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Biologically inspired computing – Lecture 19 October  2016

Support Vector Machines (Marshall Chpt 8)
Ensembles (Marshall Chpt 13)
Dimensionality (Marshall Chpt 6.2)

This lecture

1. Support vector machines
– Optimal separation
– Kernels

2. Ensemble learning

3. Dimensionality reduction
– Principal component analysis
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Optimal separation

Linear separators:

Which one is best?
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Optimal separation

Choose the one with 
the best margin!

Why?
• New data near the 

training data points will 
likely be of the same 
class
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Margin
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Optimal separation

Support vectors

• The training data 
defining the margin

• The rest of the data can 
be discarded when we 
are done learning
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Support vectors

x1
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Optimal separation
• Distance to hyperplane:

� ⋅ �� � � � �	 0 above	plane	�	class	A: �� � 1
� 0 below	plane	�	class	B: �� � �1

• If we require that �� � ⋅ �� � � � 1 then the 
margin is � � 1/ 2|�|
– Maximizing the margin ⇔	minimizing � ⋅ �
– Exact solution can be found, along with a list of 

support vectors, using quadratic programming

• SVM in 7 minutes (Thales Sehn Körting): 
https://www.youtube.com/watch?v=1NxnPkZM9bc
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Nonlinearity

• How to classify linearly inseparable data?
– Combine many linear SVMs? 

• Similar to multilayer neural networks
• But what are the target outputs for the hidden layers?

– A different idea:  
• Map inputs into a higher-dimensional space 
• Hope that they are linearly separable there.
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Increase dimensionality

#: $ → 	 $, $'

8



18.10.2016

3

High dimensionality

• SVMs typically map to feature spaces of 
much higher dimension
– With enough dimensions, it becomes very likely 

that the data becomes linearly separable
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Kernels

• Finding the hyperplane only requires the dot product 
between vectors, not the actual vectors
– Calculating # �� ⋅ # �( might be much easier than # ��

• * �� , �( � # �� ⋅ # �( is called the kernel of #
– Common kernels include

• None: * ��, �( � �� ⋅ �(
• Polynomial: * �� , �( � 1 + �� ⋅ �( ,

• Sigmoid:  * �� , �( � tanh /�� ⋅ �( � 0
• Radial basis function: * �� , �( � exp � �� � �( '/22'
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Overfitting

• Any data set is linearly separable in a feature 
space of sufficient complexity

• We have to be aware of overfitting: Use 
cross-validation and early stopping!
– If there are noisy outliers (esp. mislabeled 

examples), we need to take stronger measures:  
soft margin.
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Soft margins

• Instead of perfectly separating all data, allow
some misclassifications

• Introduce slack variables
– Optimize tradeoff between maximum margin and 

misclassification penalty
– Tradeoff is balanced by penalty factor C

• Useful when some error is tolerated, or when 
there are chances of mislabeled training data
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Applications

• Classification
– Multi-class can be achieved via multiple outputs

• Regression

• Object detection & recognition

• Content-based image retrieval

• Text recognition

• Speech recognition
• Biometrics

• Etc.
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Considerations

• Quite powerful (hard to beat by other algorithms)
– Must beware of overfitting

• Robust to some noise, if margin is managed properly
• Fast to apply
• Difficult to interpret

• How to pick kernel?
– Start with Gaussian RBF or polynomial
– May require domain-specific knowledge
– Can combine kernels for heterogeneous data
– Consult experts
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Ensemble learning
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Ensemble learning

• “Decision by committee”  
– Train multiple classifiers to be slightly different

• An “ensemble”

– Make classifications based on the combined 
results of all of them 

• Two common types of training differentiation
– Boosting : change the importance of each training 

vector (data point)
– Bagging : change the training vectors being used
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Boosting - AdaBoost

• Iteratively trains classifiers
• Each data point is assigned a weight

– For the first classifier all the weights are equal
– For the next classifier the weights of the data 

points that were misclassified previously is raised
– This is continued until the combined error of the 

classifiers trained so far is sufficiently low

• Dependent on the classifier’s ability to 
consider the weights in their training
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Bagging

• Makes a random sample of the training data 
for each classifier – bootstrap samples
– Same size as the training data
– With replacement
– Some data points will occur at least twice!
– Variance will be reduced
– Each classifier will have different views of the 

training data
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Combining the classifiers

• Which classifiers do we listen to when the 
ensemble is in disagreement?
– Weighted voting (used in boosting)

• Some classifiers have greater influence than others

– Majority voting (used in bagging)
• The most “popular” class is chosen

– Mixture of experts
• A meta-machine learning algorithm decides which 

classifiers are most likely to be correct
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Majority voting

What to do about the disagreement

– Refuse to classify?
– Classify only if more than half agree?
– Return the most common vote?

Depends on the application
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Dimensionality reduction –
Feature extraction
Why reduce dimensionality?

• Reduces time complexity: Less computation

• Reduces space complexity: Less parameters

• Saves the cost of acquiring irrelevant features

• Simpler models are more robust

• Easier to interpret; simpler explanation

• Data visualization (structure, groups, outliers, etc.) if 
plotted in 2 or 3 dimensions

21

Principal components

• The directions along with the most variation
– Don’t have to correspond to the coordinate axes
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Principal component

YouTube introductions

Application examples (Rasmus Bro):
• https://www.youtube.com/watch?annotation_id=annotation_963680&fe

ature=iv&src_vid=K-F19DORO1w&v=UUxIXU_Ob6E
• https://www.youtube.com/watch?v=26YhtSJi1qc
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Principal component analysis

• Rotate the axes to lie along the principal 
components

• Remove the axes with the least variation 
– Keep a certain number of dimensions
– Or: keep a certain percentage of the variation

24



18.10.2016

7

Calculating the principal components

• Calculate the covariance matrix of the data

• Calculate the eigenvalues and eigenvectors 
of the covariance matrix

• Transform the data with the eigenvectors for 
the largest eigenvalues as the new basis
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Calculating the covariance matrix

The variance of feature 3:
2�' � 2�� � 1

45 $6� � 7� '
8

69:
The covariance between feature 3 and ;:

2�( � 1
45 $6� � 7� $6( � 7(
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69:
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Calculating the covariance matrix

The covariance matrix is composed of the 
variances and covariances of every 
combination of feature:

2:: 2:' ⋯ 2:=2': 2'' ⋯ 2'=⋮ ⋮ ⋱ ⋮
2=: 2=' ⋯ 2==
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The covariance eigenvectors

The eigenvectors @� and eigenvalues A� are the 
B unique values of matrix C such that

A�@� � C@�
• The eigenvectors of the covariance matrix describe 

the directions of the principal components
• The eigenvalues tell us how large part of the total 

variation in the data that is accounted for by that 
principal component
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Notes on PCA

• PCA is a linear transformation
– Does not directly help with data that is not linearly 

separable
– However, may make learning easier because of 

reduced complexity

• PCA removes some information from the data
– Might just be noise
– Might provide helpful nuances that may be of help 

to some classifiers
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