
Kyrre Glette
Slides mostly from Arjun Chandra

• training data is labelled (targets
provided)

• targets used as feedback by the algorithm
to guide learning

what if there is data but
no targets?

• targets may be
hard to obtain /
boring to
generate

• targets may just
not be known

https://ai.jpl.nasa.gov/public/papers/hayden_isairas2010_onboard.pdf

Saturn’s moon, Titan

• unlabeled data

• learning without targets

• data itself is used by the algorithm to
guide learning

• spotting similarity between various
data points

• exploit similarity to cluster similar
data points together

• automatic classification!

since there is no target, there

is no task specific
error function

e.g.

usual practice is to cluster data
together via “competitive

learning”

set of neurons

fire the neuron that best
matches (has highest

activation w.r.t.) the
data point/input

k-means
clustering

• say you know the number of clusters
in a data set, but do not know which
data point belongs to which cluster

• how would you assign a data point to one
of the clusters?

• position k centers (or centroids) at
random in the data space

• assign each data point to the nearest
center according to a chosen distance
measure

• move the centers to the means of the
points they represent

• iterate

typically euclidean distance

x1

x2

(x12, x22)

(x11, x21)

x22 - x21

x12 - x11

√(x12 - x11)2 + (x22 - x21)2

k?

• k points are used to represent the
clustering result, each such point being
the mean of a cluster

• k must be specified

(1) pick a number, k, of cluster centers (at
random, do not have to be data points)

(2) assign every data point to its nearest
cluster center (e.g. using euclidean distance)

(3) move each cluster center to the mean of
data points assigned to it

(4) repeat steps (2) and (3) until convergence
(e.g. change in cluster assignments less than a
threshold)

x1

x2

k1

k2

k3

x1

x2

k1

k2

k3

x1

x2

k1

k2

k3

x1

x2

k1

k2

k3

x1

x2

k1

k2

k3

x1

x2

k1

k2

k3

x1

x2

k1

k2

k3

• results vary depending on initial choice
of cluster centers

• can be trapped in local minima

• restart with different
random centers

• does not handle outliers well

k1

k2

• results vary depending on initial choice
of cluster centers

• can be trapped in local minima

• restart with different
random centers

• does not handle outliers well

k1 k2

x1

x2

let’s look at the dependence on
initial choice...

a solution...

x1

x2

another solution...

x1

x2

yet another solution...

x1

x2

not knowing k leads to further problems!

x1

x2

not knowing k leads to further problems!

x1

x2

• there is no externally given error function

• the within cluster sum of squared
error is what k-means tries to minimise

• so, with k clusters K1, K2, ..., Kk,
centers k1, k2, ..., kk, and data
points xjs, we effectively minimise:

2

• run algorithm many times with different
values of k

• pick k that leads to lowest error without
overfitting

• run algorithm from many starting points

• to avoid local minima

• mean susceptible to outliers (very noisy data)

• one idea is to replace mean by median

• 1,2,1,2,100?

• mean: 21.2 (affected)

• median: 2 (not affected)

undesirable desirable

• simple: easy to understand and
implement

• efficient with time complexity O(tkn)

• n = #data points, k = #clusters, t = #iterations

• typically, k and t are small, so considered a
linear algorithm

• unable to handle noisy
data/outliers

• unsuitable for discovering
clusters with non-convex
shapes

• k has to be specified in
advance

clustering example:
evolutionary robotics

• 949 robot solutions from simulation

• identify a small number of representative
shapes for producution

self-organising
maps

• high dimensional data hard to
understand as is

• data visualisation and clustering
technique that reduces dimensions of
data

• reduce dimensions by projecting and
displaying the similarities between
data points on a 1 or 2 dimensional
map

• a SOM is an artificial neural network
trained in an unsupervised manner

• the network is able to cluster data in a way
that topological relationships
between data points are preserved

• i.e. neurons close together

represent data points that are
close together

e.g.

1-D SOM clustering 3-D RGB data

2-D SOM clustering 3-D RGB data

#ff0000

#ff1100

#ff1122

• motivated by how visual, auditory, and
other sensory information is handled
in separate parts of the cerebral
cortex in the human brain

• sounds that are similar excite neurons
that are near to each other

• sounds that are very different excite
neurons that are a long way off

• input feature mapping!

• so the idea is that learning should
selectively tune neurons close to each
other to respond to/represent a
cluster of data points

• first described as an ANN by Prof. Teuvo
Kohonen

1,1

2,4

3,3

4,5

each node has a position
associated with it on the map

SOM consists of components
called nodes/neurons

and a weight vector of
dimension given by the data

points (input vectors)
e.g. say, 5D input vector

weighted
connections

feature/output/
map layer

input layer

and so on...
i.e. fully

connected

neurons are
interconnected
within a defined
neighbourhood

(hexagonal here)
i.e.

neighbourhood
relation defined
on output layer

typically,
rectangular or

hexagonal lattice
neighbourhood/t
opology for 2D

SOMs

j

x1 x2 x3 x4 xn

. . .

. . .
wj1

wj2
wj3 wj4

wjn

lattice responds
to input

one neuron wins,
i.e. has the highest

response
(known as the best

matching unit)

• input and weight vectors can be matched
in numerous ways

• typically:
euclidean

manhattan

dot product

adapting weights of
winner (and its

neighbourhood to a
lesser degree) to

closely
resemble/match

inputs

j

x1 x2 x3 x4 xn

. . .

.and so on for all
neighbouring nodes...

j

x1 x2 x3 x4 xn

. . .

.and so on with N(i,j)
deciding how much to
adapt a neighbour’s
weight vector

N(i,j) is the
neighbourhood

function j

x1 x2 x3 x4 xn

. . .

. . .

N(i,j) tells how close
a neuron i is from the

winning neuron jj

x1 x2 x3 x4 xn

. . .

. . .
the closer i is from j on
the lattice, the higher

is N(i,j)

j

i

x1 x2 x3 x4 xn

. . .

. . .

N(i,j) will be rather high
for this neuron!

j

i

x1 x2 x3 x4 xn

. . .

. . .

but not as high
for this

so, update of weight
vector of this neuron

will be smaller

in other words, this
neuron will not be
moved as much

towards the input, as
compared to neurons

closer to j

neurons competing to match data point

one winning

adapting its weights towards
data point and bringing
lattice neighbours along

• we end up finding weight vectors for all
neurons in such a way that adjacent
neurons will have similar weight
vectors!

• for any input vector, the output of the
network will be the neuron whose weight
vector best matches the input vector

• so, each (weight vector of a) neuron is
the center of the cluster containing
all input data points mapped to this
neuron

j

i

x1 x2 x3 x4 xn

. . .

. . .

N(i,j) is such that the
neighbourhood of a

winning neuron
reduces with time as
the learning proceeds

the learning rate
reduces with time as

well

j

at the beginning of
learning the entire
lattice could be the
neighbourhood of

neuron j

weight update for all
neurons will happen in

this situation

j

at some point later, this
could be the

neighbourhood of j

weight update for only
the 4 neurons and j will

happen

j

much further on...

weight update for only j
will happen

typically, N(i,j) is a
gaussian function

• competition - finding the best matching
unit/winner, given an input vector

• cooperation - neurons topologically close
to winner get to be part of the win, so as to
become sensitive to inputs similar to this
input vector

• weight adaptation - is how the winner
and neighbour’s weights move towards
and represent similar input vectors, which
are clustered under them

• we determine the size
• big network?

• each neuron represents each input
vector!

• not much generalisation!
• small network?

• too much generalisation!
• no differentiation!

• try different sizes and pick the best...

63

• quantization error:
average distance between
each input vector and
respective winning neuron

• topographic error:
proportion of input vectors
for which winning and
second place neuron are
not adjacent in the lattice

• global ordering from local
interactions

• each neuron interacts only with its
neighbours via N(i,j)

• but the network ends up clustering and
preserving topological relationships in
data

• once the network organises itself over
data, how do we visualise it?

• neurons have weights of input vector
dimensions!

• how to see the discovered
similarities/dissimilarities in data in the
map space?

• U-matrix (unified distance matrix) is
one way

e.g. from SOM toolbox
http://www.cis.hut.fi/somtoolbox/

weight distances between the adjacent
neurons are calculated and shown in

respective shades/heatmap neurons with labels

• good for visualisation and
interpretability

• good for classification problems

• high sensitivity to frequent/relevant
inputs

• new ways of associating related data

• system is a black box

• a large training set may be required

• for large problems, training can be
lengthy

SOM Toolbox with demo code: http://www.cis.hut.fi/somtoolbox/

