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Agenda 

• The concept of cryptography 
• Symmetric-key ciphers 
• Use of block ciphers 
• Hash functions 
• Public-key ciphers 
• Digital signature 
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L05 Cryptography 

When is cryptography used? 

• If you require  
– Confidentiality:  

• So that your data is not made available to anyone who 
shouldn’t have access.  

• That is, protection against snoops or eavesdroppers 
– Data Integrity:  

• So you know that the message content is correct, and has 
not been altered, either deliberately or accidentally 

– Data Authentication:  
• So you can be sure that the message is from the place or 

sender it claims to be from 
 

• Data integrity and data authentication are equivalent. 
– Think about it ! 
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• Cryptography is traditionally the science of 
secret writing with the goal of hiding the meaning 
of a message (for confidentiality). 

• Cryptanalysis is the science (and sometimes art) 
of breaking cryptosystems. 
 

• Modern cryptography is used for many other 
things than just encryption for confidentiality. 
 L05 Cryptography INF3510 - UiO 2015 4 

Cryptology 

Cryptography Cryptanalysis 

Terminology 



Taxonom
y of 

cryptographic 
prim

itives 

L05 Cryptography 5 INF3510 - UiO 2015 



Taxonomy of modern ciphers 
(subset of previous diagram) 

Ciphers are used to encrypt data for confidentiality 
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Terminology 

• Encryption: plaintext (clear text) M is converted 
into a ciphertext C under the control of a key k. 
– We write C = E(M, k). 

• Decryption with key k recovers the plaintext M 
from the ciphertext C. 
– We write M = D(C, k). 

• Symmetric ciphers: 1 secret key used for both 
encryption and decryption. 

• Asymmetric ciphers: Pair of private and public 
keys used. Computationally infeasible to derive 
the private decryption key from the corresponding 
public encryption key. 
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Symmetric Key Encryption  
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Example Caesar Cipher 
P = {abcdefghijklmnopqrstuvwxyz} 
C = {DEFGHIJKLMNOPQRSTUVWXYZABC} 

Plaintext: Security is very interesting 
Chiphertext:  

Note: Caesar Cipher in this form has fixed key K = 3. 

Caesar Cipher 

Problems with Caesar Cipher: 
• Short key 
• Does not hide statistical patterns 
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Shifting letters in the alphabet 



Letter Frequencies→ statistical attacks 

• Encryption must hide statistical patterns in data 
• Achieved with a series of primitive functions 
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• The system should be, if not theoretically 
 unbreakable, unbreakable in practice. 
• The system design should not require secrecy, so 

compromise of the design should not damage the 
security of the system. This is commonly known as 
“don’t do security by obscurity” (Kerckhoffs' principle). 

• The key should be easily memorable without notes 
and should be easily changeable 

• The cryptograms should be transmittable by telegraph 
• The apparatus or documents should be portable and 

operable by a single person 
• The system should be easy to operate, neither 

requiring a long list of rules nor involving mental strain 
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Kerckhoffs’ principles (1883) 



• German WW II crypto machine 
• Many different variants 
• Follows Kerckhoffs’ principles 
• Analysed by Polish and English 

mathematicians 
 

Enigma 

Broken by Alan Turing’s «bombe» 
cryptanalysis machine during WW II. 
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pi = ci ⊕ ki = pi ⊕ ki ⊕ ki = pi  
Note: a ⊕ b = a + b (mod 2) 

A crypto system with perfect security: 
The One-Time-Pad 

• Offers perfect security assuming the key is perfectly 
random, of same length as the message; and only 
used once. Proved by Claude E. Shannon in 1949. 

• Problem: Very large keys required 
 

ci 

Binary 
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The perfect cipher: One-Time-Pad 

• Old versions used paper punch tape of random data 
• Modern versions can use DVDs with Gbytes of 

random data 
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Claude Shannon  (1916 – 2001)  
The Father of Information Theory – MIT / Bell Labs 

• Information Theory 
– Defined the „binary digit“ (bit) as 

information unit 
– Definition of „entropy“ as a 

measure of information amount 
• Cryptography 

– Model of a secrecy system 
– Definition of perfect secrecy 
– Designed S-P networks, i.e. a 

series of  substitution & 
permutation functions 
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Shannon’s  S-P Network 

• “S-P Networks” (1949) 
– Substitutions & Permutations  
– Substitute bits e.g. 0001 with 0110  
– Permute parts e.g. part-1 to part-2  
– Substitution  provides “confusion” 

i.e. complex relationship between 
input and output 

– Permutation provide “diffusion”, 
i.e. a single input bit influences 
many output bits 

– Iterated S-P functions a specific  
number of times 

–  Functions  must be invertible  

. . . . 
P 

. . . . 

. . . . 
P 

...
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Horst Feistel’s (1915 – 1990) 
and his revolutionary cipher design 
• The Feistel cipher is a general and 

elegant architecture for designing 
ciphers according to S-P networks 

• Split input text block in two halves 
– Perform S-P transformation on one half 
– XOR output with other half 
– Swop Halves 
– Repeat for multiple rounds 

• Advantage: The S-P functions do 
not have to be invertible !!! 
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2-round Feistel Network (DES) 
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DES - Data Encryption Standard  

• Published in 1977 by the US National Bureau of 
Standards for use in unclassified government 
applications with a 15 year life time. 

• 16 round Feistel cipher with 64-bit data blocks, 
56-bit keys. 

• 56-bit keys sufficient in 1977; today exhaustive 
search on 56-bit keys only takes hours. 

• DES was controversial because of classified 
design criteria, however no loop hole found. 
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AES - Advanced Encryption Standard 

• Public competition to replace DES: because 56- 
bit keys and 64-bit data blocks no longer 
adequate. 

• Rijndael nominated as the new Advanced 
Encryption Standard (AES) in 2001 [FIPS-197]. 

• Rijndael (pronounce as “Rhine-doll”) designed 
by Vincent Rijmen and Joan Daemen. 

• 128-bit block size (Note error in Harris p. 809) 
• 128-bit, 192-bit, and 256-bit key sizes. 
• Rijndael is not based on a Feistel network. 
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Rijndael, the selected AES cipher 

 Designed by Vincent Rijmen and Joan Daemen from 
Belgium  

 

Vincent Rijmen, 
works at 
K.U.Leuven 

Joan Daemen 
Works at STMicro-

electronics, 
Belgium 
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Comparison DES – AES  single round 
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Block Ciphers: Modes of Operation 

• Block ciphers can be used in different modes in 
order to provide specific security protection. 

• Common modes include: 
– Electronic Code Book (ECB) (insecure) 
– Cipher Block Chaining (CBC) 
– Output Feedback (OFB) 
– Cipher Feedback (CFB) 
– Counter Mode (CTR) 
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Electronic Code Book 
• ECB Mode encryption  

– Simplest mode of operation 
– Plaintext data is divided into blocks M1, M2, …, Mn  
– Each block is then processed separately 

• Plaintext block and key used as inputs to the encryption algorithm  
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Vulnerability of ECB mode 

• ECB mode not normally used because equal plaintext 
blocks give equal ciphertext blocks, which is bad. 

• CBC and CTR modes are often used instead because 
more secure and simple to use. 
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Cipher Block Chaining Mode 
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CBC Mode Issues 
• Chaining guards against pre-fabricated code book 

– The same plaintext block encrypts to different ciphertext 
blocks each time. 

• May assist in detecting integrity breaches 
– Such as the insertion, deletion or reordering of data 

blocks into the ciphertext. 

• What happens when there is an error? 
– If there is a bitflip error (0 to 1 or vice versa) that block 

and the following block will be decrypted incorrectly 
– If a ciphertext bit, or even a character is inserted or 

deleted this will be detected because of the incorrect 
ciphertext length 

• Not multiples of block size 

– Inserting or deleting a block will cause incorrect 
decryption 

L05 Cryptography INF3510 - UiO 2015 28 



CTR 
Counter 
Mode 
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Advantages and Limitations of CTR 

• Efficiency 
– can do parallel encryptions in h/w or s/w 
– can preprocess in advance of need 
– good for bursty high speed links 
– good for HD encryption 

• Random access to encrypted data blocks 
• Provable security (good as other modes) 
• But must ensure never reuse key/counter values, 

otherwise could break 
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Block cipher: Applications 

• Block ciphers are often used for providing 
confidentiality services 

• They are used for applications involving 
processing large volumes of data, where long 
time delays can not be tolerated. 
– Examples: 

• Computer files 
• Databases 
• Email messages 

• Block ciphers can also be used to provide 
integrity services, i.e. for message authentication 
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• Given block size m = 64 bit and key length l = 64 bit 
• Number of different cipher bijective mappings determined 

by key is:   264 = 18446744073709551616  
• Number of possible block bijective mappings of 264  binary 

values is:  264! = ?? (more than 271  decimal digits) 

Set of all possible bijective mappings 
from cleartext block to ciphertext block 

Block ciphers give 
bijective mappings 
between binary 
values 

• Block ciphers only use a tiny fraction of possible mappings 
• One-Time-Pad ciphers can potentially use all mappings 

32 

Set of bijective mappings 
determined by key 

23 binary 
values of 
plaintext  
block 

23 binary 
values of 

ciphertext  
block 

000 
001 
010 
011 
100 
101 
110 
111 
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Integrity Check Functions 
 - Hash functions 
 - MAC functions 
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Properties of hash functions 
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Current hash functions 
• MD-2 (1989) and MD5 (1991): 128 bit digest. Broken, too short 

digest. Not recommended, but used in legacy applications. 
• SHA-1 (Secure Hash Algorithm):160 bit digest.  Potential 

attacks exist. Designed by NSA in 1995 to operate with DSA 
(Digital Signature Standard). Not recommended, but in use.  

• SHA-2 designed by NSA in 2001 provides 224, 256, 384, and 
512 bit digest. Considered secure. Replacement for SHA-1. 

• SHA-3: NIST announced competition for new algorithm (2007) 
• 2012: Keccak selected as official SHA-3 algorithm in Oct. 2012 
• SHA-3 has same designer as for AES: Joan Daemen + others. 
• 2014 draft standard SHA 3 published, still in draft in 2015. 

– no need/hurry to replace SHA-2. 
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Message Authentication Codes 

• A message M with a simple message hash h(M) can be 
changed by attacker. 

• In communications, we need to verify the origin of data, 
i.e. we need message authentication. 

• MAC (message authentication code) can use hash 
function as h(M, k) i.e. with  message M and a secret key 
k as input. 

• To validate and authenticate a message, the receiver has 
to share the same secret key used to compute the MAC 
with the sender. 

• A third party who does not know the key cannot validate 
the MAC. 
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MAC and MAC algorithms 

• MAC means (at least) two things: 
1. The computed message authentication code h(M, k)  
2. General name for algorithms used to compute a MAC  

• In practice, the MAC algorithm is e.g. 
– HMAC (Hash-based MAC algorithm)) 
– CBC-MAC (CBC based MAC algorithm) 
– CMAC (Cipher-based MAC algorithm) 

• MAC algorithms, a.k.a. keyed hash functions, 
support data origin authentication services. 
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Public-Key Cryptography 



Problem of symmetric key distribution 
• Shared key between each pair 
• In network of n users, each 

participant needs n-1 keys. 
 

• Number of exchanged secret keys: 
 = n(n-1)/2 

 = number of glasses touching at  
    cocktail party 

• Grows exponentially, which is a big 
problem. 

• Is there a better way? 

Network of 5 nodes 
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James H. Ellis 
(1924 – 1997) 

• British engineer and mathematician 
• Worked at GCHQ (Government 

Communications Headquarters) 
• Idea of non-secret encryption to solve 

key distribution problem  
• Encrypt with non-secret information in 

a way which makes it impossible to 
decrypt without related secret 
information 

• Never found a practical method 
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Clifford Cocks 
(1950 – ) 

• British mathematician and cryptographer 
• Silver medal at the International 

Mathematical Olympiad, 1968 
• Works at GCHQ 
• Heard from James Ellis the idea of non-

secret encryption in 1973 
• Spent 30 minutes in 1973 to invent a 

practical method 
• Equivalent to the RSA algorithm 
• Was classified TOP SECRET 
• Result revealed in 1998 
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Malcolm J. Williamson 

• British mathematician and cryptographer 
• Gold medal at the International 

Mathematical Olympiad, 1968 
• Worked at GCHQ until 1982 
• Heard from James Ellis the idea of non-

secret encryption, and from Clifford Cocks 
the practical method.  

• Intrigued, spent 1 day in 1974 to invent a 
method for secret key exchange without 
secret channel 

• Equivalent to the Diffie-Hellmann key 
exchange algorithm 
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Public Key Encryption 

• Proposed in the open literature by Diffie & 
Hellman in 1976. 

• Each party has a public encryption key and a 
private decryption key. 

• Reduces total number of exchanged keys to n 
• Computing the private key from the public key 

should be computationally infeasible. 
• The public key need not be kept secret but it is 

not necessarily known to everyone. 
• There can be applications where even access 

to public keys is restricted.  
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Ralph Merkle, Martin Hellman and 
Whitfield Diffie 

• Merkle invented (1974) 
and published (1978)  
Merkle’s puzzle, a key 
exchange protocol which 
was unpractical 
 

• Diffie & Hellman invented 
(influenced by Merkle) a 
practical key exchange 
algorithm using discrete 
logarithm. 
 

• D&H defined public-key 
encryption (equiv. to non-
secret encryption) 

• Defined digital signature 
• “New directions in cryptography” 

(1976) 
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Diffie-Hellman key agreement (key exchange) 
(provides no authentication) 
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 gb mod p 
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Diffie-Hellman Applications 

• IPSec (IP Security) 
– IKE (Internet Key Exchange) is part of the IPSec 

protocol suite 
– IKE is based on Diffie-Hellman Key Agreement 

• SSL/TLS 
– Several variations of SSL/TLS protocol including 

• Fixed Diffie-Hellman 
• Ephemeral Diffie-Hellman 
• Anonymous Diffie-Hellman 
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Ron Rivest, Adi Shamir and Len Adleman  

• Read about public-key cryptography in 1976 article 
by Diffie & Hellman: “New directions in cryptography” 

• Intrigued, they worked on finding a practical 
algorithm 

• Spent several months in 1976 to re-invent the 
method for non-secret/public-key encryption 
discovered by Clifford Cocks 3 years earlier 

• Named RSA algorithm 
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RSA Algorithm 

• n = pq which is made public (but not p and q ) 
• Calculate secret: z = (p-1)(q-1) 
• Choose a public key e  
• Compute private key d  such that ed = 1 mod(z) 
• Encryption of message m  where (1 < m < n). 

– Compute: c = me mod n 

• Decryption of ciphertext c 
– Compute: m = cd mod n 

• Security depends on the difficulty of factorizing n  
– so the prime factors p and q must be LARGE 
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Asymmetric Ciphers:  
Examples of Cryptosystems 
• RSA: best known asymmetric algorithm. 

– RSA = Rivest, Shamir, and Adleman (published 1977) 
– Historical Note: U.K. cryptographer Clifford Cocks 

invented the same algorithm in 1973, but didn’t publish. 
• ElGamal Cryptosystem 

– Based on the difficulty of solving the discrete log 
problem. 

• Elliptic Curve Cryptography 
– Based on the difficulty of solving the EC discrete log 

problem. 
– Provides same level of security with smaller key sizes. 
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Asymmetric Encryption:  
Basic encryption operation 

• In practical application, large messages are not 
encrypted directly with asymmetric algorithms. 
Hybrid systems are used. 
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Hybrid Cryptosystems 

• Symmetric ciphers are faster than asymmetric 
ciphers (because they are less computationally 
expensive ), but ... 

• Asymmetric ciphers simplify key distribution, 
therefore ... 

• a combination of both symmetric and asymmetric 
ciphers can be used – a hybrid system: 
– The asymmetric cipher is used to distribute a randomly 

chosen symmetric key. 
– The symmetric cipher is used for encrypting bulk data. 
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Confidentiality Services:  
Hybrid Cryptosystems 
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Digital Signatures 
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Digital Signature Mechanisms 

• A MAC cannot be used as evidence that should 
be verified by a third party. 

• Digital signatures used for non-repudiation, data 
origin authentication and data integrity services, 
and in some authentication exchange 
mechanisms. 

• Digital signature mechanisms have three 
components: 
– key generation 
– signing procedure (private) 
– verification procedure (public) 
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Digital signature: Basic operation 

• In practical applications, message M is not signed 
directly, only a hash value h(M) is signed. 
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Practical digital signature based on hash value 
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Problems for digital signatures 
• Digital signatures depend totally on PKIs. 

– Reliable PKIs are hard to set up and operate. 
• WYSIWYS (What You See Is What You Sign) 

means that the semantic content of signed 
messages can not be changed by accident or intent. 
– WYSIWYS is essential but very difficult to guarantee. 

• Revoking certificates invalidates digital signatures. 
– Repudiate a signature by claiming theft of private key 

• Key decay and algorithm erosion limits life time of 
digital signatures. 
– Future computers can falsify old signatures 
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Difference between MACs & Dig. Sig. 

• MACs and digital signatures are both 
authentication mechanisms. 

• MAC: the verifier needs the secret that was 
used to compute the MAC; thus a MAC is 
unsuitable as evidence with a third party. 
– The third party does not have the secret. 
– The third party cannot distinguish between the 

parties knowing the secret. 
• Digital signatures can be validated by third 

parties, and can in theory thereby support 
both non-repudiation and authentication. 
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Key length comparison: 
 Symmetric and Asymmetric ciphers offering comparable security 

AES Key Size RSA Key Size Elliptic curve Key 
Size 

- 1024 163 
128 3072 256 
192 7680 384 
256 15360 512 
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End of lecture 
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