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Cryptography

• Cryptography is the science and study of secret writing.

• Cryptanalysis is the science and study of methods of 
breaking ciphers.

• Cryptology: cryptography and cryptanalysis.  

• Today: Cryptography is the study of mathematical 
techniques related to aspects of information security, such 
as confidentiality, data integrity, entity authentication, and 
data origin authentication. [Handbook of Applied Cryptography]
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When is cryptography used?

• If you require
– Confidentiality:

• so that your data is not made available to anyone who 
shouldn‟t have access. 

• That is, protection against snoops or eavesdroppers

– Integrity:
• So you know that the message content is correct, and has 

not been altered, either deliberately or accidentally

– Authentication:
• So you can be sure that the message is from the place or 

sender it claims to be from

• Cryptography can provide these security 
services.
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When is cryptography used?

• Some example situations:
– Historically, the military and spy agencies were the 

main users of cryptology

• Situation: transmitting messages over insecure channels

– Now, it is used in many other areas, especially in   
electronic information processing and 
communications technologies: 

• Banking: your financial transactions, such as EFTPOS

• Communications: your mobile phone conversations

• Info stored in databases: hospitals, universities, etc.

• Cryptography can be used to protect information in 
storage or during transmission
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Traditional paradigm

• A and B communicate over an insecure channel.

• A and B trust each other.

• Intruder can read, delete, and insert messages.

• With cryptography, A and B construct a secure logical 
channel over an insecure network.
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Trust paradigm

• Electronic commerce: A and B have a business 
relationship, but do not fully “trust” each other.

• We want protection against fraud and deception 
as much as possible.

• Trusted Third Parties help settle disputes.

6
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Law enforcement paradigm

• In many countries laws regulate how a law enforcement 
agency (LEA) can intercept traffic.

• Key recovery makes cryptographic keys available to their 
owner.

• Key escrow makes keys available to a LEA.
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Alternatives to cryptography

• Steganography: – used to hide the existence of 
a message
– Hide the information within a document or image, so 

that the presence of the message is not detected

• Steganographic techniques include

– Using invisible ink (try writing in lemon juice)

– Microdots

– Character arrangement and selection 

– Hiding information, e.g. in graphics and sound files

• Steganographic techniques do not use a secret key
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Encryption



Taxonomy of modern ciphers

Ciphers

Symmetric

(one key)

Asymmetric

(two keys)

Stream Block
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Block Cipher vs. Stream Cipher

Ciphertext blocks

Plaintext blocks

n bits

Block cipher

Key Block 
Cipher

n bits

Key 
stream 

generator

Key


Ciphertext streamPlaintext stream

Key stream

Stream cipher
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Terminology

• Encryption: plaintext (clear text) M is converted 
into a ciphertext C under the control of a key k.
– We write C = E(M, k).

• Decryption with key k recovers the plaintext M 
from the ciphertext C.
– We write M = D(C, k).

• Symmetric ciphers: the secret key is used for both 
encryption and decryption.

• Asymmetric ciphers: Pair of private and public 
keys where it is computationally infeasible to 
derive the private decryption key from the 
corresponding public encryption key.
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Symmetric Key Encryption 
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Classical Ciphers

• Caesar cipher

– Shift alphabet a fixed number of places

• Vigenère cipher

– Multiple Caesar ciphers

• Mono/poly-alphabetic ciphers

– Substitute alphabet(s)

• Transposition ciphers

– Reorder characters within a block

• Product ciphers

– Serial combination of substitution and transposition 

• Vernam ciphere / one-time pad

– Modular character addition (key size = message size)

Should remove statistical regularities as much as possible
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Letter Frequencies→ statistical attacks

Letter frequencies 
in English 



Ideal 4-bit Block Cipher

• Diagram shows a 
single substitution 
function from the 
message space to 
the ciphertext space

• 16! different 
substitution 
functions possible 
with 4-bit blocks

Modern ciphers have a 128-bit block, but only have e.g. 128 or 256 bit 
keys (2128 or 2256 substitutions), not (2128)! substitutions
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Claude Shannon  (1916 – 2001) 
The Father of Information Theory – MIT / Bell Labs

• Information Theory
– Defined the „binary digit“ (bit) as 

information unit

– Definition of „entropy“ as a 
measure of information

• Cryptography
– Model of a secrecy system

– Definition of perfect secrecy

– Defined cryptographic 
„confusion“ and „diffusion“

– Designed S-P networks 
(Substitution & Permutation)
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Shannon‟s  S-P Network

• “S-P Networks” (1949)

– Sequence of many 
substitutions & permutations 

– small, carefully designed 
substitution boxes  
(“confusion”)

– their output mixed by 
a permutation box  
(“diffusion”)

– iterated a certain 
number of times

– Functions must be invertible 
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P
..
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Horst Feistel‟s (1915 – 1990)
and his revolutionary cipher design
• The feistel cipher is a general and 

elegant architecture for designing 
product ciphers

• Split input block in two halves

– Perform S-P transformation on one half

– XOR output with other half

– Swop Halves

– Repeat for multiple rounds

• The S-P transformation does not
have to be invertible

UiO Spring 2011 19L05 - INF3510 Information Security



2-round Feistel Network

Plaintext

L0 R0

L1=R0 R1 =L0  f (R0,K0)

L2=R1 R2 =L1 f (R1,K1)

Key K0

Key K1




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Data Encryption Standard - History

• In May 1973, and again in Aug 1974 the NBS 
(now NIST) called for possible encryption 
algorithms for use in unclassified government 
applications. 

• Response was mostly disappointing

• IBM submitted their Feistel-network based Lucifer 
cipher as a candidate for DES. After some 
redesign (a reduction to a 56-bit key and 64-bit 
block,  it became the Data Encryption Standard in 
1977.
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Data Encryption Standard 

• Published in 1977 by the US National Bureau of 
Standards for use in unclassified government 
applications with a 15 year life time.

• 16 round Feistel cipher with 64-bit data blocks, 
56-bit keys.

• 56-bit keys were controversial in 1977; today, 
exhaustive search on 56-bit keys is very feasible.

• Controversial because of classified design 
criteria, however no loop hole has yet emerged.

• DES designed to resist differential cryptanalysis.
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One Round of DES

Expansion Permutation

48

P-Box Permutation

S-Box Substitution

32

Shift Shift

48
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56
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32
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Advanced Encryption Standard

• Public competition to replace DES: because 56-
bit keys and 64-bit data blocks no longer 
adequate.

• Rijndael nominated as the new Advanced 
Encryption Standard (AES) in 2001 [FIPS-197].

• Rijndael (pronounce as “Rhine-doll”) designed 
by Vincent Rijmen and Joan Daemen. 

• Versions for 128-bit, 196-bit, and 256-bit data 
and key blocks (all combinations of block length 
and key length are possible).

• Rijndael is not a Feistel cipher.



15 Candidates
from USA, Canada, Belgium,

France, Germany, Norway, UK, Israel,
Korea, Japan, Australia, Costa Rica

June 1998

August 1999

October 2000
1 winner:  Rijndael Belgium

5 final candidates

Mars, RC6, Rijndael, Serpent, Twofish

Round 1

Round 2

Security,
Software efficiency,

Flexibility

Security,

Hardware efficiency

January 1997 Call for cipher proposals

November 2001 AES FIPS PUB 197 standard

Key sizes: 128, 192 or 256 bit,   block size: 128 bits

Advanced Encryption Standard (AES) Contest  (1997-2001)



Rijndael, the selected AES cipher

Designed by Vincent Rijmen and Joan Daemen from 
Belgium 

Vincent Rijmen,
works at 
K.U.Leuven

Joan Daemen
Works at STMicro-

electronics, 
Belgium
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Comparison DES – AES Round

DES AES

Expansion Permutation

48

P-Box Permutation

S-Box Substitution

32

DES Round

32

32

Ri-1Li-1

RiLi

32

32
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+

AES Round

Feistel
Network



Using encryption for real

• With a block cipher, encrypting a n-bit block M
with a key k gives a ciphertext block C = E(M,k).

• Given a well designed block cipher, observing 
C would tell an adversary nothing about M or k.

• What happens if the adversary observes traffic 
over a longer period of time?
– The adversary can detect if the same message had 

been sent before; if there are only two likely 
messages “buy” and “sell” it may be possible to 
guess the plaintext without breaking the cipher.
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Block Ciphers: Modes of Operation

• Block ciphers can be used in different modes in 
order to provide different security services.

• Common modes include:
– Electronic Code Book (ECB)

– Cipher Block Chaining (CBC)

– Output Feedback (OFB)

– Cipher Feedback (CFB)

– Counter Mode (CTR)

L05 - INF3510 Information 
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Electronic Code Book

• ECB Mode encryption

– Simplest mode of operation

– Plaintext data is divided into blocks M1, M2, …, Mn 

– Each block is then processed separately

• Plaintext block and key used as inputs to the encryption algorithm 

L05 - INF3510 Information 
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ECB Mode

• ECB Mode Issues
– Problem: For a given key, the same plaintext block 

always encrypts to the same ciphertext block. 

• This may allow an attacker to construct a code book of known 
plaintext/ciphertext blocks.

• The attacker could use this codebook to insert, delete, reorder 
or replay data blocks within the data stream without detection

– Other modes of operation can prevent this, by not 
encrypting blocks independently

• For example, using the output of one block encryption as input 
to the next (chaining)

L05 - INF3510 Information 
Security
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Cipher Block Chaining Mode

L05 - INF3510 Information 
Security

32

M1 M2 MN

M1 M2
MN



UiO Spring 2011

CBC Mode

• CBC Mode Issues
– Chaining guards against the construction of a code book

• The same plaintext block encrypts to different ciphertext blocks each 
time.

– May assist in detecting integrity breaches
• Such as the insertion, deletion or reordering of data blocks into the 

ciphertext.

• What happens when there is an error?

– If there is a bitflip error (0 to 1 or vice versa) that block and the 
following block will be decrypted incorrectly

– If a ciphertext bit, or even a character is inserted or deleted this 
will be detected because of the incorrect ciphertext length

• Not multiples of block size

– Inserting or deleting a block will cause incorrect decryption

L05 - INF3510 Information 
Security
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OFB
Output 
Feedback 
Mode

A bit error in 
the ciphertext 
affects exactly 
the same bit in 
the plaintext.
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Output Feedback Mode (OFB)

• Repeated plaintext blocks do not show up as 
repeated blocks in the ciphertext.

• Different encryptions of the same plaintext with 
the same key and IV give the same ciphertext.

• Encryption of different plaintexts with the same 
key and IV reveals information about the 
plaintexts.
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Cipher Feedback Mode (CFB)

• Repeated plaintext blocks do not show up as 
repeated blocks in the ciphertext.

• Different encryptions of the same plaintext with 
the same key and IV give the same ciphertext.

• Encryption of different plaintexts with the same 
key and IV is not a security problem.

• A single bit error in a ciphertext block affects 
decryption until this block is shifted out of the 
register of the key generator.



CTR
Counter 
Mode



Counter (CTR)

• a “new” mode, though proposed early on

• similar to OFB but encrypts counter value rather 
than any feedback value

• must have a different key & counter value for 
every plaintext block (never reused)
Oi = EK(i)

Ci = Pi XOR Oi

• uses: high-speed network encryptions



Advantages and Limitations of CTR

• Efficiency
– can do parallel encryptions in h/w or s/w

– can preprocess in advance of need

– good for bursty high speed links

• Random access to encrypted data blocks

• Provable security (good as other modes)

• But must ensure never reuse key/counter values, 
otherwise could break (cf OFB)
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Block cipher: Applications

• Block ciphers are often used for providing 
confidentiality services

• They are used for applications involving 
processing large volumes of data, where time 
delays are not critical.
– Examples:

• Computer files

• Databases

• Email messages

• Block ciphers can also be used to provide 
integrity services, i.e. for message authentication

L05 - INF3510 Information 
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Stream Ciphers

• Consist of a key stream generator and a function 
for combining key stream and data.

• The combing function tends to be simple, 
exclusive-or is a typical example.

• The key stream generator takes as its input a key 
k seed S0 and updates its state with a state 
transition function fk, Si+1 =  fk(Si).

• The output at step i is the bitstream key Ki derived 
from Si
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Stream Ciphers

Encryption and decryption are usually identical operations.

fk

Mi Ci

Si

Si+1

Ki

fk

Ci Mi

Si

Si+1

Ki

Encryption Decryption

XOR addition XOR addition
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Stream Ciphers

• In such a cipher, a bit error in ciphertext bit i
causes a single bit error in plaintext bit i.

• Wireless networks use stream ciphers to protect 
data confidentiality.

• An adversary can make precise relative changes 
to the plaintext by modifying the corresponding 
ciphertext bits. 

• Stream ciphers therefore cannot be used for 
integrity protection.
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Is there a „perfect‟ cipher?

• Yes - if you require confidentiality, the One Time Pad is 
provably secure.

• BUT we don‟t use it much.

• To understand 

– why the OTP is not widely used, and 

– how to provide other security services like integrity or 
authentication

you need to know a bit more about ciphers.

• Basically, there are two types: symmetric and asymmetric.

L05 - INF3510 Information 
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The perfect cipher: One-Time-Pad

• Famous example: Vernam one-time pad

– One-time pad is the only provably secure cipher

– Vernam OTP:

• Plaintext is a stream of bits 

• Key is a truly random binary sequence same length as 
message

• The cipher is a binary additive stream cipher, so

– Ciphertext is obtained by binary addition (XOR) of plaintext 
and key

– Plaintext is recovered by binary addition (XOR) of 
ciphertext and key

– NOTE: Key can be used once only (hence the name), 
so each message requires a new, truly random key

L05 - INF3510 Information 
Security
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Integrity protection

• Protection against modification of data can be 
done with integrity check values
– CRC (cyclic redundancy code), message digest, hash 

functions etc.

• Unintentional modification (accidental errors) 
poses no threat to the integrity check values. 

• Protecting integrity check values against 
intentional modifications relies on security
– By access control, can be used for stored data

– By cryptography, used in data communications
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Cryptographic data integrity

• Data origin authentication includes data integrity: a 
message that has been modified in transit no longer 
comes from the original source. 

• Data integrity includes data origin authentication: when 
the sender‟s address is part of the message, you have to 
verify the source of a message when verifying its integrity. 

• Under the assumptions made, data integrity and data 
origin authentication are equivalent. 

• In other applications a separate notion of data integrity 
makes sense, e.g. for file protection by anti-virus software.
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Hash functions (message digest functions)

Requirements on a one-way hash function h:

• Ease of computation: given x, it is easy to 
compute h(x).

• Compression: h maps inputs x of arbitrary 
bitlength to outputs h(x) of a fixed bitlength n.

• Pre-image resistance (one-way): given a value y, 
it is computationally infeasible to find an input x
so that h(x)=y.

50UiO Spring 2011 L05 - INF3510 Information 
Security



Hash collisions

• The application just described needs more than the one-
way property of h.

• We are not concerned about an attacker reconstructing 
the message from the hash.

• We are concerned about attackers who change message 
x to x’ so that h(x’)= h(x).

• Then, our integrity protection mechanism would fail to 
detect the change.

• We say there is a collision when two inputs x and x’ map 
to the same hash. 

51UiO Spring 2011 L05 - INF3510 Information 
Security



Collision Resistance

• Integrity protection requires collision-resistant 
hash functions; we distinguish between:

• 2nd pre-image resistance (weak collision 
resistance): given an input x and h(x), it is 
computationally infeasible to find another input x’, 
x ≠ x’, with h(x)=h(x’).

• Collision resistance (strong collision resistance): it 
is computationally infeasible to find any two inputs 
x and x’, x ≠ x’, with h(x)=h(x’).
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Properties of hash functions
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Hash function construction

• Pattern for the design of fast hash functions:

• The core of the hash function is a compression 
function f that works on fixed size input blocks.

• An input x of arbitrary length is broken up into 
blocks x1,..., xm of the given block size; the last 
block has to be padded.

• Compute the hash of x by repeatedly applying the 
compression function: with a (fixed) initial value 
h0, compute hi = f(xi, hi-1) for i=1,…, m and take hm
as the hash value of x. 
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Hash function principle

55
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Frequently used hash functions

• MD5: 128 bit digest. Broken. Often used in Internet 
protocols but no longer recommended.

• SHA-1 (Secure Hash Algorithm):160 bit digest.  Potential 
attacks exist. Designed to operate with the US  Digital 
Signature Standard (DSA);

• SHA-256, 384, 512 bit digest. Still secure. Replacement 
for SHA-1 

• RIPEMD-160: 160 bit digest. Still secure. Hash function 
frequently used by European cryptographic service 
providers.

• NIST competition for new secure hash algorithm, 
announcement in 2011.
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Message Authentication Codes

• A message M with a simple message hash h(M)
can be changed by attacker.

• In communications, we need to verify the origin of 
data, i.e. we need message authentication.

• MAC (message authentication code) computed 
as h(M, k) from message M and a secret key k.

• To validate and authenticate a message, the 
receiver has to share the same secret key used to 
compute the MAC with the sender.

• A third party who does not know the key cannot 
validate the MAC.
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MAC and MAC algorithms

• MAC means two things:
1. The computed message authentication code h(M, k)

2. General name for algorithms used to compute a MAC 

• In practice, the MAC algorithm is e.g.
– HMAC (Hash-based MAC algorithm))

– CBC-MAC (CBC based MAC algorithm)

– CMAC (Cipher-based MAC algorithm)

• MAC algorithms, a.k.a. keyed hash functions, 
support data origin authentication services.
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HMAC

• A MAC algorithm can be derived from a hash 
algorithm h using the HMAC construction:

• For a given key k and message M, compute 

HMAC(x) = h(k||p1||h(k||p2||M))

where p1 and p2 are bit strings (padding) that 
extend k to a full block length of the compression 
function used in h.

• HMAC is specified in Internet RFC 2104.
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CBC-MAC principle
Diagram

same key
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CBC-MAC and CMAC

• A block cipher used in CBC mode can be used as 
a MAC algorithm
– For a given message or data file, 

• The file is encrypted using the block cipher in CBC mode

• The last ciphertext block is used as a Message Authentication 
Code (MAC) value

• Both the message and the MAC are sent to the receiver

– Described in ISO/IEC 9797-1:1999

– Security depends on block-size of cipher. The typical 
block size of 128 bit is too short.

• CMAC uses a block cipher in a way to output 
hash blocks that are larger than the cipher block.

L05 - INF3510 Information 
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Security of hash functions

• Large block size necessary to resist birthday attacks.

• Birthday paradox:

– A group of 253 persons is needed to have p = 0.5 that any person 
has birthday on a specific date. Seems reasonable.

– A group of only 23 persons is needed to have p = 0.5 that any two 
persons have birthday on the same date. Seems strange.

• Finding any two hashes that are equal (collision) in a large 
table of hash values is therefore relatively easy.

• A block size of n bits is considered to provide only n/2 bit 
complexity.

• To provide strong collision resistance, large blocks are 
needed. 160 bit hash block is currently a minimum.
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Hash functions and Message 
Authentication

• Shared secret key is used for HMAC, CBC-MAC 
and CMAC

• When used during message transmission, this 
provides an additional security service of 
Message Authentication:
– A correct MAC value confirms the sender of the 

message is in possession of the shared secret key

– Hence, much like a password, it confirms the 
authenticity of the message sender to the receiver.

• Indeed, message integrity is meaningless without 
knowing who sent the message.

L05 - INF3510 Information 
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Symmetric key distribution

• Shared key between each pair

• Each participant needs n-1 keys.

• Total number of exchanged keys:
= (n-1) + (n-2) + … + 2 + 1

= n(n-1)/2

• Grows exponentially, which is 
problematic.

• Is there a better way?
Community of 5 nodes



Public-Key Cryptography



James H. Ellis
(1924 – 1997)

• British engineer and mathematician

• Worked at GCHQ (Government 
Communications Headquarters)

• Idea of non-secret encryption to solve 
key distribution problem 

• Encrypt with non-secret information in 
a way which makes it impossible to 
decrypt without related secret 
information

• Never found a practical method



Clifford Cocks
(1950 – )

• British mathematician and cryptographer

• Silver medal at the International 
Mathematical Olympiad, 1968

• Works at GCHQ

• Heard from James Ellis the idea of non-
secret encryption in 1973

• Spent 30 minutes in 1973 to invent a 
practical method

• Equivalent to the RSA algorithm

• Was classified TOP SECRET

• Revealed in 1998



Malcolm J. Williamson

• British mathematician and cryptographer

• Gold medal at the International 
Mathematical Olympiad, 1968

• Worked at GCHQ until 1982

• Heard from James Ellis the idea of non-
secret encryption, and from Clifford Cocks 
the practical method. 

• Intrigued, spent 1 day in 1974 to invent a 
method for secret key exchange without 
secret channel

• Equivalent to the Diffie-Hellmann key 
exchange algorithm
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Public Key Encryption

• Proposed in the open literature by Diffie & 
Hellman in 1976.

• Each party has a public encryption key and a 
private decryption key.

• Reduces total number of exchanged keys to n

• Computing the private key from the public key 
should be computationally infeasible.

• The public key need not be kept secret but it is 
not necessarily known to everyone.

• There can be applications where even access 
to public keys is restricted. 



Ralph Merkle, Martin Hellman and 
Whitfield Diffie

• Merkle invented (1974) 
and published (1978)  
Merkle‟s puzzle, a key 
exchange protocol which 
was unpractical

• Diffie & Hellman invented 
(influenced by Merkle) a 
practical key exchange 
algorithm using discrete 
logarithm.

• D&H defined public-key 
encryption (equiv. to non-
secret encryption)

• Defined digital signature

• Published 1976 in “New 
directions in cryptography”
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Diffie-Hellman key agreement

ga mod p

Alice computes the shared 
secret 
(gb)a = gab mod p

Bob computes the same 
secret 
(ga)b = gab mod p.

Alice picks random 
integer a

gb mod p

Bob picks random 
integer b
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Carol now shares keys with both Alice and Bob. Alice sends confidential 

messages believing that she is communicating with Bob. Carol can decrypt 

these messages, read them and re-encrypt the message for Bob and send it 

on. Likewise, Bob sends messages to Alice unaware of Carol.

Man-in-the-middle attack in Diffie-Hellman

Choose b and send 

gb to Carol

Calculate:  gcb

Choose a and send 

ga to Bob

Calculate:  gca

Alice Carol Bob

ga

gc gc

Carol intercepts 

Alice’s message.

Choose c and 

send gc to both 

Alice and Bob.

Calculate:  gac

Calculate:  gbc

gb

gac gbc
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Diffie-Hellman Applications

• IPSec (IP Security)

– IKE (Internet Key Exchange) is part of the IPSec 
protocol suite

– IKE is based on Diffie-Hellman Key Agreement

• SSL/TLS

– Several variations of SSL/TLS protocol including

• Fixed Diffie-Hellman

• Ephemeral Diffie-Hellman

• Anonymous Diffie-Hellman
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Public key encryption algorithms

• Each party B has a public encryption key and a 
private decryption key.

• A method is required for each communicating 
party A to get an authentic copy of B‟s public key 
(hopefully easier than getting a shared secret key).

• For n parties, only n key pairs are needed
– as opposed to n(n-1)/2 symmetric keys.



Ron Rivest, Adi Shamir and Len Adleman 

• Read about public-key cryptography in 1976 article 
by Diffie & Hellman: “New directions in cryptography”

• Intrigued, they worked on finding a practical 
algorithm

• Spent several months in 1976 to re-invent the 
method for non-secret/public-key encryption 
discovered by Clifford Cocks 3 years earlier

• Named RSA algorithm



• n = pq which is made public (but not p and q )

• Calculate secret: z = (p-1)(q-1)

• Choose a public key e

• Compute private key d such that ed = 1 mod(z)

• Encryption of message m where (1 < m < n).

– Compute: c = me mod n

• Decryption of ciphertext c

– Compute: m = cd mod n

• Security depends on the difficulty of factorizing n

– so the prime factors p and q must be LARGE

RSA Algorithm



UiO Spring 2011

Asymmetric Ciphers: 
Examples of Cryptosystems

• RSA: best known asymmetric algorithm.

– RSA = Rivest, Shamir, and Adleman (published 1977)

– Historical Note: U.K. cryptographer Clifford Cocks 
invented the same algorithm in 1973, but didn‟t publish.

• ElGamal Cryptosystem

– Based on the difficulty of solving the discrete log 
problem.

• Elliptic Curve Cryptography

– Based on the difficulty of solving the EC discrete log 
problem.

– Provides same level of security with smaller key sizes.
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Asymmetric Encryption: 
Basic encryption operation

• In practical application, large messages are not 
encrypted directly with asymmetric algorithms. 
Hybrid systems are used.
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Bob’s 

private key

C = E(M,Kpub) M = D(C,Kpriv)

Bob’s 

public key

Alice’s 

public key

ring

Encryption

Operation

Decryption

Operation

Plaintext M ciphertext plaintext

Alice Bob



Hybrid Cryptosystems

• Symmetric ciphers are faster than asymmetric 
ciphers (because they are less computationally 
expensive ), but ...

• Asymmetric ciphers simplify key distribution, 
therefore ...

• a combination of both symmetric and asymmetric 
ciphers can be used – a hybrid system:
– The asymmetric cipher is used to distribute a randomly 

chosen symmetric key.

– The symmetric cipher is used for encrypting bulk data.



Confidentiality Services:
Hybrid Cryptosystems

Bob‟s 

private key
Bob‟s 

public key

Plaintext M

Ciphertext C

Plaintext 

M
C = E(M,K) M = D(C,K)

Alice‟s 

public key

ring

K - Random 

symmetric key

K - Random 

symmetric key

Encrypted K
Encryption

Operation

Decryption

Operation

Encryption

Operation

Decryption

Operation

Alice Bob



Digital Signatures
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Digital Signature Mechanisms

• A MAC cannot be used as evidence that should be 
verified by a third party.

• Digital signatures used for non-repudiation, data origin 
authentication and data integrity services, and in some 
authentication exchange mechanisms.

• Digital signature mechanisms have three components:

– key generation

– signing procedure (private)

– verification procedure (public)



Digital signature: Basic operation

• In practical applications, message M is not signed 
directly, only a hash value h(M) is signed.
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Digital signature based on hash value

Alice’s  private key

Alice’s  public key

Sig = E(H(M),Kpriv)

H(M) = D(Sig,Kpub)

Bob’s 

public key

ring

Sign

hashed

message

Recover

hash

from Sig

Plaintext M

Digital 

Signature

Received plaintext M’
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Bob

Compute hash H(M’ )

Verify H(M) = H(M’ )

Compute hash H(M)
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Digital Signatures

• A has a public verification key and a private 
signature key ( public key cryptography).

• A uses her private key to compute her signature 
on document m.

• B uses a public verification key to check the 
signature on a document m he receives.

• At this technical level, digital signatures are a 
cryptographic mechanism for associating 
documents with verification keys.
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Digital Signatures

• To get an authentication service that links a 
document to A‟s name (identity) and not just a 
verification key, we require a procedure for B to 
get an authentic copy of A‟s public key.

• Only then do we have a service that proves the 
authenticity of documents „signed by A‟.

• This can be provided by a PKI (Public Key 
Infrastructure)

• Yet even such a service does not provide non-
repudiation at the level of persons.
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Difference between MACs & Dig. Sig.

• MACs and digital signatures are both 
authentication mechanisms.

• MAC: the verifier needs the secret that was 
used to compute the MAC; thus a MAC is 
unsuitable as evidence with a third party.
– The third party does not have the secret.

– The third party cannot distinguish between the 
parties knowing the secret.

• Digital signatures can be validated by third 
parties, and can in theory thereby support 
both non-repudiation and authentication.

?


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Key length comparison:
Symmetric and Asymmetric ciphers offering comparable security

AES Key Size RSA Key Size Elliptic curve Key 
Size

- 1024 163

128 3072 256

192 7680 384

256 15360 512
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Ciphers and security

• A cipher must

– be hard to cryptanalyse

– use a sufficiently large key

• Algorithm secrecy makes 
cryptanalysis harder, but
– can give false assurance,  

i.e. “security by obscurity”

– challenging to keep cipher 
design confidential

– safest to assume that 
attacker knows cipher

• Auguste Kerckhoffs 
proposed in 1883 that 
communication secrecy 
should only be based on 
the secrecy of the key

• Still, many organisations 
use secret algorithms.
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Hopefully, you now know:

• What cryptography is

• When cryptography is used

• That there is a „perfect‟ cipher, but that it has 
serious limitations

• That there are practical ciphers and how to use 
them
– Symmetric ciphers (stream and block)

– Asymmetric ciphers

• Hash and MAC functions and how to use them 

• Hybrid cryptosystems and digital signatures
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