
INF3510 Information Security
Spring 2014

Lecture 4

Computer Security

University of Oslo

Audun Jøsang Audun Jøsang L04 - INF3510, UiO Spring 2014 2

Lecture Overview

Fundamental computer security concepts

CPU and OS kernel security mechanisms

Virtualization

Memory Protection

Trusted computing and TPM

Audun Jøsang L04 - INF3510, UiO Spring 2014 3Source: "LaGrande Architecture" presentation by David Grawrock, delivered at Intel Developer Forum, September
2003. http://www.intel.com/idf/us/fall2003/presentations/F03USSCMS18_OS.pdf

Meaningless transport defences when
endpoints are insecure

"Using encryption on the Internet is the equivalent of
arranging an armored car to deliver credit card
information from someone living in a cardboard box to

(Gene Spafford)

Audun Jøsang 4L04 - INF3510, UiO Spring 2014

Audun Jøsang L04 - INF3510, UiO Spring 2014 5

Approaches to strengthening platform security

Harden the operating system
SE (Security Enhanced) Linux, Trusted Solaris, Windows Vista/7/8

Add security features to the CPU
Protection Layers, NoExecute, ASLR

Virtualisation technology
Separates processes by separating virtual systems

Trusted Computing
Add secure hardware to the commodity platform

E.g. TPM (Trusted Platform Module)

Rely on secure hardware external to commodity platform
Smart cards

Hardware tokens

TCB Trusted Computing Base

The trusted computing base (TCB) of a computer system
is the set of all hardware, firmware, and/or software
components that are critical to its security, in the sense
that bugs or vulnerabilities occurring inside the TCB
might jeopardize the security properties of the entire
system.

By contrast, parts of a computer system outside the TCB
must not be able to breach the security policy and may
not get any more privileges than are granted to them in
accordance to the security policy

(TCSEC Trusted Computer Evaluation Criteria, 1985).

Audun Jøsang L04 - INF3510, UiO Spring 2014 6

Reference Monitor

Reference monitor is the security model for enforcing an
access control policy over subjects' (e.g., processes and
users) ability to perform operations (e.g., read and write)
on objects (e.g., files and sockets) on a system.

The reference monitor must always be invoked (complete
mediation).

The reference monitor must be tamperproof (tamperproof).

The reference monitor must be small enough to be subject to
analysis and tests, the completeness of which can be assured
(verifiable).

The security kernel of an OS is a low-level (close to the
hardware) implememtation of a reference monitor.

Audun Jøsang L04 - INF3510, UiO Spring 2014 7 L04 - INF3510, UiO Spring 2014

OS security kernel as reference monitor

Hierarchic security levels were introduced in
X86 CPU architecture in 1985 (Intel 80386)

4 ordered privilege levels
Ring 0: highest

Ring 3: lowest

Audun Jøsang 8

What happened to rings 1 & 2 ?

... it eventually became clear that the hierarchical
protection that rings provided did not closely match
the requirements of the system programmer and
gave little or no improvement on the simple system of
having two modes only. Rings of protection lent
themselves to efficient implementation in hardware,
but there was little else to be said for them. [...]. This
again proved a blind alley...

Maurice Wilkes (1994)

L04 - INF3510, UiO Spring 2014
9

Audun Jøsang

CPU Protection Ring structure from 2006

New Ring -1 introduced for virtualization.

Necessary for protecting hypervisor from
VMs (Virtual Machines) running in Ring 0.

Hypervisor controls VMs in Ring 0

Ring 0 is aka.: Supervisor Mode

Audun Jøsang L04 - INF3510, UiO Spring 2014 10

v-1

0

1

2

3Ring 3: User Mode

Ring 2: Not used

Ring 1: Not used

Ring 0: Kernel Mode (Unix root, Win. Adm.)

Ring -1: Hypervisor Mode

Privileged Instructions

programs.

The privileged instructions control system functions
(such as the loading of system registers). They can be
executed only when the Privilege Level is 0 or -1 (most
privileged).

If one of these instructions is attempted when the
Privilege Level is not 0 or -1, then a general-protection
exception (#GP) is generated, and the program crashes.

Audun Jøsang 11L04 - INF3510, UiO Spring 2014

Principle of protection ring model

A process can access and
modify any data and software
at the same or less privileged
level as itself.

A process that runs in kernel
mode (Ring 0) can access data
and SW in Rings 0, 1, 2 and 3

but not in Ring -1

The goal of attackers is to get
access to kernel or hypervisor
mode.

through exploits

by tricking users to install
software

Audun Jøsang L04 - INF3510, UiO Spring 2014 12

Ring 3

Ring 2

Ring 1

Ring 0

Ring -1

SW

DataSW

Data

Data

SW

SW

Data

SW

L04 - INF3510, UiO Spring 2014 13

User processes access to system resources

User processes need to access system resources
(memory and drivers)
User application processes should not access system
memory directly, because they could corrupt memory.
The CPU must restrict direct access to memory
segments and other resources depending on the
privilege level.

Question 1: How can a user process execute instructions
that require kernel mode, e.g. for writing to memory ?

Answer: The CPU must switch between privilege levels

Question 2: How should privilege levels be switched?
Answer: Through Controlled invocation of code segments

Audun Jøsang

Ring 3

Kernel
Code Segments

Code segment of
user process

Call Gate

Rings 1 & 2 (no code segments)

Ring 0

Ring -1

1

23

4

Hypervisor
Code Segments

Driver
Code Segments

Audun Jøsang L04 - INF3510, UiO Spring 2014 14

L04 - INF3510, UiO Spring 2014 15

Controlled Invocation

The user process executes code in specific code
segments.
Each code segment has an associated mode which
dictates the privilege level the code executes under.
Simply setting the mode of user process code to Kernel
would give kernel-privilege to user process without any
control of what the process actually does. Bad idea!
Instead, the CPU allows the user process to call kernel
code segments that only execute a predefined set of
instructions in kernel mode, and then returns control
back to the user-process code segment in user mode.
We refer to this mechanism as controlled invocation.

Audun Jøsang

Platform Virtualization

Virtual machines (VM)

A software implementation of a machine (OS) that
executes programs like a real machine (traditional OS)

Example:

Java Virtual Machine (JVM)
JVM accepts a form of computer intermediate language
commonly referred to as Jave bytecode.

The JVM translates the bytecode to executable code on the fly

Platform Virtualization
Simultaneous execution of multiple OSs on a single computer
hardware, so each OS becomes a virtual computing platform

Audun Jøsang L04 - INF3510, UiO Spring 2014 17

Platform Virtualization

Hypervisor (aka. VMM - Virtual Machine Monitor) is
needed to manage multiple guest OSs (virtual machines)
in the same hardware platform.

Many types of hypervisors available

VMWare is most known Commercial product

Free version comes with a limitations

VirtualBox is a hypervisor for x86 virtualization

It is freely availably under GPL

Runs on Windows, Linux, OS X and Solaris hosts

Hyper-

Requires Windows Server

Audun Jøsang L04 - INF3510, UiO Spring 2014 18

Type 2 VM Architecture (simple virtualization)

Host OS (e.g. Windows, Linux or Mac OS)

Hardware (X86 CPU from Intel or AMD)

Hypervisor

Guest OS VM
e.g. Linux

App.

Guest OS VM
e.g. Mac OS

Virtual
Machines

App. App. App.

App. App.

Hypervisor runs on top of host OS

Performance penalty, because hardware access goes through 2 OSs

Traditionally good GUI

Traditionally good HW support, because host OS drivers available

Audun Jøsang L04 - INF3510, UiO Spring 2014 19

Type 1 VM Architecture (advanced virtualization)

No host OS

Hypervisor runs directly on hardware

High performance

Traditionally limited GUI, but is improved in modern versions

HW support can be an issue

Hardware (X86 CPU from Intel or AMD)

Hypervisor

Guest OS VM
e.g. Linux

App.

Guest OS VM
e.g. Mac OS

Virtual
Machines

App. App. App.

Guest OS VM
e.g. Windows

App. App.

Audun Jøsang L04 - INF3510, UiO Spring 2014 20

Hardware

Hypervisor

Guest OS VM

App.

Guest OS VM

App. App. App.

VMs and Apps in a VM must
not know that Hypervisor
exists or that they share HW
resources with other VMs

Hypervisor must protected itself
from all VMs

memory areas from each other

Hypervisor must present virtual
hardware interface to VMs

Audun Jøsang L04 - INF3510, UiO Spring 2014 21

Guest OS VMs run in Ring 3.
Guest OS VMs call privileged instructions that are forbidden in Ring 3.
Forbidden instructions cause exceptions that are handled by
interrupt/exception handler to be executed.
Slow performance !

Ring 3

Host OS

Hardware

Hypervisor

Guest OS VM

App. App.App. App.

Ring 0

Run VMs in Ring 3

Run Hypervisor in Ring 3

Run Host OS in Ring 0

Guest OS VM

Audun Jøsang L04 - INF3510, UiO Spring 2014 22

Guest OS VMs are less privileged than the hypervisor.
Hypervisor is well protected from the VMs.
Good security !

Ring 3

Ring 0

Hardware

Hypervisor

Guest OS VM

App.

Guest OS VM

App. App. App.

Ring -1

Run VMs in Ring 0

Run Hypervisor in Ring -1

Audun Jøsang L04 - INF3510, UiO Spring 2014 23

Modern Intel and AMD X86 CPUs support virtualization
Intel-VT (Intel Virtualization Technology)
AMD-V (AMD Virtualization)

Must be enabled in BIOS
Can be enabled and disabled
Computers with single OS typically have virtualization disabled

Access to data- and code segments for hypervisor can
be restricted to processes running in hypervisor mode
Some instructions are reserved for hypervisor mode

Intel Core i7 CPU
AMD Phenom CPU

Audun Jøsang L04 - INF3510, UiO Spring 2014 24

Why use platform virtualization
Efficient use of hardware and resources

Improved management and resource utilization

Saves energy

Improved security
Malware can only infect the VM

Safe testing and analysis of malware

Isolates VMs from each other

Distributed applications bundled with OS
Allows optimal combination of OS and application

Ideal for cloud services

Powerful debugging
Snapshot of the current state of the OS

Step through program and OS execution

Reset system state

Audun Jøsang 25L04 - INF3510, UiO Spring 2014

Hypervisor examples of use

Cloud providers run large server parks
Each customer gets its own VM

Many customers share the same hardware

Migrated VMs between servers to
increase/reduce capacity

Testing and software analysis
Potentially damaging experiments can be
executed in isolated environment

Take a snapshot of the current state of the OS

Use this later on to reset the system to that state

Malware Analysis

Audun Jøsang L04 - INF3510, UiO Spring 2014 26

Google data center

Memory Protection

Buffer overflow

A program tries to store more data in a buffer than it was
intended to hold.

Example:
Assume a 5 bytes buffer to store a variable in memory:

Write10 bytes to buffer, then 5 extra bytes get overwritten

If the overwritten part contained a return pointer or software, it is
possible for the attacker to execute his own instructions.

Many attacks are based on buffer overflow techniques

Audun Jøsang L04 - INF3510, UiO Spring 2014 28

a b c d e f g h i j

Buffer Overflow
Buffer overflow is when written data size > buffer size

Results in neighbouring buffers being overwritten

Unintentional buffer overflow crashes software, and
results in unreliability software.

Intentional buffer overflow is when an attacker
modifies specific data in memory to execute malware

Attackers target return addresses (specify the next
piece of code to be executed) and security settings.

In languages like C or C++ the programmer allocates
and de-allocates memory.

Type-safe languages like Java guarantee that
-

Audun Jøsang

29L04 - INF3510, UiO Spring 2014

Memory corruption and buffer overflow

The stack contains memory buffers that
hold return address, local variables and
function arguments. It is possible to
decide in advance where a particular
buffer will be placed on the stack.

Heap: dynamically allocated memory;
more difficult but not impossible to
decide in advance where a particular
buffer will be placed on the heap.

BSS: Block Segment of Static Variables

stack

heap

free
memory

0000

FFFF

Audun Jøsang 30L04 - INF3510, UiO Spring 2014

code seg
data seg

BSS

free memory

Stack Frame Layout

argument n
.
.
.

argument 1

local
variables

saved RBP
saved RIP

Saved RIP (Instruction Pointer)
(return address) (EIP in 32 CPU)

Saved RBP (Base Pointer)
(reference point for relative
addressing, a.k.a. frame pointer)
(EBP in 32 bit CPU)

Audun Jøsang 31L04 - INF3510, UiO Spring 2014

Inputs to function

Local variables stored in memory
buffers (ranges) of specific sizes.

stack
gro

w
th

High address

Low address

previous frame

C
urre

n
t stack fram

e

Stack-based Overflows
Find a buffer on the runtime stack that can overflow.

Overwrite the return address with the start address of
the code you want to execute.

The code can also be injected by overflowing buffers.

You can now execute your own code.

Attacker
writes to A:

Audun Jøsang 32L04 - INF3510, UiO Spring 2014

w
rit

in
g

d
ire

ct
io

n

High address

Low address

High address

Low address

Stacke frame before attack Stacke frame after attack

S. RIP

S. RBP

A

return
address

buffer for
variable A

Defences against memory corruption
Hardware mechanisms

NX (No eXecute) bit/flag in stack memory
Injected attacker code will not execute on stack

OS / compiler mechanisms

Stack cookies: detects corruption at runtime

ASLR (Address Space Layout Randomization)
Makes it difficult to locate functions in memory

Programming language

Type safe languages like Java and C#

Programming rules

Avoid vulnerable functions like
strcpy (use strncpy instead)

gets (use fgets instead)

Audun Jøsang 33L04 - INF3510, UiO Spring 2014

NX stops

An attacker supplying his own shell code

and executing it, results in

Audun Jøsang 34L04 - INF3510, UiO Spring 2014

Stack cookies (canaries)

Stack cookies are integrity values to
detect overflow of saved RIP

Compiler adds code to start (Prolog)
and to end (Epilog) of every function.

Prolog and epilog code is generated
at compile-time.

During run-time Prolog pushes cookie
value to stack frame after saved RIP.

Attacker can not guess cookie value.

Buffer overflow destroys cookie.

Epilog verifies correct cookie, or
detects when cookie is destroyed.

Audun Jøsang 35L04 - INF3510, UiO Spring 2014

Stack Cookie explained
A cookie integrity check value is computed by OS

Prolog pushes cookie onto stack frame after saved RIP/RBP.

Before returning from function, epilog checks cookie.

Exception if cookie value is different from original value.

Disadvantage of stack cookies: Computation overhead.

High address

Low address

High address

Low address

Stacke frame with Cookie Overflowed buffer and cookie

Saved RIP

Saved RBP

Cookie value

A

Return
address

Cookie value
pushed to stack
by Prolog

Vulnerable
buffer for A

Epilog pops
cookie and throws
exception when
not as expected

Audun Jøsang 36L04 - INF3510, UiO Spring 2014

Non executable memory

Run time mechanism

Utilizes CPU support for NX/XD for marking memory
pages RWX

Hypotesis: A writable page should not need to be
executable

Is this always true?

Audun Jøsang 37L04 - INF3510, UiO Spring 2014

NX stops

An attacker supplying his own shell code

and executing it, results in

Audun Jøsang 38L04 - INF3510, UiO Spring 2014

Address Space Layout Randomization (ASLR)

Traditionally all elements in the process memory has
been loaded at predictable fixed addresses

Fixed addresses can be exploited in buffer overflow
attacks by jumping to specific existing functions

ASLR causes elements to be loaded at random
addresses

ASLR makes it difficult (impossible) for attackers to
know where exploitable functions are located in
memory

Audun Jøsang 39L04 - INF3510, UiO Spring 2014

ASLR illustrated

Audun Jøsang 40L04 - INF3510, UiO Spring 2014

ASLR limitations

ALL libraries must be ASLR-enabled

Shellcode spraying is indifferent to layout

Attacks relying on relative addressing

It maybe possible to find non-randomized addresses

Information leakage can reveal address to one
specific libc module.

ROP (Return-Oriented Programming) and JOP
(Jump-Oriented Programming) possible with only one
static libc code module

Audun Jøsang 41L04 - INF3510, UiO Spring 2014

Trusted Computing

Audun Jøsang L04 - INF3510, UiO Spring 2014 43

Trusted Computing: Basic idea

Addition of security hardware functionality to a computer
system to compensate for insecure software

Enables external entities to have increased level of trust
that the system will perform as expected/specified

Trusted platform = a computing platform with a secure
hardware component that forms a security foundation for
software processes

Trusted Computing = computing on a Trusted Platform

Audun Jøsang L04 - INF3510, UiO Spring 2014 44

Trusted Hardware Examples

iButton

Smart CardFortezza PC Card

IBM 4764

TPM Chip

BankID OTP token

Audun Jøsang L04 - INF3510, UiO Spring 2014 45

Characteristics of Trusted Hardware

Physically secure module, two variants
Tamper resistant (difficult to penetrate physical protection)
Tamper proof (detection of physical penetration, self-destruction)

Environmental monitoring (temperature, power supply,
structural integrity)
Optimized hardware support for cryptography
I/O interface
Secure manufacturing
Secure customization

Trusted Computing Group (TCG)

... and many others.

Audun Jøsang L04 - INF3510, UiO Spring 2014 46

TCG History & Evolution

October 1999: TCPA formed
Trusted Computing Platform Alliance
Founders: IBM, HP, Compaq, Intel and Microsoft

2001: 1st TPM specification released
Trusted Platform Module

2002: TCPA changes its name to TCG
Trusted Computing Group
Incorporated not-for-profit industry standards organization

2003: TCPA TPM spec. adopted by TCG as TPM 1.2
2012: Draft TPM Specification 2.0 published
2014: Still draft TPM specification 2.0

Audun Jøsang L04 - INF3510, UiO Spring 2014 47

TPM usage
TPM is both the name of a standard and a chip
TPM chip at the heart of hardware / software
approach to trusted computing

Current TPM chips implement TPM spec. 1.2
Latest version of TPM spec. 1.2 is from 2011

TPM chip mounted on motherboard,

TPM equipped computing platforms
Laptops, servers, pads, mobile phones

Used by software platforms
Windows Vista / 7 / 8, Linux, and MAC OS

Supports 3 basic services:
Authenticated/Secure boot,
Sealed Storage / Encryption
Remote attestation,

Audun Jøsang L04 - INF3510, UiO Spring 2014 48

TPM supports two modes of booting

Secure boot
The platform owner can define expected (trusted)
measurements (hash values) of OS software modules.

Expected values are stored in special non-volatile
PCR (Platform Configuration Registers) in the TPM.

Matching measurement values guarantee the integrity
of the corresponding software modules.

If a measurement does not match the expected value
for that stage of the boot process, TPM can signal a
boot termination request.

Authenticated boot
does not terminate boot, only check measured values
against expected values from PCR, and records new
values in PCRs

Audun Jøsang L04 - INF3510, UiO Spring 2014 49

Sealed Storage / Encryption

Encrypts data so it can be decrypted
by a certain machine in given configuration

Depends on
master secret key unique to machine
used to generate secret encryption key for every possible
configuration only usable in it

Can also extend this scheme upward
create application key for desired application version running on
desired system version

Supports disk encryption

Audun Jøsang L04 - INF3510, UiO Spring 2014 50

Remote Attestation

TPM can certify configuration to others
with a digital certificate of configuration info

giving another user confidence in it

Based on endorsement credential and identity credential

Include current challenge value in certificate to
also ensure attestation is fresh

Provides hierarchical certification approach
trust TPM, then OS, then applications

Audun Jøsang L04 - INF3510, UiO Spring 2014 51

TPM Platform Identity

Endorsement Key pair :
Public/private key pair generated during manufacture
Uniquely identifies each TPM
Optional support for EK reset
TPM can not export private part of endorsement key

Endorsement Credential:
Certificate used to prove to external systems that
they communicate with a genuine TPM
Anonymous, can not be used to identify unique TPM
Used for remote attestation

Identity Credentials:
Derived from EK

Used for remote attestation

Endorsement
key pair

Genuine and
Anonymous

TPM

Genuine and
Unique
TPM

Audun Jøsang L04 - INF3510, UiO Spring 2014 52

Public/Private

TPM 1.2 hardware elements

Audun Jøsang
L04 - INF3510, UiO Spring 2014

53

TPM Disadvantages
TPM security functions depend on measurement (hash)
values stored in PCR registers.

Changes in system configuration can lead to
measurements no longer matching PCR values.

E.g. patching and updates

Non-matching measurement values can lead to:
booting no longer possible,

encrypted data not recoverable, data loss.

Secure boot of pre-installed OS makes it difficult or
impossible to install a new OS

Unfair market power

Software integrity protection based on TPM does not
protect against infection during run-time

But infection might be detected during next system boot.
Audun Jøsang L04 - INF3510, UiO Spring 2014 54

Malware is able to start before Windows 7 and Anti-malware
Malware able to hide and remain undetected
Systems can be completely compromised

Possible to start anti-malware early in the Windows 8 boot process
Early Launch Anti-Malware (ELAM) driver is signed by Microsoft
Malware can no longer bypass Anti-Malware inspection
UEFI (Unified Extensible Firmware Interface) replaces BIOS

Windows 7 boot

BIOS Win 7 OS
(vulnerable)

3rd party
drivers

(vulnerable)

Anti-
malware

Windows
logon

Windows 8 boot

UEFI
Win 8 OS

(measured)
Anti-malware
(measured)

3rd party
drivers

Windows
logon

TPM Secure Boot in Windows 8

Audun Jøsang L04 - INF3510, UiO Spring 2014 55

End of lecture

Audun Jøsang 56L04 - INF3510, UiO Spring 2014

