INF3510 Information Security

Lecture 01:

- Course info
- Basic concepts in information security

Course information

- Course organization
- Prerequisites
- Syllabus and text book
- Lecture plan
- Home exam
- Assessment and exams
- Security education
- AFSecurity

Course organisation

- Course activities
 - Attend 2 hours lectures per week
 - Lecture notes available at least one day prior to lecture
 - Work on the workshop questions
 - Will be discussed during the following week's workshop which follows immediately after the 2-hour lecture
 - Work on the home exam
 - Topic for the assignment can be freely chosen.
- Not just about facts, you also need to
 - understand concepts
 - apply those concepts
 - think about implications
 - understand limitations

Course Resources

- Learning material will be made available on:
 - http://www.uio.no/studier/emner/matnat/ifi/INF3510/v14/
 - lecture presentations, workshop questions, etc.
 - List of English security terms translated to Norwegian
- Assignment topic for home exam on:
 - https://wiki.uio.no/mn/ifi/INF3510-2014
- Various online resources
 - E.g. NIST special computer security publications http://csrc.nist.gov/publications/PubsSPs.html

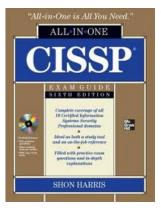
Lecturer

- Prof. Audun Jøsang,
- Education
 - Baccalaureat, Lycée Corneille, France, 1981
 - BSc Telematics, NTH 1987
 - MSc Information Security, Royal Holloway College, London, 1993
 - PhD Information Security, NTNU, 1998
 - CISSP 2005, CISM 2010,

Work

- System design engineer, Alcatel, Belgium 1988-1992
- Associate Professor, NTNU, 1998-1999
- Research Leader, DSTC, Australia 2000-2004
- Associate Professor, QUT, Australia, 2005-2007
- Professor, UiO, 2008 →

Prerequisites


- Prerequisites
 - Basic computer and network technology
 - Basic mathematics
- Theoretic focus on a basic level
 - Discrete mathematics, number theory, modular arithmetic
 - Information theory
 - Probability calculus
 - Computer and network architecture

Syllabus and text book

- The syllabus for this course consists of the material presented during the lectures, as described in the lecture notes.
- Adequate comprehension of the material requires that you also
 - read parts of the text book and other documents
 - work out answers to the workshop questions
 - follow the lectures.
- Text book: CISSP All-in-One Exam Guide

6th Edition, 2013

Author: Shon Harris

Shon Harris

- The book covers the 10 CBK domains (Common Body of Knowledge) for the CISSP Exam (Certified Information Systems Security Professional).
- Easy to order book from amazon.com, price: US\$ 50
 http://www.amazon.com/CISSP-All-One-Guide-Edition/dp/0071781749

How to use Harris' CISSP book (6th ed.)

- 1430 pages in total
 - But exclude
 - Ch.1 (Becoming a CISSP)
 - 50 pages of appendix, glossary and index
 - 300 pages of tips, Q&A
 - Parts of chapters
 - Around 800 pages of readable material
 - The book is very easy to read ☺
 - Sometimes long explanations and examples ☺
- Each chapter has Main Sections (big font) and
 Subsections (small font), but no numbering, a bit confusing.
- Don't read distracting comments in italics under section titles

Week	Date	#	Topic			
W03	16.01.2014	1	Course Information. Basic Concepts in IS			
W04	23.01.2014	2	IS Management, Human Factors for IS			
W05	30.01.2014	3	Risk Management and Business Continuity Planning			
W06	06.02.2014	4	Computer Security			
W07	13.02.2014	5	Cryptography			
W08	Winter break					
W09	27.02.2014	6	Key Management and PKI			
W10	06.03.2014	7	Digital Forensics			
W11	13.03.2014	8	User Authentication			
W12	20.03.2014	9	Identity Management and Access Control			
W13	27.03.2014	10	Network Security			
W14	03.04.2014	11	Network Perimeter Security			
W15	10.04.2014	12	Operations Security and Cyber Warfare			
W16	Easter break					
W17	24.04.2013	13	Security applications			
W18	No lecture					
W19	No lecture					
W20	No lecture					
W21	22.05.2014	Review				
W22	No lecture					
W23	03.06.2014	Exam time: 09:00h - 13:00h (4 hours)				

Home Exam

- Write an essay on a security topic chosen by you
- Individual, or in group of 2 or 3 students
- Select topic and specify group on wiki https://wiki.uio.no/mn/ifi/INF3510-2014/
- Length: 5000 10000 words (approx. 10 15 pages)
- Due date: 14.05.2014
- Assessment criteria:
 - Structure and presentation: weight ¼
 - Scope and depth of content: weight ¼
 - Evidence of independent research and analysis: weight ¼
 - Proper use of references: weight ¼

Assessment and Marking

- Course weight: 10 study points
- Assessment items:
 - Home exam: weight 0.4
 - Written exam: weight 0.6
- Required to get a pass score on both assessment items
 - At least 40% on home exam and 40% on written exam
 - Relatively easy to get a high score on home exam
 - Relatively difficult to get a high score on written exam
- Academic dishonesty (including plagiarism and cheating) is actively discouraged
 - See: http://www.uio.no/english/studies/admin/examinations/cheating/
 - Should be no problem ©

Statistics from previous exams

Year	# students	# A (%)	# B (%)	# C (%)	# D (%)	# E (%)	# F (%)		
2010	58	1 (2%)	15 (26%)	25 (43%)	7 (12%)	3 (5%)	7 (12%)		
2011	70	1 (2%)	10 (14%)	33 (47%)	9 (13%)	10 (14%)	7 (10%)		
2012	34	2 (6%)	6 (18%)	14 (41%)	0 (0.0%)	6 (17.5%)	6 (17.5%)		
2013	1 ()	For the 2013 spring semester the course was cancelled due to university politics.							

Other security courses at UiO

- UNIK4220 Introduction to Cryptography (autumn)
 - Leif Nilsen (Thales)
- UNIK4250 Security in Distributed Systems (spring)
 - Josef Noll (IfI)
- UNIK4270 Security in Operating Systems and Software (autumn)
 - Audun Jøsang (IfI)
- INF5150 Unassailable IT-systems (autumn)
 - Ketil Stølen (SINTEF)
- ITLED4230 Ledelse av informasjonssikkerhet (autumn)
 - Audun Jøsang
 - Only for professionals (fee NOK 25K)

Why study information security?

- Being an IT expert requires knowledge about IT security
 - Imagine architects without knowledge about fire safety
- Building IT systems without considering security will lead to vulnerable IT systems
- Our IT infrastructure is vulnerable to cyber attacks
- If you are an IT expert without security skills you are part of the problem!
- Learn about IT security to become part of the solution
- Information security is a political issue
 - Increased cost in short term, but saves costs in long term
 - Must compete with other disciplines in IT industry and education

Certifications for IS Professionals

- Many different types of certifications available
 - vendor neutral or vendor specific
 - from non-profit organisations or commercial for-profit organisations
- Certification gives assurance of knowledge and skills,
 - needed in job functions
 - gives credibility for consultants, applying for jobs, for promotion
- Sometimes required
 - US Government IT Security jobs
- Knowledge domains reflect current topics in IT Security
 - Generally kept up-to-date

ISACA Certifications

(Information Systems Audit and Control Association)

- ISACA provides certification for IT professionals
 - CISM Certified Information Security Manager
 - CISA Certified Information System Auditor
 - CGIT Certified in the Governance of Enterprise IT
 - CRSIC Certified in Risk and Information Systems Control
- CISM is the most popular ISACA security certification
- IT auditors and consultants commonly have ISACA certifications
- ISACA promotes IT governance framework COBIT (Control Objectives for Information and Related Technologies)

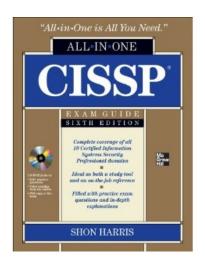
CISM: Certified Information Security Manager

- Focuses on 4 domains of IS management
 - 1. Information Security Governance
 - 2. Information Risk Management
 - 3. Information Security Program Development and Management
 - 4. Information Security Incident Management
- Official prep manual published by ISACA
 - https://www.isaca.org/bookstore/Price: US \$115 (\$85 for ISACA members)
 - https://www.isaca.org/bookstore/Pages/CISM-Exam-Resources.aspx

CISM Exam

- Exams normally twice per year worldwide
 - also in Oslo
- Multiple choice questions
- Register for exam at www.isaca.org
 - Exam fee approx. US \$500
 - Requires 5 years professional experience
 - Yearly CISM maintenance fee approx. US \$100
 - Requires 120 hours "practice time" per 3 years

(ISC)² Certifications


International Information Systems Security Certification Consortium

- (ISC)² provides certification for information security professionals
 - CISSP Certified Information Systems Security Professional
 - ISSAP Information Systems Security Architecture Professional
 - ISSMP Information Systems Security Management Professional
 - ISSEP Information Systems Security Engineering Professional
 - CAP Certification and Accreditation Professional
 - SSCP Systems Security Certified Practitioner
 - CSSLP Certified Secure Software Lifecycle Professional
- CISSP is the most common IT security certification
 - Most IT Security Consultants are CISSP

CISSP Exam: Certified Information System Security Professional

- Many different books to prepare for CISSP exam
- e.g. text book used for INF3510 course

CISSP All-in-One Exam Guide 6th Edition, 2013 Author: Shon Harris

- € 560 fee to sit CISSP exam.
- Exam every Tuesday, Kompetansehuset Imente, Drammen
- By appointment through http://www.pearsonvue.com/isc2/
- Most of the of the material presented in the INF3510 course is taken from the syllabus of the CISSP CBK (Common Body of Knowledge).

CISSP CBK (Common Body of Knowledge)

- Access Control (user authentication and identity management)
- Telecommunications and Network Security
- 3. Information Security
 Management and Risk
 Management
- 4. Application Security (software security)
- 5. Cryptography

- 6. Security Architecture and Design (computer security)
- 7. Operations Security
- 8. Business Continuity
 Planning and Disaster
 Recovery Planning
- Legal Regulations,
 Compliance and
 Investigation (forensics)
- 10. Physical and Environmental Security

Security Surveys

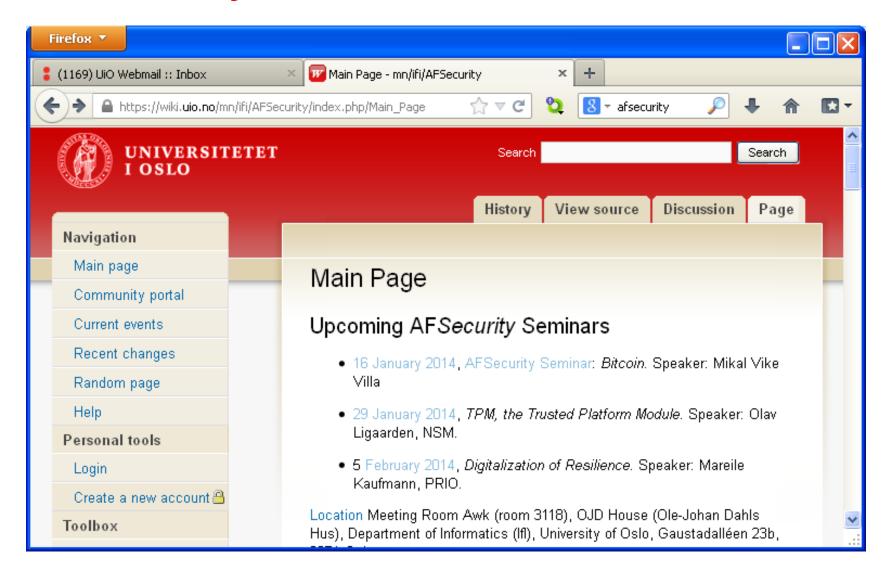
- Useful for knowing the trend and current state of information security threats and attacks
 - CSI Computer Crime & Security Survey (http://gocsi.com/survey)
 - Verizon Data Breach Report:
 http://www.verizonenterprise.com/resources/reports/es_data-breach-investigations-report-2013_en_xg.pdf
 - PWC: http://www.pwc.com/gx/en/consulting-services/information-security-survey/
 - US IC3 (The Internet Crime Complaint Center):
 http://www.ic3.gov/media/annualreports.aspx
 - Mørketallsundersøkelsen; http://www.nsr-org.no/moerketall/
 - + many others

Security Advisories

- Useful for learning about new threats and vulnerabilities
 - NorCERT: For government sector: https://www.nsm.stat.no/
 - NorSIS: For private sector: http://www.norsis.no/
 - US CERT: http://www.cert.org/
 - Australia AusCERT: http://www.auscert.org.au/

+ many others

Academic Forum on Security


- Monthly seminar on information security
- https://wiki.uio.no/mn/ifi/AFSecurity/
- Guest speakers
- Next AFSecurity:
 - Thursday 16 January 2014, 14:00h
 - Topic: Bitcoin
 - Speaker: Mikal Vike Villa,
 - independent security expert
- All interested are welcome!

AFSecurity

https://wiki.uio.no/mn/ifi/AFSecurity/

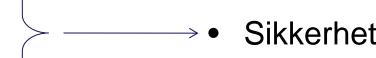
Information Security Basic Concepts

Good and bad translation

English

Norwegian

- Security
- Safety
- Certainty


- - Trygghet

Sikkerhet

Visshet

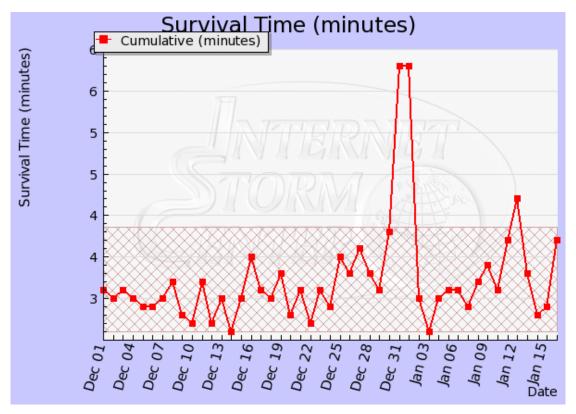
- Security
- Safety
- Certainty

What is security in general

- Security is about protecting assets from damage or harm
- Focuses on all types of assets
 - Example: your body, possessions, the environment, the nation
- Security and related concepts
 - National security (political stability)
 - Safety (health)
 - Environmental security (clean environment)
 - Information security
 - etc.

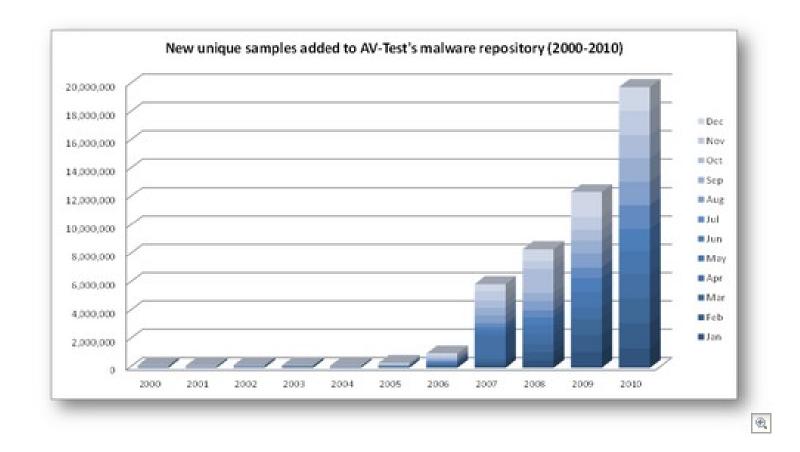
What is *Information* Security

- Information Security focuses on protecting information assets from damage or harm
- What are the assets to be protected?
 - Example: data files, software, IT equipment and infrastructure
- Covers both intentional and accidental events
 - Threat agents can be people or acts of nature
 - People can cause harm by accident or by intent
- Information Security defined:
 - The preservation of confidentiality, integrity and availability of information; in addition, other properties such as authenticity, accountability, non-repudiation and reliability can also be involved. (ISO27001)


Scope of information security

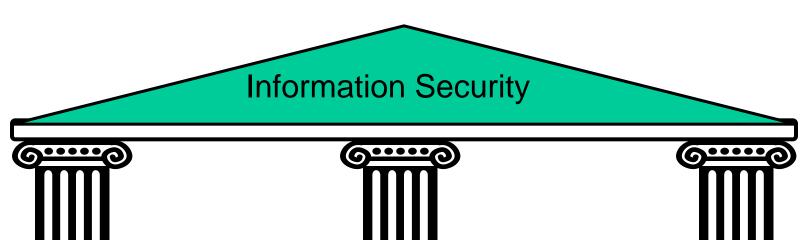
- IS management has as goal to avoid damage and to control risk of damage to information assets
- IS management focuses on:
 - Understanding threats and vulnerabilities
 - Managing threats by reducing vulnerabilities or threat exposures
 - Detection of attacks and recovery from attacks
 - Investigate and collect evidence about incidents (forensics)

The Need for Information Security


- Why not simply solve all security problems once for all?
- Reasons why that's impossible:
 - Rapid innovation constantly generates new technology with new vulnerabilities
 - More activities go online
 - Crime follows the money
 - Information security is a second thought when developing IT
 - New and changing threats
 - More effective and efficient attack technique and tools are being developed
- Conclusion: Information security doesn't have a final goal, it's a continuing process

Internet Storm Survival Time Measure

The survival time is calculated as the average time between attacks against average target IP address. http://isc.sans.org/survivaltime.html


Malware Trend

National Security

- Many critical components of nations depend on IT
 - Critical Infrastructure Protection (CIP)
- Many IT systems are by themselves critical components
 - Critical Information Infrastructure Protection (CIIP)
- The accumulated set of non-critical systems (e.g. servers and networks in SMEs) becomes critical
- IT systems are both targets and weapons of attack in industrial, political and international conflicts
- The vulnerability of the critical information structure is worrisome and needs attention

Security control categories

Physical controls

- Facility protection
- Security guards
- Locks
- Monitoring
- •Environmental controls
- Intrusion detection

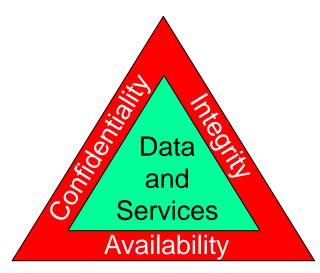
Technical controls

- Logical access control
- Cryptographic controls
- Security devices
- User authentication
- Intrusion detection
- Forensics

Administrative controls

- Policies
- Standards
- Procedures & practice
- Personnel screening
- Awareness training

Security control functional types


- Preventive controls:
 - prevent attempts to exploit vulnerabilities
 - Example: encryption of files
- Detective controls:
 - warn of attempts to exploit vulnerabilities
 - Example: Intrusion detection systems (IDS)
- Corrective controls:
 - correct errors or irregularities that have been detected.
 - Example: Restoring all applications from the last known good image to bring a corrupted system back online
- Use a combination of controls to help ensure that the organisational processes, people, and technology operate within prescribed bounds.

Information States

- Information security involves protecting information assets from harm or damage.
- Information is considered in one of three possible states:
 - Storage
 - Information storage containers electronic, physical, human
 - Transmission
 - Physical or electronic
 - Processing (use)
 - Physical or electronic
- Security controls for all information states are needed

Security Services and Properties

- A security service is a high level security property
- The traditional definition of information security is to preserve the three CIA properties for data and services:
 - Confidentiality:
 - <u>Integrity</u>
 - Availability:

The CIA properties are the three main security services

Security services and controls

- Security services (aka. goals or properties)
 - implementation independent
 - supported by specific controls
- Security controls (aka. mechanisms)
 - Practical mechanisms, actions, tools or procedures that are used to provide security services

Security services:

e.g. Confidentiality - Integrity - Availability

Security controls:

e.g. Encryption – Firewalls – Awareness

Confidentiality

- The property that information is not made available or disclosed to unauthorized individuals, entities, or processes. (ISO 27001)
- Can be divided into:
 - Secrecy: Protecting business data
 - Privacy: Protecting personal data
 - Anonymity: Hide who is engaging in what actions
- Main threat: Information theft
- Controls: Encryption, Access Control, Perimeter defence

Integrity

- Data Integrity: The property that data has not been altered or destroyed in an unauthorized manner. (X.800)
- System Integrity: The property of safeguarding the accuracy and completeness of assets (ISO 27001)
- Main threat: Data and system corruption
- Controls:
 - Cryptographic integrity check,
 - Encryption,
 - Access Control
 - Perimeter defence
 - Audit
 - Verification of systems and applications

Availability

- The property of being accessible and usable upon demand by an authorized entity. (ISO 27001)
- Main threat: Denial of Service (DoS)
 - The prevention of authorized access to resources or the delaying of time critical operations
- Controls: Redundancy of resources, traffic filtering, incident recovery, international collaboration and policing

Authenticity (Security Service)

The CIA properties are quite general security services.

Other security services are often mentioned.

Authentication is very important, with various types:

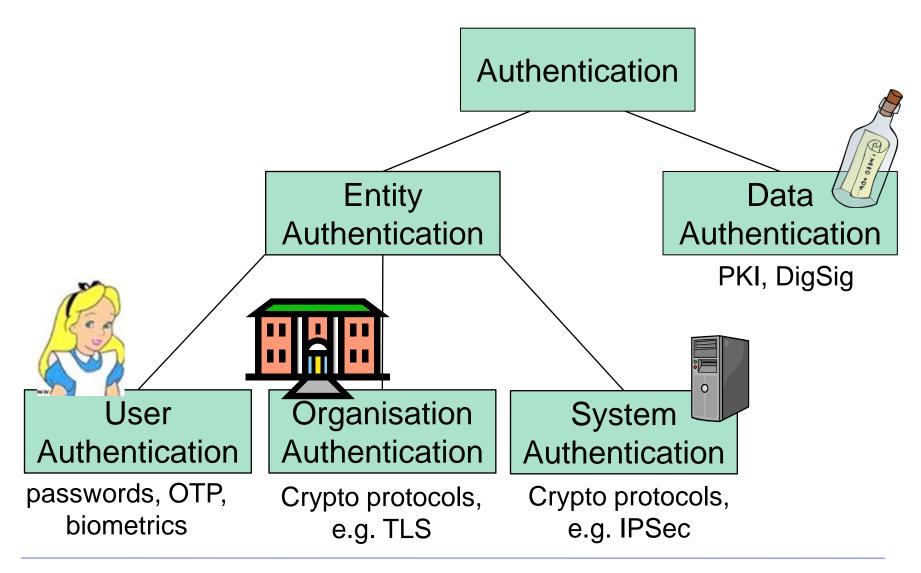
User authentication:

 The process of verifying a claimed identity of a (legal) user when accessing a system or an application.

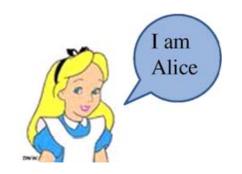
Organisation authentication:

The process of verifying a claimed identity of a (legal) organisation in an online interaction/session

System authentication (peer entity authentication):


 The corroboration (verification) that a peer entity (system) in an association (connection, session) is the one claimed (X.800).

Data origin authentication (message authentication):


 The corroboration (verification) that the source of data received is as claimed (X.800).

Taxonomy of Authentication

User Identification and Authentication

- Identification
 - Who you claim to be
 - Method: (user)name, biometrics
- User authentication
 - Prove that you are the one you claim to be
- Main threat: Unauthorized access
- Controls:
 - Passwords,
 - Personal cryptographic tokens,
 - OTP generators, etc.
 - Biometrics
 - Id cards
 - Cryptographic security/authentication protocols

Authentication token

System Authentication

Host A

- Goal
 - Establish the correct identity of remote hosts
- Main threat:
 - Network intrusion
 - Masquerading attacks,
 - Replay attacks
 - (D)DOS attacks
- Controls:
 - Cryptographic authentication protocols based on hashing and encryption algorithms
 - Examples: TLS, VPN, IPSEC

Host B

Data Origin Authentication (Message authentication)

- Goal: Recipient of a message (i.e. data) can verify the correctness of claimed sender identity
 - But 3rd party may not be able to verify it
- Main threats:
 - False transactions
 - False messages and data
- Controls:
 - Encryption with shared secret key
 - MAC (Message Authentication Code)
 - Security protocols
 - Digital signature with private key
 - Electronic signature,
 - i.e. any digital evidence

Accountability

(Security Service)

- Goal: Trace action to a specific user and hold them responsible
 - Audit information must be selectively kept and protected so that actions affecting security can be traced to the responsible party (TCSEC/Orange Book)

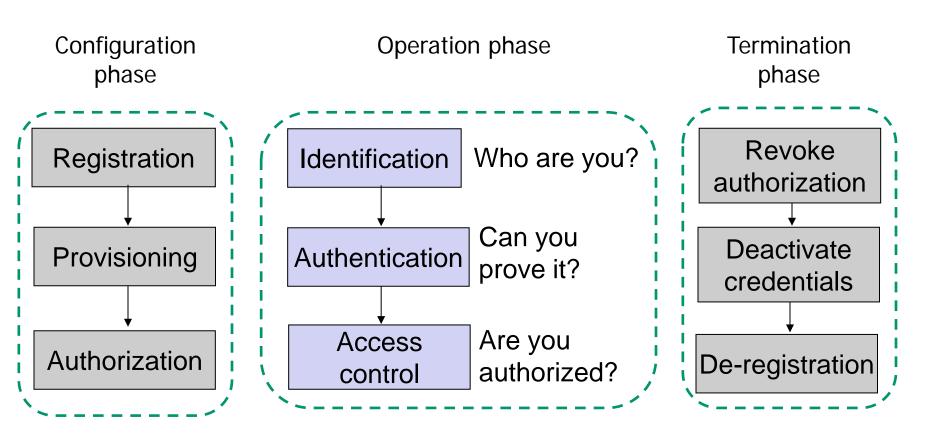
Main threats:

- Inability to identify source of incident
- Inability to make attacker responsible

Controls:

- Identify and authenticate users
- Log all system events (audit)
- Electronic signature
- Non-repudiation based on digital signature
- Forensics

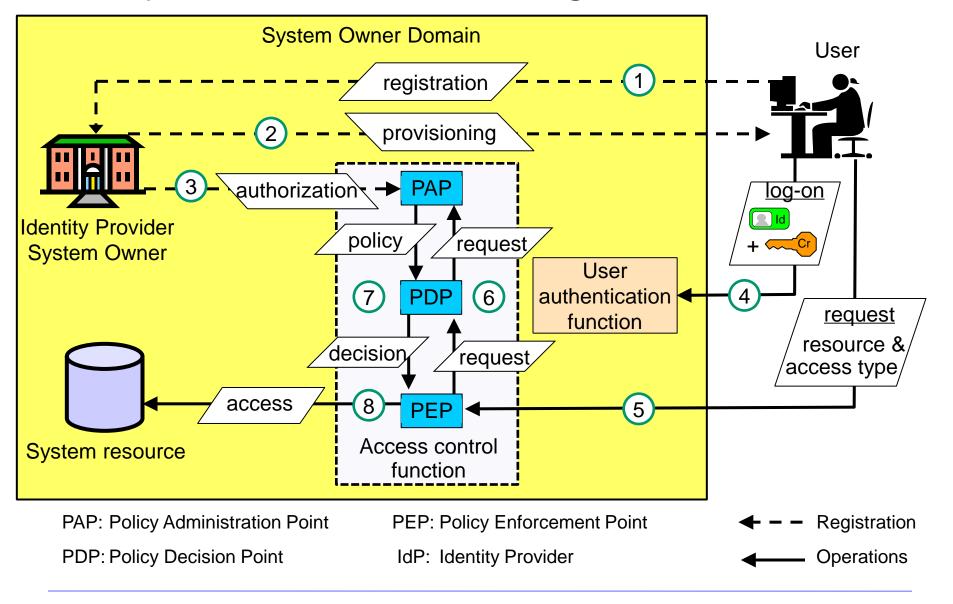
Non-Repudiation


(Security Service)

- Goal: Making sending and receiving messages undeniable through unforgible evidence.
 - Non-repudiation of origin: proof that data was sent.
 - Non-repudiation of delivery: proof that data was received.
 - NB: imprecise interpretation: Has a message been received and read just because it has been delivered to your mailbox?
- Main threats:
 - Sender falsely denying having sent message
 - Recipient falsely denying having received message
- Control: digital signature
 - Cryptographic evidence that can be confirmed by a third party
- Data origin authentication and non-repudiation are similar
 - Data origin authentication only provides proof to recipient party
 - Non-repudiation also provides proof to third parties

Authorization

- Authorization is to specify access and usage permissions for entities, roles or processes
 - Authorization policy normally defined by humans
 - Issued by an authority within the domain/organisation
- Authority can be delegated
 - Management → Sys.Admin
 - Implemented in IT systems as configuration/policy
- Beware of confusion (also in Harris text book):
 - Correct: Harris 6th ed. p.161: "A user may be authorized to access the files on the file server, but until she is properly identified and authenticated, those resources are out of reach."
 - Wrong: Harris 6th ed. p.161: "If the system determines that the subject may access the resource, it authorizes the subject".


Identity and Access Management (IAM) Phases

Confusion about Authorization

- The term "authorization" is often wrongly used in the sense of "access control"
 - e.g. "If the system determines that the subject may access the resource, it authorizes the subject" (e.g. Harris 6th ed. p.161)
 - Common in text books and technical specifications (RFC 2196 ...)
 - Cisco AAA Server (Authentication, Authorization and Accounting)
- Wrong usage of "authorization" leads to absurd situations:
 - 1. You get somebody's password, and uses it to access account
 - 2. Login screen gives warning: "Only authorized users may access this system"
 - 3. You are caught and taken to court
 - 4. You say: "The text book at university said I was authorized if the system granted access, which it did, so I was authorized"

Identity and Access Management Concepts

End of lecture