INF3510 Information Security

Lecture 10: Communications Security

Audun Jøsang

University of Oslo Spring 2014

Outline

- Network security concepts
 - Communication security
 - Perimeter security
- Protocol architecture and security services
- Example security protocols
 - Transport Layer Security (TLS)
 - IP Layer Security (IPSec)

The Internet provider hierarchy

Network Security Concepts

Assumes that each organisation owns a network

- Wants to protect own local network
- Wants to protect communication with other networks

Network Security: two main areas

- Communication Security: measures to protect the data transmitted across networks between organisations and end users
 - Topic for this lecture
- Perimeter Security: measures to protect an organization's network from unauthorized access (theme for next lecture)
 - Topic for next lecture

Communication Security Analogy

Communication Protocol Architecture

- Layered structure of hardware and software that supports the exchange of data between systems
- Each protocol consists of a set of rules for exchanging messages, i.e. "the protocol".
- Two standards:
 - OSI Reference model
 - Never lived up to early promises
 - TCP/IP protocol suite
 - Most widely used

OSI – Open Systems Interconnection

- Developed by the International Organization for Standardization (ISO)
- A layer model of 7 layers
- Each layer performs a subset of the required communication functions
- Each layer relies on the next lower layer to perform more primitive functions
- Each layer provides services to the next higher layer
- Changes in one layer should not require changes in other layers

The OSI Protocol Stack

Communication across OSI

TCP/IP Protocol Architecture

- Developed by the US Defense Advanced Research Project Agency (DARPA) for its packet switched network (ARPANET)
- Used by the global Internet
- No official model, but it's a working one.
 - Application layer
 - Host to host or transport layer
 - Internet layer
 - Network access layer
 - Physical layer

OSI model vs. TCP/IP model (The Internet)

L10: ComSec

OSI Security Architecture

- Originally specified as ISO 7498-2
- Republished as X.800 "Security Architecture for OSI"
- Defines a systematic set of security requirements and options for the ISO communication protocol stack
- Also applicable to the TCP/IP protocol stack

Security & Protocol Layers (X.800) with possible placement of security

Security Service	Layer						
	1	2	3	4	5	6	7
Peer entity authentication		•	Y	Y	•	•	Y
Data origin authentication	•	•	Y	Y	•	•	Y
Access control service	•	•	Y	Y	•	•	Y
Connection confidentiality	Y	Y	Y	Y	-	Y	Y
Connectionless confidentiality	•	Y	Y	Y	•	Y	Y
Selective field confidentiality	•	-	-	•	•	Y	Y
Traffic flow confidentiality	Y	-	Y	-	-	•	Y
Connection Integrity with recovery	•	•	•	Y	-	•	Y
Connection integrity without recovery	•	-	Y	Y	-	•	Y
Selective field connection integrity	•	-	-	•	•	•	Y
Connectionless integrity	•	-	Y	Y	•	•	Y
Selective field connectionless integrity	•	-	-	•	•	•	Y
Non-repudiation of Origin	•	•	•	•	•	•	Y
Non-repudiation of Delivery	•	•	•	•	•	•	Y

Security Protocols

- A large variety of security protocols have been specified and implemented for different purposes
 - Authentication, integrity, confidentiality
 - Key establishment/exchange
 - E-Voting
 - Secret sharing
 - etc.
- Protocols are surprisingly difficult to get right!
 - Many vulnerabilities are discovered years later
 - ... some are never discovered (or maybe only by the attackers)

Protocols Overview

- This lecture discusses the operation of two networkrelated protocols that are in common use.
 - Transport Layer Security (TLS): Used extensively on the web and is often referred to in privacy policies as a means of providing confidential web connections.
 - IP Security (IPSec):

Provides security services at the IP level and is used to provide Virtual Private Network (VPN) services.

Transport Layer Security

TLS/SSL

SSL/TLS: History

- 1994: Netscape Communications developed the network authentication protocol Secure Sockets Layer (SSL) 2.0.
 - Badly broken
- 1995: Netscape release their own improvements SSL 3.0
 Widely used for many years.
- 1996: SSL 3.0 was submitted to the IETF as an Internet draft, and an IETF working group was formed to develop a recommendation.
- In January 1999, <u>RFC 2246</u> was issued by the IETF, Transport Layer Security Protocol: TLS 1.0
 - Similar to, but incompatible with SSL
 - Currently TLS 1.2 (2008)

TLS: Overview

- TLS is a cryptographic services protocol based on the Browser PKIX, and is commonly used on the Internet.
 - Most often used to allow browsers to establish secure sessions with web servers.
- Port 443 is reserved for HTTP over TLS and HTTPS is the name of the URL scheme used with this port.
 - http://www.develop.com implies the use of standard HTTP using port 80.
 - https://www.develop.com implies the use of HTTP over TLS using port 443.

TLS: Architecture Overview

- Designed to provide secure reliable end-to-end services over TCP.
- Consists of 3 higher level protocols:
 - TLS Handshake Protocol
 - TLS Alert Protocol
 - TLS Change Cipher Spec Protocol
- The TLS Record Protocol provides the practical encryption and integrity services to various application protocols.

TLS: Protocol Stack

TLS Handshake Protocol	TLS Change Cipher Suite Protocol	TLS Alert Protocol	Application Protocol (HTTP)				
TLS Record Protocol							
TCP							
IP							

TLS: Handshake Protocol

- The handshake protocol
 - Negotiates the encryption to be used
 - Establishes a shared session key
 - Authenticates the server
 - Authenticates the client (optional)
 - Completes the session establishment
- After the handshake, application data is transmitted securely
- Several variations of the handshake exist
 - RSA variants
 - Diffie-Hellman variants

TLS: Handshake Four phases

- Phase 1: Initiates the logical connection and establishes its security capabilities
- Phases 2 and 3: Performs key exchange. The messages and message content used in this phase depends on the handshake variant negotiated in phase 1.
- Phase 4: Completes the setting up of a secure connection.

Diagram TLS: Simplified RSA-based Handshake

Continues with TLS Record protocol encrypted with session key

TLS: Elements of Handshake

- Client hello
 - Advertises available cipher suites (e.g. RSA, RC4/40, MD5)
- Server hello
 - Returns the selected cipher suite
 - Server adapts to client capabilities
- RSA and Server Certificate
 - X.509 digital certificate sent to client, assumes RSA algorithm
 - Client verifies the certificate including that the certificate signer is in its acceptable Certificate Authority (CA) list. Now the client has the server's certified public key.

RSA and Client Certificate

- Optionally, the client can send its X.509 certificate to server, in order to provide mutual authentication, assumes RSA algorithm
- Anonymous Diffie-Hellman
 - Optionally, the client and server can establish session key using the Diffie-Hellman algorithm

TLS: Record Protocol Overview

- Provides two services for SSL connections.
 - Message Confidentiality:
 - Ensure that the message contents cannot be read in transit.
 - The Handshake Protocol establishes a symmetric key used to encrypt SSL payloads.
 - Message Integrity:
 - Ensure that the receiver can detect if a message is modified in transmission.
 - The Handshake Protocol establishes a shared secret key used to construct a MAC.

TLS: Record Protocol Operation

• Fragmentation:

- Each application layer message is fragmented into blocks of 214 bytes or less.
- Compression:
 - Optionally applied.
 - SSL v3 & TLS default compression algorithm is null
- Add MAC:
 - Calculates a MAC over the compressed data using a MAC secret from the connection state.
- Encrypt:
 - Compressed data plus MAC are encrypted with symmetric cipher.
 - Permitted ciphers include AES, IDEA, DES, 3DES, RC4
 - For block ciphers, padding is applied after the MAC to make a multiple of the cipher's block size.

SSL and TLS Limitations

- Higher layers should not be overly reliant on SSL or TLS always negotiating the strongest possible connection between two peers
- Applications should never transmit information over a channel less secure than they require.
- SSL and TLS are only as secure as the cryptographic algorithms determined in the handshake protocol.
- Both require a secure web browser and a secure operating system to be 'secure'
 - Do these things actually exist?

Phishing and failed authentication

Zooko's Triangle of Id Properties

No identifier can be at the same time global, unique and memorable

Passing bus test for memorability

 If you see a name written on a passing bus, and you can remember the name after 5 minutes, then the name is memorable

Petname Systems

- Desirable name properties (Zooko's Triangle)
 - Global, unique and memorable
 - No name type can have all 3 properties
 - Pointers are unique and global, e.g. domain name
 - Nicknames are global and memorable, e.g. 'Pepes Pizza'
 - Petnames are unique and memorable, e.g. 'PPizza'
- **Petname model** supports 3 properties of Zooko's triangle through mapping between pointer and petname
- Petname Systems implement the petname model.
 - Used to enhance security and prevent phishing attacks
- Petname Tool extension available for Firefox

Phishing detection with Petname System

Server authentication with Petname System

IP Layer Security

IPSec & Virtual Private Networks

IPSec: Introduction

- Internet Protocol security (IPSec) is standard for secure communications over Internet Protocol (IP) networks, through the use of cryptographic security services.
- Uses encryption, authentication and key management algorithms
- Based on an end-to-end security model at the IP level
- Provides a security architecture for both IPv4 and IPv6
 - Mandatory for IPv6
 - Optional for IPv4
- Requires operating system support, not application support.

IPSec: Security Services

- Message Confidentiality.
 - Protects against unauthorized data disclosure.
 - Accomplished by the use of encryption mechanisms.
- Message Integrity.
 - IPsec can determine if data has been changed (intentionally or unintentionally) during transit.
 - Integrity of data can be assured by using a MAC.
- Traffic Analysis Protection.
 - A person monitoring network traffic cannot know which parties are communicating, how often, or how much data is being sent.
 - Provided by concealing IP datagram details such as source and destination address.

IPSec: Security Services

- Message Replay Protection.
 - The same data is not delivered multiple times, and data is not delivered grossly out of order.
 - However, IPsec does not ensure that data is delivered in the exact order in which it is sent.
- Peer Authentication.
 - Each IPsec endpoint confirms the identity of the other IPsec endpoint with which it wishes to communicate.
 - Ensures that network traffic is being sent from the expected host.
- Network Access Control.
 - Filtering can ensure users only have access to certain network resources and can only use certain types of network traffic.

IPSec: Common Architectures

- Gateway-to-Gateway Architecture
- Host-to-Gateway Architecture
- Host-to-Host Architecture

IPSec: Gateway-to-Gateway Architecture

Source: NIST Special Publication 800-77

IPSec: Host-to-Gateway Architecture

Source: NIST Special Publication 800-77

IPSec: Host-to-Host Architecture

Source: NIST Special Publication 800-77

IPSec: Protocols Types

- Encapsulating Security Payload (ESP)
 - Confidentiality, authentication, integrity and replay protection
- Authentication Header (AH)
 - Authentication, integrity and replay protection. However there is no confidentiality
- Internet Key Exchange (IKE)
 - negotiate, create, and manage security associations

IPSec: Modes of operation

• Each protocol (ESP or AH) can operate in transport or tunnel mode.

Transport mode:

- Operates primarily on the payload (data) of the original packet.
- Generally only used in host-to-host architectures.

Tunnel mode:

- Original packet encapsulated into a new one, payload is original packet.
- Typical use is gateway-to-gateway and host-to-gateway architectures.

Transport Mode ESP

L10: ComSec

IPSec - ESP in Transport Mode: Outbound Packet Processing

- The data after the original IP header is padded by adding an ESP trailer and the result is then encrypted using the symmetric cipher and key in the SA.
- An ESP header is prepended.
- If an SA uses the authentication service, an ESP MAC is calculated over the data prepared so far and appended.
- The original IP header is prepended.
- However, some fields in the original IP header must be changed. For example,
 - Protocol field changes from TCP to ESP.
 - Total Length field must be changed to reflect the addition of the AH header.
 - Checksums must be recalculated.

Tunnel Mode ESP

IPSec - ESP in Tunnel Mode: Outbound Packet Processing

- The entire original packet is padded by adding an ESP trailer and the result is then encrypted using the symmetric cipher and key agreed in the SA.
- An ESP header is prepended.
- If an SA uses the authentication service, an ESP MAC is calculated over the data prepared so far and appended.
- A new 'outer' IP header is prepended.
 - The 'inner' IP header of the original IP packet carries the ultimate source and destination addresses.
 - The 'outer' IP header may contain distinct IP addresses such as addresses of security gateways.
 - The 'outer' IP header Protocol field is set to ESP.

Security Associations

- A security association (SA) contains info needed by an IPSec endpoint to support one end of an IPSec connection.
- Can include cryptographic keys and algorithms, key lifetimes, security parameter index (SPI), and security protocol identifier (ESP or AH).
- The SPI is included in the IPSec header to associate a packet with the appropriate SA.
- Security Associations are simplex
 - need one for each direction of connection
 - stored in a security association database (SAD).
- Key exchange is largely automated after initial manual configuration by administrator prior to connection setup.
- (See ISAKMP, IKE, Oakley, Skeme and SAs)

Risks of using IPSec for VPN

- IPSec typically used for VPN (Virtual Private Networks)
- A VPN client at external location may be connected to the Internet (e.g. from hotel room or café) while at the same time being connected to home network via VPN.
 - VPN gives direct access to resources in home network.
- Internet access from external location may give high exposure to cyber threats
 - No network firewall, no network IDS
- Attacks against the VPN client at external location can directly access the home network through VPN tunnel

Risk of using VPN

Secure pipe can be attack channel to home network !

End of lecture