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• training data is labelled (targets 
provided)

• targets used as feedback by the algorithm 
to guide learning



what if there is data but 
no targets?



• targets may be 
hard to obtain / 
boring to 
generate

• targets may just 
not be known

https://ai.jpl.nasa.gov/public/papers/hayden_isairas2010_onboard.pdf

Saturn’s moon, Titan



• unlabeled data

• learning without targets

• data itself is used by the algorithm to 
guide learning

• spotting similarity between various 
data points

• exploit similarity to cluster similar 
data points together

• automatic classification!



since there is no target, there 

is no task specific 
error function



e.g.

usual practice is to cluster data 
together via “competitive 

learning”

set of neurons

fire the neuron that best 
matches (has highest 

activation w.r.t.) the 
data point/input       







k-means 
clustering



• say you know the number of clusters
in a data set, but do not know which 
data point belongs to which cluster

• how would you assign a data point to one 
of the clusters?



• position k centers (or centroids) at 
random in the data space

• assign each data point to the nearest 
center according to a chosen distance 
measure

• move the centers to the means of the 
points they represent

• iterate



typically euclidean distance
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k?

• k points are used to represent the 
clustering result, each such point being 
the mean of a cluster

• k must be specified



(1) pick a number, k, of cluster centers (at 
random, do not have to be data points)

(2) assign every data point to its nearest 
cluster center (e.g. using euclidean distance)

(3) move each cluster center to the mean of 
data points assigned to it

(4) repeat steps (2) and (3) until convergence
(e.g. change in cluster assignments less than a 
threshold)
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• results vary depending on initial choice 
of cluster centers

• can be trapped in local minima

• restart with different                          
random centers

• does not handle outliers well
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• results vary depending on initial choice 
of cluster centers

• can be trapped in local minima
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random centers
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k1 k2
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let’s look at the dependence on 
initial choice...



a solution...
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another solution...
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yet another solution...
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not knowing k leads to further problems!
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not knowing k leads to further problems!
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• there is no externally given error function

• the within cluster sum of squared
error is what k-means tries to minimise

• so, with k clusters K1, K2, ..., Kk,
centers k1, k2, ..., kk, and data 
points xjs, we effectively minimise:

2



• run algorithm many times with different 
values of k

• pick k that leads to lowest error without 
overfitting

• run algorithm from many starting points

• to avoid local minima



• mean susceptible to outliers (very noisy data)

• one idea is to replace mean by median

• 1,2,1,2,100? 

• mean: 21.2 (affected)

• median: 2 (not affected)

undesirable desirable



• simple: easy to understand and 
implement

• efficient with time complexity O(tkn)

• n = #data points, k = #clusters, t = #iterations

• typically, k and t are small, so considered a 
linear algorithm



• unable to handle noisy 
data/outliers

• unsuitable for discovering 
clusters with non-convex 
shapes 

• k has to be specified in 
advance



clustering example: 
evolutionary robotics

• 949 robot solutions from simulation

• identify a small number of representative 
shapes for producution



self-organising 
maps



• high dimensional data hard to 
understand as is

• data visualisation and clustering
technique that reduces dimensions of 
data

• reduce dimensions by projecting and 
displaying the similarities between 
data points on a 1 or 2 dimensional 
map



• a SOM is an artificial neural network 
trained in an unsupervised manner

• the network is able to cluster data in a way 
that topological relationships 
between data points are preserved

• i.e. neurons close together

represent data points that are 
close together



e.g.

1-D SOM clustering 3-D RGB data

2-D SOM clustering 3-D RGB data

#ff0000

#ff1100

#ff1122



• motivated by how visual, auditory, and 
other sensory information is handled 
in separate parts of the cerebral 
cortex in the human brain

• sounds that are similar excite neurons 
that are near to each other

• sounds that are very different excite 
neurons that are a long way off

• input feature mapping!



• so the idea is that learning should 
selectively tune neurons close to each 
other to respond to/represent a 
cluster of data points 

• first described as an ANN by Prof. Teuvo 
Kohonen



1,1

2,4

3,3

4,5

each node has a position 
associated with it on the map

SOM consists of components 
called nodes/neurons

and a weight vector of 
dimension given by the data 

points (input vectors)
e.g. say, 5D input vector



weighted
connections

feature/output/
map layer

input layer

and so on... 
i.e. fully 

connected



neurons are 
interconnected 
within a defined 
neighbourhood 

(hexagonal here)
i.e. 

neighbourhood 
relation defined 
on output layer



typically,
rectangular or 

hexagonal lattice 
neighbourhood/t
opology for 2D 

SOMs



j

x1 x2 x3 x4 xn

. . .

. . .
wj1

wj2
wj3 wj4

wjn

lattice responds
to input

one neuron wins,
i.e. has the highest 

response
(known as the best 

matching unit)



• input and weight vectors can be matched 
in numerous ways

• typically:
euclidean

manhattan

dot product



adapting weights of 
winner (and its 

neighbourhood to a 
lesser degree) to 

closely 
resemble/match 

inputs

j

x1 x2 x3 x4 xn

. . .

. . . ...and so on for all 
neighbouring nodes...



j

x1 x2 x3 x4 xn

. . .

. . . ...and so on with N(i,j) 
deciding how much to 
adapt a neighbour’s 
weight vector



N(i,j) is the 
neighbourhood

function j

x1 x2 x3 x4 xn

. . .

. . .



N(i,j) tells how close
a neuron i is from the

winning neuron jj

x1 x2 x3 x4 xn

. . .

. . .
the closer i is from j on 
the lattice, the higher 

is N(i,j)



j

i

x1 x2 x3 x4 xn

. . .

. . .

N(i,j) will be rather high 
for this neuron!



j

i

x1 x2 x3 x4 xn

. . .

. . .

but not as high 
for this

so, update of weight 
vector of this neuron 

will be smaller

in other words, this 
neuron will not be 
moved as much 

towards the input, as 
compared to neurons 

closer to j



neurons competing to match data point

one winning

adapting its weights towards 
data point and bringing 
lattice neighbours along



• we end up finding weight vectors for all 
neurons in such a way that adjacent 
neurons will have similar weight 
vectors!

• for any input vector, the output of the 
network will be the neuron whose weight 
vector best matches the input vector

• so, each (weight vector of a) neuron is 
the center of the cluster containing 
all input data points mapped to this 
neuron



j

i

x1 x2 x3 x4 xn

. . .

. . .

N(i,j) is such that the 
neighbourhood of a 

winning neuron 
reduces with time as 
the learning proceeds

the learning rate 
reduces with time as 

well



j

at the beginning of 
learning the entire 
lattice could be the 
neighbourhood of 

neuron j

weight update for all 
neurons will happen in 

this situation



j

at some point later, this 
could be the 

neighbourhood of j

weight update for only 
the 4 neurons and j will 

happen



j

much further on...

weight update for only j 
will happen

typically, N(i,j) is a 
gaussian function 



• competition - finding the best matching 
unit/winner, given an input vector

• cooperation - neurons topologically close 
to winner get to be part of the win, so as to 
become sensitive to inputs similar to this 
input vector 

• weight adaptation - is how the winner 
and neighbour’s weights move towards 
and represent similar input vectors, which 
are clustered under them



• we determine the size
• big network? 

• each neuron represents each input 
vector! 

• not much generalisation!
• small network?

• too much generalisation!
• no differentiation!

• try different sizes and pick the best...

63



• quantization error: 
average distance between 
each input vector and 
respective winning neuron

• topographic error: 
proportion of input vectors 
for which winning and 
second place neuron are 
not adjacent in the lattice



• global ordering from local 
interactions

• each neuron interacts only with its 
neighbours via N(i,j)

• but the network ends up clustering and 
preserving topological relationships in 
data



• once the network organises itself over 
data, how do we visualise it?

• neurons have weights of input vector 
dimensions!

• how to see the discovered 
similarities/dissimilarities in data in the 
map space?

• U-matrix (unified distance matrix) is 
one way



e.g. from SOM toolbox
http://www.cis.hut.fi/somtoolbox/

weight distances between the adjacent 
neurons are calculated and shown in 

respective shades/heatmap neurons with labels



• good for visualisation and 
interpretability

• good for classification problems

• high sensitivity to frequent/relevant 
inputs

• new ways of associating related data



• system is a black box

• a large training set may be required

• for large problems, training can be 
lengthy

SOM Toolbox with demo code: http://www.cis.hut.fi/somtoolbox/


