INF3510 Information Security University of Oslo Spring 2011

Lecture 5 Cryptography

Audun Jøsang

Cryptography

- Cryptography is the science and study of secret writing.
- Cryptanalysis is the science and study of methods of breaking ciphers.
 - Cryptology: cryptography and cryptanalysis.
- Today: Cryptography is the study of mathematical techniques related to aspects of information security, such as confidentiality, data integrity, entity authentication, and data origin authentication. [Handbook of Applied Cryptography]

When is cryptography used?

• If you require

- Confidentiality:

- so that your data is not made available to anyone who shouldn't have access.
- That is, protection against snoops or eavesdroppers
- Integrity:
 - So you know that the message content is correct, and has not been altered, either deliberately or accidentally
- Authentication:
 - So you can be sure that the message is from the place or sender it claims to be from
- Cryptography can provide these security services.

When is cryptography used?

• Some example situations:

- Historically, the military and spy agencies were the main users of cryptology
 - Situation: transmitting messages over insecure channels
- Now, it is used in many other areas, especially in electronic information processing and communications technologies:
 - Banking: your financial transactions, such as EFTPOS
 - Communications: your mobile phone conversations
 - Info stored in databases: hospitals, universities, etc.
- Cryptography can be used to protect information in storage or during transmission

Traditional paradigm

- A and B communicate over an insecure channel.
- A and B trust each other.
- Intruder can read, delete, and insert messages.
- With cryptography, A and B construct a secure logical channel over an insecure network.

Trust paradigm

- Electronic commerce: *A* and *B* have a business relationship, but do not fully "trust" each other.
- We want protection against fraud and deception as much as possible.
- Trusted Third Parties help settle disputes.

UiO Spring 2011

Law enforcement paradigm

- In many countries laws regulate how a law enforcement agency (LEA) can intercept traffic.
- Key recovery makes cryptographic keys available to their owner.
- Key escrow makes keys available to a LEA.

UiO Spring 2011

Alternatives to cryptography

- Steganography:
 used to hide the existence of a message
 - Hide the information within a document or image, so that the presence of the message is not detected

Steganographic techniques include

- Using invisible ink (try writing in lemon juice)
- Microdots
- Character arrangement and selection
- Hiding information, e.g. in graphics and sound files

Steganographic techniques do not use a secret key

Taxonomy of modern ciphers

UiO Spring 2011

Block Cipher vs. Stream Cipher

Terminology

- Encryption: plaintext (clear text) M is converted into a ciphertext C under the control of a key k.
 We write C = E(M, k).
- Decryption with key k recovers the plaintext M from the ciphertext C.
 - We write M = D(C, k).
- Symmetric ciphers: the secret key is used for both encryption and decryption.
- Asymmetric ciphers: Pair of private and public keys where it is computationally infeasible to derive the private decryption key from the corresponding public encryption key.

Symmetric Key Encryption

Classical Ciphers

- Caesar cipher
 - Shift alphabet a fixed number of places
- Vigenère cipher
 - Multiple Caesar ciphers
- Mono/poly-alphabetic ciphers
 - Substitute alphabet(s)
- Transposition ciphers
 - Reorder characters within a block
- Product ciphers
 - Serial combination of substitution and transposition
- Vernam ciphere / one-time pad
 - Modular character addition (key size = message size)

Should remove statistical regularities as much as possible

Letter Frequencies→ statistical attacks

Ideal 4-bit Block Cipher

- Diagram shows a single substitution function from the message space to the ciphertext space
- 16! different substitution functions possible with 4-bit blocks

Modern ciphers have a 128-bit block, but only have e.g. 128 or 256 bit keys (2^{128} or 2^{256} substitutions), not (2^{128})! substitutions

Claude Shannon (1916 – 2001) The Father of Information Theory – MIT / Bell Labs

Information Theory

- Defined the "binary digit" (bit) as information unit
- Definition of "entropy" as a measure of information
- Cryptography
 - Model of a secrecy system
 - Definition of perfect secrecy
 - Defined cryptographic "confusion" and "diffusion"
 - Designed S-P networks (Substitution & Permutation)

Shannon's S-P Network

- "S-P Networks" (1949)
 - Sequence of many substitutions & permutations
 - small, carefully designed substitution boxes ("confusion")
 - their output mixed by a permutation box ("diffusion")
 - iterated a certain number of times
 - Functions must be invertible

Horst Feistel's (1915 – 1990) and his revolutionary cipher design

- The **feistel cipher** is a general and elegant architecture for designing product ciphers
- Split input block in two halves
 - Perform S-P transformation on one half
 - XOR output with other half
 - Swop Halves
 - Repeat for multiple rounds
- The S-P transformation does **not** have to be invertible

2-round Feistel Network

UiO Spring 2011

L05 - INF3510 Information Security

Data Encryption Standard - History

- In May 1973, and again in Aug 1974 the NBS (now NIST) called for possible encryption algorithms for use in unclassified government applications.
- Response was mostly disappointing
- IBM submitted their Feistel-network based Lucifer cipher as a candidate for DES. After some redesign (a reduction to a 56-bit key and 64-bit block, it became the Data Encryption Standard in 1977.

Data Encryption Standard

- Published in 1977 by the US National Bureau of Standards for use in unclassified government applications with a 15 year life time.
- 16 round Feistel cipher with 64-bit data blocks, 56-bit keys.
- 56-bit keys were controversial in 1977; today, exhaustive search on 56-bit keys is very feasible.
- Controversial because of classified design criteria, however no loop hole has yet emerged.
- DES designed to resist differential cryptanalysis.

One Round of DES

L05 - INF3510 Information Security

Advanced Encryption Standard

- Public competition to replace DES: because 56bit keys and 64-bit data blocks no longer adequate.
- Rijndael nominated as the new Advanced Encryption Standard (AES) in 2001 [FIPS-197].
- Rijndael (pronounce as "Rhine-doll") designed by Vincent Rijmen and Joan Daemen.
- Versions for 128-bit, 196-bit, and 256-bit data and key blocks (all combinations of block length and key length are possible).
- Rijndael is not a Feistel cipher.

Advanced Encryption Standard (AES) Contest (1997-2001)

Rijndael, the selected AES cipher

Designed by Vincent Rijmen and Joan Daemen from Belgium

Comparison DES – AES Round

Using encryption for real

- With a block cipher, encrypting a *n*-bit block *M* with a key *k* gives a ciphertext block C = E(M,k).
- Given a well designed block cipher, observing
 C would tell an adversary nothing about M or k.
- What happens if the adversary observes traffic over a longer period of time?
 - The adversary can detect if the same message had been sent before; if there are only two likely messages "buy" and "sell" it may be possible to guess the plaintext without breaking the cipher.

Block Ciphers: Modes of Operation

- Block ciphers can be used in different modes in order to provide different security services.
- Common modes include:
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Output Feedback (OFB)
 - Cipher Feedback (CFB)
 - Counter Mode (CTR)

Electronic Code Book

- ECB Mode encryption
 - Simplest mode of operation
 - Plaintext data is divided into blocks $M_1, M_2, ..., M_n$
 - Each block is then processed separately
 - Plaintext block and key used as inputs to the encryption algorithm

ECB Mode

ECB Mode Issues

- Problem: For a given key, the same plaintext block always encrypts to the same ciphertext block.
 - This may allow an attacker to construct a code book of known plaintext/ciphertext blocks.
 - The attacker could use this codebook to insert, delete, reorder or replay data blocks within the data stream without detection
- Other modes of operation can prevent this, by not encrypting blocks independently
 - For example, using the output of one block encryption as input to the next (chaining)

Cipher Block Chaining Mode

CBC Mode

CBC Mode Issues

- Chaining guards against the construction of a code book
 - The same plaintext block encrypts to different ciphertext blocks each time.
- May assist in detecting integrity breaches
 - Such as the insertion, deletion or reordering of data blocks into the ciphertext.
- What happens when there is an error?
 - If there is a bitflip error (0 to 1 or vice versa) that block and the following block will be decrypted incorrectly
 - If a ciphertext bit, or even a character is inserted or deleted this will be detected because of the incorrect ciphertext length
 - Not multiples of block size
 - Inserting or deleting a block will cause incorrect decryption

<u>OFB</u> Output Feedback Mode

A bit error in the ciphertext affects exactly the same bit in the plaintext.

(a) Encryption

(b) Decryption

Figure 6.6 Output Feedback (OFB) Mode

Output Feedback Mode (OFB)

- Repeated plaintext blocks do not show up as repeated blocks in the ciphertext.
- Different encryptions of the same plaintext with the same key and IV give the same ciphertext.
- Encryption of different plaintexts with the same key and IV reveals information about the plaintexts.

<u>CFB</u> Cipher Feedback Mode

Cipher Feedback Mode (CFB)

- Repeated plaintext blocks do not show up as repeated blocks in the ciphertext.
- Different encryptions of the same plaintext with the same key and IV give the same ciphertext.
- Encryption of different plaintexts with the same key and IV is not a security problem.
- A single bit error in a ciphertext block affects decryption until this block is shifted out of the register of the key generator.

<u>CTR</u> Counter Mode

(b) Decryption

Counter (CTR)

- a "new" mode, though proposed early on
- similar to OFB but encrypts counter value rather than any feedback value
- must have a different key & counter value for every plaintext block (never reused)

$$O_i = E_K(i)$$

$$C_i = P_i XOR O_i$$

uses: high-speed network encryptions

Advantages and Limitations of CTR

- Efficiency
 - can do parallel encryptions in h/w or s/w
 - can preprocess in advance of need
 - good for bursty high speed links
- Random access to encrypted data blocks
- Provable security (good as other modes)
- But must ensure never reuse key/counter values, otherwise could break (cf OFB)

Block cipher: Applications

- Block ciphers are often used for providing confidentiality services
- They are used for applications involving processing large volumes of data, where time delays are not critical.
 - Examples:
 - Computer files
 - Databases
 - Email messages
- Block ciphers can also be used to provide integrity services, i.e. for message authentication

Stream Ciphers

- Consist of a key stream generator and a function for combining key stream and data.
- The combing function tends to be simple, exclusive-or is a typical example.
- The key stream generator takes as its input a key k seed S_0 and updates its state with a state transition function f_k , $S_{i+1} = f_k(S_i)$.
- The output at step *i* is the bitstream key K_i derived from S_i

Stream Ciphers

Encryption and decryption are usually identical operations.

Stream Ciphers

- In such a cipher, a bit error in ciphertext bit *i* causes a single bit error in plaintext bit *i*.
- Wireless networks use stream ciphers to protect data confidentiality.
- An adversary can make precise relative changes to the plaintext by modifying the corresponding ciphertext bits.
- Stream ciphers therefore cannot be used for integrity protection.

Is there a 'perfect' cipher?

- Yes if you require confidentiality, the One Time Pad is provably secure.
- BUT we don't use it much.
- To understand
 - why the OTP is not widely used, and
 - how to provide other security services like integrity or authentication

you need to know a bit more about ciphers.

Basically, there are two types: symmetric and asymmetric.

The perfect cipher: One-Time-Pad

- Famous example: Vernam one-time pad
 - One-time pad is the only provably secure cipher
 - Vernam OTP:
 - Plaintext is a stream of bits
 - Key is a <u>truly random binary sequence same length as</u> <u>message</u>
 - The cipher is a binary additive stream cipher, so
 - Ciphertext is obtained by binary addition (XOR) of plaintext and key
 - Plaintext is recovered by binary addition (XOR) of ciphertext and key
 - NOTE: Key can be used once only (hence the name), so each message requires a new, truly random key

Integrity Check Functions

Integrity protection

- Protection against modification of data can be done with integrity check values
 - CRC (cyclic redundancy code), message digest, hash functions etc.
- Unintentional modification (accidental errors) poses no threat to the integrity check values.
- Protecting integrity check values against intentional modifications relies on security
 - By access control, can be used for stored data
 - By cryptography, used in data communications

Cryptographic data integrity

- Data origin authentication includes data integrity: a message that has been modified in transit no longer comes from the original source.
- Data integrity includes data origin authentication: when the sender's address is part of the message, you have to verify the source of a message when verifying its integrity.
- Under the assumptions made, data integrity and data origin authentication are equivalent.
- In other applications a separate notion of data integrity makes sense, e.g. for file protection by anti-virus software.

Hash functions (message digest functions)

Requirements on a one-way hash function *h*:

- Ease of computation: given x, it is easy to compute h(x).
- Compression: h maps inputs x of arbitrary bitlength to outputs h(x) of a fixed bitlength n.
- Pre-image resistance (one-way): given a value y, it is computationally infeasible to find an input x so that h(x)=y.

Hash collisions

- The application just described needs more than the oneway property of *h*.
- We are not concerned about an attacker reconstructing the message from the hash.
- We are concerned about attackers who change message x to x' so that h(x') = h(x).
- Then, our integrity protection mechanism would fail to detect the change.
- We say there is a collision when two inputs x and x' map to the same hash.

Collision Resistance

- Integrity protection requires collision-resistant hash functions; we distinguish between:
- 2nd pre-image resistance (weak collision resistance): given an input *x* and *h*(*x*), it is computationally infeasible to find another input *x*', *x* ≠ *x*', with *h*(*x*)=*h*(*x*').
- Collision resistance (strong collision resistance): it is computationally infeasible to find any two inputs x and x', x ≠ x', with h(x)=h(x').

Properties of hash functions

ease of pre-image collision computation resistance

2nd pre-image resistance

(strong) collision resistance

Hash function construction

- Pattern for the design of fast hash functions:
- The core of the hash function is a compression function *f* that works on fixed size input blocks.
- An input x of arbitrary length is broken up into blocks x_1, \ldots, x_m of the given block size; the last block has to be padded.
- Compute the hash of x by repeatedly applying the compression function: with a (fixed) initial value h₀, compute h_i = f(x_i, h_{i-1}) for i=1,..., m and take h_m as the hash value of x.

Hash function principle

55

Frequently used hash functions

- MD5: 128 bit digest. Broken. Often used in Internet protocols but no longer recommended.
- SHA-1 (Secure Hash Algorithm):160 bit digest. Potential attacks exist. Designed to operate with the US Digital Signature Standard (DSA);
- SHA-256, 384, 512 bit digest. Still secure. Replacement for SHA-1
- RIPEMD-160: 160 bit digest. Still secure. Hash function frequently used by European cryptographic service providers.
- NIST competition for new secure hash algorithm, announcement in 2011.

Message Authentication Codes

- A message M with a simple message hash h(M) can be changed by attacker.
- In communications, we need to verify the origin of data, i.e. we need message authentication.
- MAC (message authentication code) computed as h(M, k) from message M and a secret key k.
- To validate and authenticate a message, the receiver has to share the same secret key used to compute the MAC with the sender.
- A third party who does not know the key cannot validate the MAC.

MAC and MAC algorithms

- MAC means two things:
 - 1. The computed message authentication code h(M, k)
 - 2. General name for algorithms used to compute a MAC
- In practice, the MAC algorithm is e.g.
 - HMAC (Hash-based MAC algorithm))
 - CBC-MAC (CBC based MAC algorithm)
 - CMAC (Cipher-based MAC algorithm)
- MAC algorithms, a.k.a. keyed hash functions, support data origin authentication services.

- A MAC algorithm can be derived from a hash algorithm *h* using the HMAC construction:
- For a given key k and message M, compute $HMAC(x) = h(k||p_1||h(k||p_2||M))$

where p_1 and p_2 are bit strings (padding) that extend *k* to a full block length of the compression function used in *h*.

• HMAC is specified in Internet RFC 2104.

CBC-MAC principle

CBC-MAC and **CMAC**

- A block cipher used in CBC mode can be used as a MAC algorithm
 - For a given message or data file,
 - The file is encrypted using the block cipher in CBC mode
 - The last ciphertext block is used as a Message Authentication Code (MAC) value
 - Both the message and the MAC are sent to the receiver
 - Described in ISO/IEC 9797-1:1999
 - Security depends on block-size of cipher. The typical block size of 128 bit is too short.
- CMAC uses a block cipher in a way to output hash blocks that are larger than the cipher block.

Security of hash functions

- Large block size necessary to resist birthday attacks.
- Birthday paradox:
 - A group of 253 persons is needed to have p = 0.5 that any person has birthday on a specific date. Seems reasonable.
 - A group of only 23 persons is needed to have p = 0.5 that any two persons have birthday on the same date. Seems strange.
- Finding any two hashes that are equal (collision) in a large table of hash values is therefore relatively easy.
- A block size of *n* bits is considered to provide only *n*/2 bit complexity.
- To provide strong collision resistance, large blocks are needed. 160 bit hash block is currently a minimum.

Hash functions and Message Authentication

- Shared secret key is used for HMAC, CBC-MAC and CMAC
- When used during message transmission, this provides an additional security service of Message Authentication:
 - A correct MAC value confirms the sender of the message is in possession of the shared secret key
 - Hence, much like a password, it confirms the authenticity of the message sender to the receiver.
- Indeed, message integrity is meaningless without knowing who sent the message.

Symmetric key distribution

- Shared key between each pair
- Each participant needs *n*-1 keys.
- Total number of exchanged keys:
 = (n-1) + (n-2) + ... + 2 + 1
 = n(n-1)/2
- Grows exponentially, which is problematic.
- Is there a better way?

Community of 5 nodes

Public-Key Cryptography

James H. Ellis (1924 – 1997)

- British engineer and mathematicianWorked at GCHQ (Government
 - Communications Headquarters)
- Idea of non-secret encryption to solve key distribution problem
- Encrypt with non-secret information in a way which makes it impossible to decrypt without related secret information

Never found a practical method

Clifford Cocks (1950 –)

- British mathematician and cryptographer
- Silver medal at the International Mathematical Olympiad, 1968
- Works at GCHQ
- Heard from James Ellis the idea of nonsecret encryption in 1973
- Spent 30 minutes in 1973 to invent a practical method
- Equivalent to the RSA algorithm
- Was classified TOP SECRET Revealed in 1998

Malcolm J. Williamson

- British mathematician and cryptographer
- Gold medal at the International Mathematical Olympiad, 1968
- Worked at GCHQ until 1982
- Heard from James Ellis the idea of nonsecret encryption, and from Clifford Cocks the practical method.
- Intrigued, spent 1 day in 1974 to invent a method for secret key exchange without secret channel
- Equivalent to the Diffie-Hellmann key exchange algorithm

Public Key Encryption

- Proposed in the open literature by Diffie & Hellman in 1976.
- Each party has a public encryption key and a private decryption key.
- Reduces total number of exchanged keys to n
- Computing the private key from the public key should be computationally infeasible.
- The public key need not be kept secret but it is not necessarily known to everyone.
- There can be applications where even access to public keys is restricted.

Ralph Merkle, Martin Hellman and Whitfield Diffie

- Merkle invented (1974) and published (1978) Merkle's puzzle, a key exchange protocol which was unpractical
- Diffie & Hellman invented (influenced by Merkle) a practical key exchange algorithm using discrete logarithm.

- D&H defined public-key encryption (equiv. to nonsecret encryption)
- Defined digital signature
- Published 1976 in "New directions in cryptography"

Diffie-Hellman key agreement

Man-in-the-middle attack in Diffie-Hellman

Carol now shares keys with both Alice and Bob. Alice sends confidential messages believing that she is communicating with Bob. Carol can decrypt these messages, read them and re-encrypt the message for Bob and send it on. Likewise, Bob sends messages to Alice unaware of Carol.
Diffie-Hellman Applications

- IPSec (IP Security)
 - IKE (Internet Key Exchange) is part of the IPSec protocol suite
 - IKE is based on Diffie-Hellman Key Agreement
- SSL/TLS
 - Several variations of SSL/TLS protocol including
 - Fixed Diffie-Hellman
 - Ephemeral Diffie-Hellman
 - Anonymous Diffie-Hellman

Public key encryption algorithms

- Each party *B* has a public encryption key and a private decryption key.
- A method is required for each communicating party A to get an authentic copy of B's public key (hopefully easier than getting a shared secret key).
- For *n* parties, only *n* key pairs are needed
 - as opposed to n(n-1)/2 symmetric keys.

Ron Rivest, Adi Shamir and Len Adleman

- Read about public-key cryptography in 1976 article by Diffie & Hellman: "New directions in cryptography"
 - Intrigued, they worked on finding a practical algorithm
- Spent several months in 1976 to re-invent the method for non-secret/public-key encryption discovered by Clifford Cocks 3 years earlier
- Named RSA algorithm

RSA Algorithm

- n = pq which is made public (but not p and q)
- Calculate secret: *z* = (*p*-1)(*q*-1)
- Choose a public key **e**
- Compute private key *d* such that *ed* = 1 mod(*z*)
- Encryption of message m where (1 < m < n).
 - Compute: $c = m^e \mod n$
- Decryption of ciphertext c
 - Compute: $m = c^d \mod n$
- Security depends on the difficulty of factorizing n
 - so the prime factors **p** and **q** must be LARGE

Asymmetric Ciphers: Examples of Cryptosystems

- RSA: best known asymmetric algorithm.
 - RSA = Rivest, Shamir, and Adleman (published 1977)
 - Historical Note: U.K. cryptographer Clifford Cocks invented the same algorithm in 1973, but didn't publish.
- ElGamal Cryptosystem
 - Based on the difficulty of solving the discrete log problem.
- Elliptic Curve Cryptography
 - Based on the difficulty of solving the EC discrete log problem.
 - Provides same level of security with smaller key sizes.

Asymmetric Encryption: Basic encryption operation

 In practical application, large messages are not encrypted directly with asymmetric algorithms. Hybrid systems are used.

Hybrid Cryptosystems

- Symmetric ciphers are faster than asymmetric ciphers (because they are less computationally expensive), but ...
- Asymmetric ciphers simplify key distribution, therefore ...
- a combination of both symmetric and asymmetric ciphers can be used – a hybrid system:
 - The asymmetric cipher is used to distribute a randomly chosen symmetric key.
 - The symmetric cipher is used for encrypting bulk data.

Confidentiality Services: Hybrid Cryptosystems

Digital Signatures

Digital Signature Mechanisms

- A MAC cannot be used as evidence that should be verified by a third party.
- Digital signatures used for non-repudiation, data origin authentication and data integrity services, and in some authentication exchange mechanisms.
- Digital signature mechanisms have three components:
 - key generation
 - signing procedure (private)
 - verification procedure (public)

Digital signature: Basic operation

 In practical applications, message M is not signed directly, only a hash value h(M) is signed.

Digital signature based on hash value

Digital Signatures

- A has a public verification key and a private signature key (→ public key cryptography).
- A uses her private key to compute her signature on document *m*.
- *B* uses a public verification key to check the signature on a document *m* he receives.
- At this technical level, digital signatures are a cryptographic mechanism for associating documents with verification keys.

Digital Signatures

- To get an authentication service that links a document to A's name (identity) and not just a verification key, we require a procedure for B to get an authentic copy of A's public key.
- Only then do we have a service that proves the authenticity of documents 'signed by *A*'.
- This can be provided by a PKI (Public Key Infrastructure)
- Yet even such a service does not provide nonrepudiation at the level of persons.

Difference between MACs & Dig. Sig.

 MACs and digital signatures are both authentication mechanisms.

- MAC: the verifier needs the secret that was used to compute the MAC; thus a MAC is unsuitable as evidence with a third party.
 - The third party does not have the secret.
 - The third party cannot distinguish between the parties knowing the secret.

Digital signatures can be validated by third parties, and can in theory thereby support both non-repudiation and authentication.

Key length comparison:

Symmetric and Asymmetric ciphers offering comparable security

AES Key Size	RSA Key Size	Elliptic curve Key Size
-	1024	163
128	3072	256
192	7680	384
256	15360	512

Ciphers and security

- A cipher must
 - be hard to cryptanalyseuse a sufficiently large key
- Algorithm secrecy makes cryptanalysis harder, but
 - can give false assurance,
 i.e. "security by obscurity"
 - challenging to keep cipher design confidential
 - safest to assume that attacker knows cipher

- Auguste Kerckhoffs proposed in 1883 that communication secrecy should only be based on the secrecy of the key
- Still, many organisations use secret algorithms.

Hopefully, you now know:

- What cryptography is
- When cryptography is used
- That there is a 'perfect' cipher, but that it has serious limitations
- That there are practical ciphers and how to use them
 - Symmetric ciphers (stream and block)
 - Asymmetric ciphers
- Hash and MAC functions and how to use them
- Hybrid cryptosystems and digital signatures