

UiO : Department of Informatics
University of Oslo

Biologically inspired computing - Lecture 19 October 2016
Support Vector Machines (Marshall Chpt 8)
Ensembles (Marshall Chpt 13)
Dimensionality (Marshall Chpt 6.2)

UiO: Department of Informatics

This lecture

1. Support vector machines

- Optimal separation
- Kernels

2. Ensemble learning
3. Dimensionality reduction

- Principal component analysis

UiO: Department of Informatics

Optimal separation

Choose the one with the best margin!

Why?

- New data near the training data points will likely be of the same class

UiO: Department of Informatics
Department of
University of Oslo

Optimal separation

- Distance to hyperplane:
$\boldsymbol{w} \cdot \boldsymbol{x}_{i}-b=\left\{\begin{array}{llc}>0 & \text { above plane }- \text { class A: } & y_{i}=1 \\ <0 & \text { below plane }- \text { class B: } & y_{i}=-1\end{array}\right.$
- If we require that $y_{i}\left(\boldsymbol{w} \cdot \boldsymbol{x}_{i}-b\right) \geq 1$ then the margin is $M=1 /(2|\boldsymbol{w}|)$
- Maximizing the margin \Leftrightarrow minimizing $\boldsymbol{w} \cdot \boldsymbol{w}$
- Exact solution can be found, along with a list of support vectors, using quadratic programming
- SVM in 7 minutes (Thales Sehn Körting):
https://www.youtube.com/watch?v=1NxnPkZM9bc

Uio: Department of Informatics
 Increase dimensionality

How to classify linearly inseparable data?

- Combine many linear SVMs?
- Similar to multilayer neural networks

But what are the target outputs for the hidden layers?

- A different idea:
- Map inputs into a higher-dimensional space
- Hope that they are linearly separable there.

$$
\varphi:(x) \rightarrow\left(x, x^{2}\right)
$$

$\mathrm{UiO}: \underset{\text { Department of Informatics }}{\text { University of Silo }}$

Nonlinearity

UiO: Department of Informatics
 University of Oslo

High dimensionality

- SVMs typically map to feature spaces of much higher dimension
- With enough dimensions, it becomes very likely that the data becomes linearly separable

UiO: Department of Informatics
 Overfitting

- Any data set is linearly separable in a feature space of sufficient complexity
- We have to be aware of overfitting: Use cross-validation and early stopping!
- If there are noisy outliers (esp. mislabeled examples), we need to take stronger measures: soft margin.

UiO: Department of Informatics
University of Oslo

Kernels

- Finding the hyperplane only requires the dot product between vectors, not the actual vectors
- Calculating $\varphi\left(x_{i}\right) \cdot \varphi\left(x_{j}\right)$ might be much easier than $\varphi\left(x_{i}\right)$
- $\boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\varphi\left(\boldsymbol{x}_{i}\right) \cdot \varphi\left(\boldsymbol{x}_{j}\right)$ is called the kernel of φ
- Common kernels include
- None: $\boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}$
- Polynomial: $\boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left(1+\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}\right)^{p}$
- Sigmoid: $\boldsymbol{K}\left(\boldsymbol{x}_{i}, x_{j}\right)=\tanh \left(\kappa x_{i} \cdot x_{j}-\delta\right)$
- Radial basis function: $\boldsymbol{K}\left(x_{i}, x_{j}\right)=\exp \left(-\left(x_{i}-x_{j}\right)^{2} / 2 \sigma^{2}\right)$

UiO: Department of Informatics

Soft margins

- Instead of perfectly separating all data, allow some misclassifications
- Introduce slack variables
- Optimize tradeoff between maximum margin and misclassification penalty
- Tradeoff is balanced by penalty factor C
- Useful when some error is tolerated, or when there are chances of mislabeled training data

UiO: Department of Informatics
 University of Oslo
 Applications

- Classification
- Multi-class can be achieved via multiple output
- Regression

Object detection \& recognition

- Content-based image retrieval

Text recognition
Speech recognition

- Biometrics

Etc.

UiO: Department of Informatics
University of Oslo

Considerations

- Quite powerful (hard to beat by other algorithms) - Must beware of overfitting
- Robust to some noise, if margin is managed properly
- Fast to apply
- Difficult to interpret
- How to pick kernel?
- Start with Gaussian RBF or polynomial
- May require domain-specific knowledge
- Can combine kernels for heterogeneous data
- Consult experts

UiO: Department of Informatics

Ensemble learning

- "Decision by committee"
- Train multiple classifiers to be slightly different - An "ensemble"
- Make classifications based on the combined results of all of them
- Two common types of training differentiation
- Boosting: change the importance of each training vector (data point)
- Bagging: change the training vectors being used

UiO: Department of Informatics
 University of Oslo

Boosting - AdaBoost

- Iteratively trains classifiers
- Each data point is assigned a weight
- For the first classifier all the weights are equal
- For the next classifier the weights of the data points that were misclassified previously is raised
- This is continued until the combined error of the classifiers trained so far is sufficiently low
- Dependent on the classifier's ability to consider the weights in their training

```
UiO: Department of Informatics
```


Combining the classifiers

- Which classifiers do we listen to when the ensemble is in disagreement?
- Weighted voting (used in boosting)
- Some classifiers have greater influence than others
- Majority voting (used in bagging)
- The most "popular" class is chosen
- Mixture of experts
- A meta-machine learning algorithm decides which classifiers are most likely to be correct

UiO : Department of Informatics
University of Oslo

Bagging

- Makes a random sample of the training data for each classifier - bootstrap samples
- Same size as the training data
- With replacement
- Some data points will occur at least twice!
- Variance will be reduced
- Each classifier will have different views of the training data

```
UiO: Department of Informatics
    University of Oslo
```


Majority voting

What to do about the disagreement

- Refuse to classify?
- Classify only if more than half agree?
- Return the most common vote?

Depends on the application

UiO: Department of Informatics
 University of oslo
 Dimensionality reduction Feature extraction

Why reduce dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of acquiring irrelevant features
- Simpler models are more robust
- Easier to interpret; simpler explanation
- Data visualization (structure, groups, outliers, etc.) if plotted in 2 or 3 dimensions

UiO: Department of Informatics
University of Oslo

Principal components

- The directions along with the most variation
- Don't have to correspond to the coordinate axes


```
UiO: Department of Informatics
```


Principal component analysis

- Rotate the axes to lie along the principal components
- Remove the axes with the least variation
- Keep a certain number of dimensions
- Or: keep a certain percentage of the variation

UiO: Department of Informatics
Uiversity of Osio

Calculating the principal components

- Calculate the covariance matrix of the data
- Calculate the eigenvalues and eigenvectors of the covariance matrix
- Transform the data with the eigenvectors for the largest eigenvalues as the new basis

UiO: Department of Informatics

Calculating the covariance matrix

The covariance matrix is composed of the variances and covariances of every combination of feature:

$$
\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n 1} & \sigma_{n 2} & \cdots & \sigma_{n n}
\end{array}\right]
$$

UiO : Department of Informatics
University of Oslo

Calculating the covariance matrix

The variance of feature i :

$$
\sigma_{i}^{2}=\sigma_{i i}=\frac{1}{N} \sum_{k=1}^{N}\left(x_{k i}-\mu_{i}\right)^{2}
$$

The covariance between feature i and j :

$$
\sigma_{i j}=\frac{1}{N} \sum_{k=1}^{N}\left(x_{k i}-\mu_{i}\right)\left(x_{k j}-\mu_{j}\right)
$$

UiO: Department of Informatics

The covariance eigenvectors

The eigenvectors v_{i} and eigenvalues λ_{i} are the n unique values of matrix C such that

$$
\lambda_{i} \boldsymbol{v}_{i}=C \boldsymbol{v}_{i}
$$

- The eigenvectors of the covariance matrix describe the directions of the principal components
- The eigenvalues tell us how large part of the total variation in the data that is accounted for by that principal component

UiO : Department of Informatics
 University of Oslo
 Notes on PCA

- PCA is a linear transformation
- Does not directly help with data that is not linearly separable
- However, may make learning easier because of reduced complexity
- PCA removes some information from the data - Might just be noise
- Might provide helpful nuances that may be of help to some classifiers

