
INF3510 Information Security

University of Oslo

Spring 2010

Lecture 13

Application Security and

Trust Management

Audun Jøsang

http://www.uio.no/english/

Outline

• Malicous Software

– various malicious programs

– trapdoor, logic bomb, trojan horse, zombie

– viruses

– worms

– distributed denial of service attacks

• Attacks on applications

– Buffer overflos

– SQL Injection

– Cross-Site Scripting

• Trust Management

UiO Spring 2010 2L13 - INF3510 Information Security

Malware: Malicious Content

 Malware receive a lot of publicity

 Many different forms

 Many different effects

 Difficult to know when infected

 More advanced forms emerge

 A growing concern

UiO Spring 2010 3L13 - INF3510 Information Security

Malicious Software

UiO Spring 2010 4L13 - INF3510 Information Security

How do you get infected

By executing an attachment

By accessing a website or

starting an application

from a website

Direct attacks from the

network, e.g. as worms

or exploitation of

application vulnerabilities

By installing infected software

UiO Spring 2010 5L13 - INF3510 Information Security

Backdoor or Trapdoor

• secret entry point into a program

• allows those who know access bypassing usual security
procedures

• have been commonly used by developers

• a threat when left in production programs allowing
exploited by attackers

• very hard to block in O/S

• requires good s/w development & update

UiO Spring 2010 6L13 - INF3510 Information Security

Logic Bomb

• one of oldest types of malicious software

• code embedded in legitimate program

• activated when specified conditions met

– eg presence/absence of some file

– particular date/time

– particular user

• when triggered typically damage system

– modify/delete files/disks, halt machine, etc

UiO Spring 2010 7L13 - INF3510 Information Security

Trojan Horse

• program with hidden side-effects

• which is usually superficially attractive
– eg game, s/w upgrade etc

• when run performs some additional tasks
– allows attacker to indirectly gain access they do not

have directly

• often used to propagate a virus/worm or install a
backdoor

• or simply to destroy data

UiO Spring 2010 8L13 - INF3510 Information Security

Mobile Code

 program/script/macro that runs unchanged

 on heterogeneous collection of platforms

 on large homogeneous collection (Windows)

 transmitted from remote system to local system & then

executed on local system

 often to inject virus, worm, or Trojan horse

 or to perform own exploits

 unauthorized data access, root compromise

UiO Spring 2010 9L13 - INF3510 Information Security

Multiple-Threat Malware

 malware may operate in multiple ways

 multipartite virus infects in multiple ways

 eg. multiple file types

 blended attack uses multiple methods of infection or

transmission

 to maximize speed of contagion and severity

 may include multiple types of malware

 eg. Nimda has worm, virus, mobile code

 can also use IM & P2P

UiO Spring 2010 10L13 - INF3510 Information Security

Viruses

 piece of software that infects programs

modifying them to include a copy of the virus

 so it executes secretly when host program is run

 specific to operating system and hardware

 taking advantage of their details and weaknesses

 a typical virus goes through phases of:

 dormant

 propagation

 triggering

 execution

UiO Spring 2010 11L13 - INF3510 Information Security

Virus Structure

 components:
 infection mechanism - enables replication

 trigger - event that makes payload activate

 payload - what it does, malicious or benign

 prepended / postpended / embedded

 when infected program invoked, executes virus code
then original program code

 can block initial infection (difficult)

 or propogation (with access controls)

UiO Spring 2010 12L13 - INF3510 Information Security

Virus Classification

 boot sector

 file infector

 macro virus

 encrypted virus

 stealth virus

 polymorphic virus

 metamorphic virus

UiO Spring 2010 13L13 - INF3510 Information Security

Macro Virus

 became very common in mid-1990s since

 platform independent

 infect documents

 easily spread

 exploit macro capability of office apps

 executable program embedded in office doc

 often a form of Basic

 more recent releases include protection

 recognized by many anti-virus programs

UiO Spring 2010 14L13 - INF3510 Information Security

E-Mail Viruses

 more recent development

 e.g. Melissa

 exploits MS Word macro in attached doc

 if attachment opened, macro activates

 sends email to all on users address list

 and does local damage

 then saw versions triggered reading email

 hence much faster propagation

UiO Spring 2010 15L13 - INF3510 Information Security

Virus Countermeasures

• prevention - ideal solution but difficult

• realistically need:

– detection

– identification

– removal

• if detect but can’t identify or remove, must discard and

replace infected program, or reformat hard drive

UiO Spring 2010 16L13 - INF3510 Information Security

Behavior-Blocking Software

UiO Spring 2010 17L13 - INF3510 Information Security

Worms

• replicating program that propagates over net

– using email, remote exec, remote login

• has phases like a virus:

– dormant, propagation, triggering, execution

– propagation phase: searches for other systems,

connects to it, copies self to it and runs

• may disguise itself as a system process

• concept seen in Brunner’s “Shockwave Rider”

• implemented by Xerox Palo Alto labs in 1980’s

UiO Spring 2010 18L13 - INF3510 Information Security

Morris Worm

 one of best know worms

 released by Robert Morris in 1988

 various attacks on UNIX systems
 cracking password file to use login/password to logon to other

systems

 exploiting a bug in the finger protocol

 exploiting a bug in sendmail

 if succeed have remote shell access
 sent bootstrap program to copy worm over

UiO Spring 2010 19L13 - INF3510 Information Security

Worm Propagation Model

UiO Spring 2010 20L13 - INF3510 Information Security

Recent Worm Attacks

• Code Red
– July 2001 exploiting MS IIS bug

– probes random IP address, does DDoS attack

• Code Red II variant includes backdoor

• SQL Slammer
– early 2003, attacks MS SQL Server

• Mydoom
– mass-mailing e-mail worm that appeared in 2004

– installed remote access backdoor in infected systems

• Warezov family of worms
– scan for e-mail addresses, send in attachment

UiO Spring 2010 21L13 - INF3510 Information Security

Worm Technology

 multiplatform

 multi-exploit

 ultrafast spreading

 polymorphic

 metamorphic

 transport vehicles

 zero-day exploit

UiO Spring 2010 22L13 - INF3510 Information Security

Mobile Phone Worms

 first appeared on mobile phones in 2004

 target smartphone which can install s/w

 they communicate via Bluetooth or MMS

 to disable phone, delete data on phone, or send

premium-priced messages

 CommWarrior, launched in 2005

 replicates using Bluetooth to nearby phones

 and via MMS using address-book numbers

UiO Spring 2010 23L13 - INF3510 Information Security

Worm Countermeasures

 overlaps with anti-virus techniques

 once worm on system A/V can detect

 worms also cause significant net activity

 worm defense approaches include:
 signature-based worm scan filtering

 filter-based worm containment

 payload-classification-based worm containment

 threshold random walk scan detection

 rate limiting and rate halting

UiO Spring 2010 24L13 - INF3510 Information Security

DDoS
Distributed Denial of Service Attacks

• Distributed Denial of Service (DDoS) attacks form a

significant security threat

• making networked systems unavailable

• by flooding with useless traffic

• using large numbers of “zombies”

• growing sophistication of attacks

• defense technologies struggling to cope

UiO Spring 2010 25L13 - INF3510 Information Security

Distributed Denial of Service Attack

UiO Spring 2010 26L13 - INF3510 Information Security

DDoS

Flood

Types

UiO Spring 2010 27L13 - INF3510 Information Security

Constructing an Attack Network

• must infect large number of zombies

• needs:

1. software to implement the DDoS attack

2. an unpatched vulnerability on many systems

3. scanning strategy to find vulnerable systems

– random, hit-list, topological, local subnet

UiO Spring 2010 28L13 - INF3510 Information Security

DDoS Countermeasures

• three broad lines of defense:
1. attack prevention & preemption (before)

2. attack detection & filtering (during)

3. attack source traceback & ident (after)

• huge range of attack possibilities

• hence evolving countermeasures

UiO Spring 2010 29L13 - INF3510 Information Security

What is a botnet

• Botnet is a collection of software agents (robots) that

run autonomously and automatically.

• Execute malicious functions in a coordinated way

– Send spam email

– Collect identity information

– Denial of service attacks

• Named after their malicious software, but there are

multiple botnets using the same malicious software

families operated by different criminal groups

• A botnet's originator (aka "bot herder" or "bot master")

can control the group remotely

UiO Spring 2010 L13 - INF3510 Information Security 30

What is a botnet

Bot-herder

Bots
Victims

UiO Spring 2010 31L13 - INF3510 Information Security

Screen Injection by Zeus bot

Browser NOT infected by Zeus:

Browser infected by Zeus:

Zeus bot statistics

• 784 Zeus Botnets tracked by Zeus Tracker in 2009

• Estimate of 1.6M bots in Zeus botnets

• 1130 organisations targeted

• 960 financial organisations targeted (85%)

• Each of the top 5 US banks targeted by over 500 Zeus
botnets

33

UiO Spring 2010 33L13 - INF3510 Information Security

UiO Spring 2010 L13 - INF3510 Information Security 34

Application Security

The Buffer Overflow Problem

void foo(char *s) {

char buf[10];

strcpy(buf,s);

printf(“buf is %s\n”,s);

}

…

foo(“thisstringistolongforfoo”);

UiO Spring 2010 35L13 - INF3510 Information Security

Buffer Overflow Exploitation

• The general idea is to give programs
(servers) very large strings that will overflow a
buffer.

• For a server with sloppy code – it’s easy to
crash the server by overflowing a buffer.

• It’s sometimes possible to actually make the
server do whatever you want (instead of
crashing).

UiO Spring 2010 36L13 - INF3510 Information Security

“Smashing the Stack”*

• The general idea is to overflow a buffer so that it

overwrites the return address.

• When the function is done it will jump to whatever

address is on the stack.

• We put some code in the buffer and set the return

address to point to it!

*taken from the title of an article in Phrack 49-7

UiO Spring 2010 37L13 - INF3510 Information Security

Before and After

void foo(char *s) {

char buf[100];

strcpy(buf,s);

…

address of s

return-address

saved sp

buf

address of s

pointer to pgm

Small Program

Prevention of Buffer Overflow

• Use a programming language that provides control of

string types and sizes

• Check during software design

• Test with fuzzing-up tools

*taken from the title of an article in Phrack 49-7

UiO Spring 2010 39L13 - INF3510 Information Security

40

SQL Injection: What is SQL?

• Structured Query Language: interface to relational
database systems.

• Allows for insert, update, delete, and retrieval of data in a
database.

• ANSI, ISO Standard, used extensively in web
applications.

• Example:

select ProductName from products where

ProductID = 40;

UiO Spring 2010 L13 - INF3510 Information Security

41

How is it normally used in

websites?
1. Take user input from a web form and pass it to a

server-side script via HTTP methods such as POST or
GET.

2. Process request, open connection to database.

3. Query database and retrieve results.

4. Send processed results back to user.

Web server Application server Database server

UiO Spring 2010 L13 - INF3510 Information Security

42

PHP example

$name = $HTTP_POST_VARS["name"];

$query = “select * from restaurants where

name = „”.$name.”‟”;

$result = mysql_query($query);

UiO Spring 2010 L13 - INF3510 Information Security

43

What is SQL Injection?

• The ability to inject SQL commands into the database

engine through existing application.

• For example, if user input is “23 or 1 = 1”

select ProductName from products where

ProductID = 23 or 1 = 1

• All product names will be returned. Data leak.

UiO Spring 2010 L13 - INF3510 Information Security

44

What is SQL Injection?

• Flaw in web application not in database or web

server.

• No matter how patched your system is, no

matter how many ports you close, an attacker

can get complete ownership of your database.

• NMap or Nessus will not help you against sloppy

code.

• In essence client supplied data without

validation.

UiO Spring 2010 L13 - INF3510 Information Security

45

What can SQL Injection do?

• Delete:

Select productinfo from table where

productname = „whatever’; DROP TABLE

productinfo; -- ‟

• Bypass Authentication

– Select * from users where username=‟user

‟ and password=‟passwd ‟;

– select * from users where

username=‟admin’--’ and

password=‟whocares‟;

UiO Spring 2010 L13 - INF3510 Information Security

46

Possibilities are endless

• Some examples:

– Brute forcing passwords using attacked server to do the

processing.

– Interact with OS, reading and writing files.

– Gather IP information through reverse lookup.

– Start FTP service on attacked server.

– Retrieve VNC passwords from registry.

– File uploading.

UiO Spring 2010 L13 - INF3510 Information Security

47

Prevention of SQL Injection

• Check and filter user input.
– Length limit on input (most attacks depend on long query

strings).

– Different types of inputs have a specific language and syntax
associated with them, i.e. name, email, etc

– Do not allow suspicious keywords (DROP, INSERT, SELECT,
SHUTDOWN) as name for example.

– Try to bind variables to specific types.

UiO Spring 2010 L13 - INF3510 Information Security

Cross-Site Scripting (XSS) Attacks

• Malicious code can secretly gather sensitive data

from user while using authentic website (login,

password, cookie)

UiO Spring 2010 48L13 - INF3510 Information Security

Cross-Site Scripting (XSS) Attacks

• Modified URL

– URL parameters are modified on the URL to contain script

code

– Input is not validated and displayed as entered on the

resulting dynamic webpage

UiO Spring 2010 49L13 - INF3510 Information Security

Cross-Site Scripting (XSS) Attacks

UiO Spring 2010 50L13 - INF3510 Information Security

XSS: Script Injection Demo

UiO Spring 2010 52L13 - INF3510 Information Security

Preventing

SQL injection and XSS

• SCRUB Error handling
– Error messages divulge information that can be used by

hacker…

• VALIDATE all user entered parameters
– CHECK data types and lengths

– DISALLOW unwanted data (e.g. HTML tags, JavaScript)

– ESCAPE questionable characters (ticks, --,semi-colon, brackets,
etc.)

UiO Spring 2010 53L13 - INF3510 Information Security

Trust Management and Soft Security

UiO Spring 2010 54L13 - INF3510 Information Security

What is Security?

• General definition of security:
– Protection from danger

– Oxford English Online Dictionary: http://dictionary.oed.com/

• Traditional definition of information security:
– Preservation of confidentiality, integrity & availability of information
– ISO/IEC 27001:2005 Specification for an Information Security Management System

– Assumes that the owner of information resources

• defines a security policy (explicitly or implicitly)

• implements measures to preserves CIA properties

UiO Spring 2010 55L13 - INF3510 Information Security

Gap analysis of security and

information security

Security
Information

Security
Protection against:

•Low quality services

•Misrepresentation of services

•Incorrect information

•Fraud
Soft Security

UiO Spring 2010 56L13 - INF3510 Information Security

Soft Security

• Impossible to define security policies for open

communities

• Common ethical norms instead of security policy

– Can be partly formal and partly dynamic/collaborative

• Definition:

– Adherence to common (ethical) norms

• Stimulates the quality of communities in terms of ethical

behaviour and integrity of its members

• Enforced by collaborative mechanisms such as trust and

reputation systems

UiO Spring 2010 57L13 - INF3510 Information Security

Two definitions of trust

• Evaluation trust

– The subjective probability by which an individual, A, expects that

another individual, B, performs a given action on which its welfare

depends. (Gambetta 1988)

• Decision trust

– The willingness to depend on something or somebody in a given

situation with a feeling of relative security, even though negative

consequences are possible. (McKnight & Chervany 1996)

UiO Spring 2010 58L13 - INF3510 Information Security

Would you trust this rope?

For what?

To climb down from the 3rd floor window of a house

The rope looks very old

Fire drill: No!
Yes!Real fire:

UiO Spring 2010 59L13 - INF3510 Information Security

Trust is a relationship

• Trusting party

– Also called

• “relying party”

• “trustor”

– Is in a situation of

• Dependence

• Trusted party

– Also called

• “trustee”

– Is in a situation of

• Power

• Expectation to deliver

trust
Agent

Agent

Object

UiO Spring 2010 60L13 - INF3510 Information Security

Two sides of trust management

Trusting party

Wants to assess and

make decisions w.r.t.

the dependability of the

trusted party for a given

transaction and context

Trusted party

Wants to represent

and put in a positive

light own competence,

honesty, reliability and

quality of service.

assessment

marketing

UiO Spring 2010 61L13 - INF3510 Information Security

Reputation and trust

REPUTATION

• Public info

• Common opinion

• Not necessarily

objective

TRUST

• Both private and
public info

• Private info carries
more weight

• Subjective

 “I trust you because of your good reputation”

 “I trust you despite your bad reputation”

UiO Spring 2010 62L13 - INF3510 Information Security

Extrinsic and intrinsic trust

Extrinsic Factors

• Cognitive

• Observed

• Recommendation

• Reputation

• External evidence

• Easy to

manufacture

Intrinsic Factors

• Affective

• Experienced

• Intimate

relationship

• Internalised

pattern

• Take time to build

• Override extrinsic

UiO Spring 2010 63L13 - INF3510 Information Security

A model for e-commerce trust

Confirm Trust

Adapted from: Cheskin 1999

Unaware

Build Trust
Trial
Threshold

Maintain Trust

Purchase
Threshold

Habit
Threshold

Untrusted
Phase

Extrinsic
Trust

Intrinsic
Trust

Time Duration

Browse

Consider

Transact

UiO Spring 2010 64L13 - INF3510 Information Security

We trust what we depend on

Trust in people
& organisations

Trust in ICT

Trust in legal,
social and market

institutions

UiO Spring 2010 65L13 - INF3510 Information Security

Formal aspects of trust

• Trust scope

– Function that the relying party depends on and trusts

• Functional trust:

– The trusted party performs the function

• Referral trust:

– The trusted party recommends a party (who recommends a party)

that can perform the function

• Direct trust:

– From direct experience

• Indirect trust:

– From recommendations

UiO Spring 2010 66L13 - INF3510 Information Security

Computational Trust

Direct referral
trust

Recommendation

Direct
functional
trust

Indirect functional trust

2

3

4

1

Thanks to Bob’s advice,

Alice trusts Eric to be a

good mechanic.

Eric has proven to

Bob that he is a

good mechanic.

Bob has proven to Alice that

he is knowledgeable in matters

relating to car maintenance.

Eric

Bob

Alice

UiO Spring 2010 67L13 - INF3510 Information Security

Valid transitive trust chains

• Every leg in the chain contains the same trust scope [].
(It doesn’t make any sense otherwise!)

• The last trust link is direct functional trust [df].

• All other trust links are direct referral trust [dr].

dr  dr  df 

A B C D

if 

UiO Spring 2010 68L13 - INF3510 Information Security

Centralised reputation system

Reputation Centre

F B

A E

D B

A C

a) Past

Reputation Centre

b) Present

Past transactions

A G

Ratings

A B

Potential transaction

Reputation

scores

UiO Spring 2010 69L13 - INF3510 Information Security

Distributed reputation system

D B

A C

A E

F B

A G

Past transactions

a) Past

A B

Potential transaction

b) Present

D

F G

E

C

Ratings

UiO Spring 2010 70L13 - INF3510 Information Security

Trust/Reputation System Categories

Private Scorers Public Scores

Transitivity Trust systems,

e.g.

Rummble.com

Public trust

systems, e.g.

PageRank

No transitivity Private reputation

systems, e.g.

customer

feedback analysis

Reputation

systems, e.g.

eBay.com

UiO Spring 2010 71L13 - INF3510 Information Security

Applications of trust and reputation systems

• e-Auctions

• Social websites

• Online markets: B2C, B2B, C2C

• P2P networks

• Software agent communities

• Contract negotiations

• Web service search and selection

• Spam filtering

UiO Spring 2010 72L13 - INF3510 Information Security

Market Efficiency Experiment

Source: Bolton,Katok,Ockenfels,2002

UiO Spring 2010 73L13 - INF3510 Information Security

Google’s PageRank

• Purpose to provide quality search results

• Based on:

– Number of incoming links, weighted by the

– PageRank of the sites behind incoming links

• Hyperlinks interpreted as positive ratings.

• No negative ratings.

• Random surfer model.

• PageRank is a reputation system

UiO Spring 2010 74L13 - INF3510 Information Security

PageRank visualisation

C

B A

0.05

0.05 0.05

Initial rank R

0.1593

0.1286 0.0925

0.2264

0.2076 0.18540.3333

0.3333

0.3333

Converges to:

+ imported rank

and iterationsExample

with N(Web)=3

•R(A) = (1-d)/N(Web) + dR(prev(A))/N(next(prev(A)))

•Damping factor d ≈ 0.85

•R(A) ≈ 1, i.e. R(A) is the probability of the random surfer

•PageRank(A) = l + log≈10 R(A), where l ≈ 11

UiO Spring 2010 75L13 - INF3510 Information Security

Link spam and “nofollow”

• Survival of e-commerce sites depends on rank

• Attempts to increase rank with link spam

– consists of putting URLs to own Web site in wikis (publicly

editable Web sites) and in postings to public discussion groups

• The “nofollow” tag, introduced in 2005, instructs Web

crawlers not to follow a link

<a href=http://spam_site.com

rel="nofollow">Link

• Wikis and discussion groups now add “nofollow” to all

URLs, thereby eliminating the link spam problem

UiO Spring 2010 76L13 - INF3510 Information Security

SERP Rank

• SERP: Search Engine Results Page

• SERP Rank: Position of page reference on SERP

• ≠ PageRank

• SERP Rank is a function of PageRank + constantly tuned

factors:

– Keyword position and frequency

– Linking to good neighbourhoods

– Freshness

– etc.

UiO Spring 2010 77L13 - INF3510 Information Security

Slashdot “News for nerds” message board

and the Slashdot Reputation System

• Article postings, at Slasdot’s discretion

• Comments to articles posted by members

• Comment moderation by members
– Positive: insightful, interesting, informative funny, underrated

– Negative: offtopic, flamebait, troll, redundant, overrated

– Comment score ≈  positive(Karma) -  negative(Karma),

– Moderation by members with high Karma carries more weight

• Comment viewing filtered by score

• Member Karma
– Terrible, bad, neutral, positive, good, excellent

– Based on moderation of comments.

• Metamoderation, to combat unfair moderation
– Rate the moderations: fair, unfair, neutral

– Affects Karma of member who gave the moderation

• Arbitrary moderation by Slashdot staff

• Purpose: Directing massive collaborative moderation effort

UiO Spring 2010 78L13 - INF3510 Information Security

Hierarchic reputation architecture
Slashdot model

Controllers

Moderators

Service Users

Service Objects

service ratings

user ratings

moderator/user ratings

Slashdot

UiO Spring 2010 79L13 - INF3510 Information Security

End of Lecture

UiO Spring 2010 L13 - INF3510 Information Security 80

