimensionality reduction
— Principal component analysis
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Optimal separation

Linear separators:

Which one iIs best?
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Optimal separation

Choose the one with
the best margin!

Why?

 New data near the
training data points will
likely be of the same
class

e
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Optimal separation

Support vectors

* The training data
defining the margin

* The rest of the data can
be discarded when we -
are done learning
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Optimal separation

« Distance to hyperplane:
x.— b = {> 0 aboveplane —classA: y; =1
Wt <0 belowplane —classB: y; = —1

 If we require that y;(w- x; — b) > 1 then the
margin is M = 1/(2|w|)
— Maximizing the margin < minimizing w - w
— Exact solution can be found, along with a list of
support vectors, using quadratic programming

« SVMin 7 minutes (Thales Sehn Korting):
https://www.youtube.com/watch?v=1NxnPkZM9bc
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Nonlinearity

 How to classify linearly inseparable data?

— Combine many linear SVMs?
« Similar to multilayer neural networks
« But what are the target outputs for the hidden layers?

— A different idea:
« Map inputs into a higher-dimensional space
* Hope that they are linearly separable there.

18.10.2016



18.10.2016

UiO ¢ Department of Informatics
University of Oslo

Increase dimensionality

@: (x) = (x,x%)

—0-0—0-0—0—0-0-0——
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High dimensionality

o SVMs typically map to feature spaces of
much higher dimension

— With enough dimensions, it becomes very likely
that the data becomes linearly separable
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Kernels

* Finding the hyperplane only requires the dot product
between vectors, not the actual vectors

— Calculating ¢(x;) - ¢(x;) might be much easier than ¢(x;)

o K(x;x;) =) ¢o(x;)is called the kernel of ¢
— Common kernels include
* None: K(x;,x;) = x; - x;
« Polynomial: K(x;,x;) = (1 +x; - x;)"
« Sigmoid: K(x;,x;) = tanh(kx; - x; — §)
- Radial basis function: K(x;, x;) = exp (—(xl- — Xj)Z/ZJZ)
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Overfitting

* Any data set is linearly separable in a feature
space of sufficient complexity

 We have to be aware of overfitting: Use
cross-validation and early stopping!

— If there are noisy outliers (esp. mislabeled
examples), we need to take stronger measures:
soft margin.
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Soft margins

* Instead of perfectly separating all data, allow
some misclassifications

e Introduce slack variables

— Optimize tradeoff between maximum margin and
misclassification penalty

— Tradeoff is balanced by penalty factor C

o Useful when some error is tolerated, or when
there are chances of mislabeled training data
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Applications

Classification
— Multi-class can be achieved via multiple outputs

* Regression

* Object detection & recognition
* Content-based image retrieval
e Text recognition

» Speech recognition

* Biometrics

* Etc.
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Considerations

* Quite powerful (hard to beat by other algorithms)
— Must beware of overfitting

* Robust to some noise, if margin is managed properly
« Fast to apply
 Difficult to interpret

 How to pick kernel?
— Start with Gaussian RBF or polynomial
— May require domain-specific knowledge
— Can combine kernels for heterogeneous data
— Consult experts
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Ensemble learning

« “Decision by committee”

— Train multiple classifiers to be slightly different
* An “ensemble”

— Make classifications based on the combined
results of all of them

 Two common types of training differentiation

— Boosting : change the importance of each training
vector (data point)

— Bagging : change the training vectors being used
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Boosting - AdaBoost

* lteratively trains classifiers

 Each data point is assigned a weight
— For the first classifier all the weights are equal

— For the next classifier the weights of the data
points that were misclassified previously is raised

— This is continued until the combined error of the
classifiers trained so far is sufficiently low

* Dependent on the classifier’s ability to
consider the weights in their training
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Bagging

 Makes a random sample of the training data
for each classifier — bootstrap samples
— Same size as the training data
— With replacement
— Some data points will occur at least twice!
— Variance will be reduced

— Each classifier will have different views of the
training data
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Combining the classifiers

 Which classifiers do we listen to when the
ensemble is in disagreement?
— Weighted voting (used in boosting)
» Some classifiers have greater influence than others
— Majority voting (used in bagging)
» The most “popular” class is chosen

— Mixture of experts

* A meta-machine learning algorithm decides which
classifiers are most likely to be correct
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Majority voting
What to do about the disagreement
— Refuse to classify?

— Classify only if more than half agree?
— Return the most common vote?

Depends on the application
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Dimensionality reduction —

Feature extraction

Why reduce dimensionality?

* Reduces time complexity: Less computation
 Reduces space complexity: Less parameters
o Saves the cost of acquiring irrelevant features
e Simpler models are more robust

o Easier to interpret; simpler explanation

« Data visualization (structure, groups, outliers, etc.) if
plotted in 2 or 3 dimensions
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Principal components

« The directions along with the most variation
— Don’t have to correspond to the coordinate axes

V4
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YouTube introductions

Application examples (Rasmus Bro):

* https://www.youtube.com/watch?annotation id=annotation 963680&fe

ature=iv&src vid=K-F19DORO1w&v=UUxIXU ObG6GE

e https://www.youtube.com/watch?v=26YhtSJilqc
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Principal component analysis

e Rotate the axes to lie along the principal
components

« Remove the axes with the least variation
— Keep a certain number of dimensions
— Or: keep a certain percentage of the variation
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Calculating the principal components

e Calculate the covariance matrix of the data

e Calculate the eigenvalues and eigenvectors
of the covariance matrix

« Transform the data with the eigenvectors for
the largest eigenvalues as the new basis
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Calculating the covariance matrix

The variance of feature i:

N
1
of = oy = NE(xki — U;)?
k=1

The covariance between feature i and j:

N
1
0ij = NE(xki — ) (xej — 1)
k=1
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Calculating the covariance matrix

The covariance matrix is composed of the
variances and covariances of every
combination of feature:

011
021

On1

012
022

On2
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The covariance eigenvectors

The eigenvectors v; and eigenvalues A; are the
n unique values of matrix C such that
Aivi = Cvi
* The eigenvectors of the covariance matrix describe
the directions of the principal components

 The eigenvalues tell us how large part of the total
variation in the data that is accounted for by that
principal component
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Notes on PCA

e PCA is a linear transformation

— Does not directly help with data that is not linearly
separable

— However, may make learning easier because of
reduced complexity

e PCA removes some information from the data
— Might just be noise

— Might provide helpful nuances that may be of help
to some classifiers
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