
INF3510 Information Security

Lecture 12:
Application and Development Security

Audun Jøsang
University of Oslo
Spring 2015

Outline

• Application Security
– Malicious Software
– Attacks on applications

• Software Development Security

– Secure software development models
– Security development maturity models

L12: App. & Dev.
Security

2 UiO INF3510 - Spring 2015

Malicious Software

L12: App. & Dev.
Security

3 UiO INF3510 - Spring 2015

How do computers get infected ?

Executing a malicious
attachment

Accessing a malicious or
infected website or starting
application from a website

Direct attacks from the network, as worms
or exploitation of application vulnerabilities
such as SQL injection or buffer overflows

L12: App. & Dev.
Security

4 UiO INF3510 - Spring 2015

Installing infected software Plugging in
external devices

Backdoor or Trapdoor

• is a secret entry point into a program,
• allows those who know access bypassing usual security

procedures
• has been commonly used by developers for testing
• is a threat when left in production programs allowing

exploited by attackers
• is very hard to block in O/S
• can be prevented with secure development lifecycle

L12: App. & Dev.
Security

5 UiO INF3510 - Spring 2015

Logic Bomb

• one of oldest types of malicious software
• code embedded in legitimate program
• activated when specified conditions met

– eg presence/absence of some file
– particular date/time
– particular user

• causes damage when triggered
– modify/delete files/disks, halt machine, etc

L12: App. & Dev.
Security

6 UiO INF3510 - Spring 2015

Trojan Horse

• program with hidden side-effects
• program is usually superficially attractive

– eg game, s/w upgrade etc
• performs additional tasks when executed

– allows attacker to indirectly gain access they do not
have directly

• often used to propagate a virus/worm or to install
a backdoor

• … or simply to destroy data

L12: App. & Dev.
Security

7 UiO INF3510 - Spring 2015

Mobile Code

 program/script/macro that runs unchanged
 on heterogeneous collection of platforms
 on large homogeneous collection (Windows)

 transmitted from remote system to local system & then
executed on local system

 often to inject Trojan horse, spyware, virus, worm,
 or to perform own exploits
 unauthorized data access, root compromise

L12: App. & Dev.
Security

8 UiO INF3510 - Spring 2015

Multiple-Threat Malware

 Malware may operate in multiple ways
 Multipartite virus infects in multiple ways
 eg. multiple file types

 Blended attack uses multiple methods of infection or
transmission
 to maximize speed of contagion and severity
 may include multiple types of malware
 eg. Nimda has worm, virus, mobile code
 can also use IM & P2P

L12: App. & Dev.
Security

9 UiO INF3510 - Spring 2015

Viruses

 piece of software that infects programs
modifying programs to include a copy of the virus
 so it executes secretly when host program is run

 specific to operating system and hardware
 taking advantage of their details and weaknesses

 a typical virus goes through phases of:
 dormant
 propagation
 triggering
 execution

L12: App. & Dev.
Security

10 UiO INF3510 - Spring 2015

Some virus types

 Boot sector virus
 File infector virus
 Macro virus
 Encrypted virus
 Stealth virus
 Uses techniques to hide itself

 Polymorphic virus
 Different for every system

 Metamorphic virus
 Different after every activation on same system

L12: App. & Dev.
Security

11 UiO INF3510 - Spring 2015

Worms

• Replicating program that propagates over net
– using email, remote exec, remote login

• Has phases like a virus:
– dormant, propagation, triggering, execution
– propagation phase: searches for other systems,

connects to it, copies self to it and runs
• May disguise itself as a system process
• Morris Worm, one of best know worms

– released by Robert Morris in 1988
– exploited vulnerabilities in UNIX systems
– brought the whole Internet (of 1988) to standstill

L12: App. & Dev.
Security

12 UiO INF3510 - Spring 2015

Worm Propagation Speed

L12: App. & Dev.
Security

13 UiO INF3510 - Spring 2015

What is a botnet ?
• A botnet is a collection of computers infected with

malicious software agents (robots) that can be controlled
remotely by an attacker.

• Owners of bot computers are typically unaware of infection.
• Botnet controller is called a "bot herder" or "bot master"
• Botnets execute malicious functions in a coordinated way:

– Send spam email
– Collect identity information
– Denial of service attacks
– Create more bots

• A botnet is typically named after the malware used to infect
• Multiple botnets can use the same malware, but can still be

operated by different criminal groups
L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 14

Botnet Architecture
Victims

Bots

L12: App. & Dev.
Security

15 UiO INF3510 - Spring 2015

Bot-herder

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 16

DDoS
Flood
Types

• Direct attack
– Bots send traffic with

own or spoofed
sender address to
victim

• Reflected attack
– Bots send traffic to

innocent hosts with
victim address as
sender address.
Innicent host become
part of attack by
replying to victim.

17

What is SQL?

• Structured Query Language: interface to relational
database systems.

• Allows for insert, update, delete, and retrieval of data in a
database.

• ANSI, ISO Standard, used extensively in web
applications.

• Example:
 select ProductName from products where
ProductID = 40;

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015

18

SQL at back-end of websites

1. Take input from a web-form via HTTP methods such as
POST or GET, and pass it to a server-side application.

2. Application process opens connection to SQL database.
3. Query database with SQL and retrieve reply.
4. Process SQL reply and send results back to user.

Web
Server

Application
Server

Database
Server

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015

1 2 3

3 4 4

SQL interface

19

What is SQL Injection?

• Misinterpretation of data input to database system
– Attacker disguises SQL commands as data-input
– Disguised SQL commands = ‘injected’ SQL commands

• With SQL injection, an attacker can get complete
control of database
– no matter how well the system is patched,
– no matter how well the firewall is configured,

• Vulnerability exists when web application fails to
sanitize data input before sending to it database

• Flaw is in web application, not in SQL database.
 L12: App. & Dev.

Security
UiO INF3510 - Spring 2015

20

What is SQL Injection?

• For example, if user input is “40 or 1 = 1”
select ProductName from products where
ProductID = 40 or 1 = 1

• 1=1 is always TRUE so the “where” clause will always
be satisfied, even if ProductID ≠ 40.

• All product records will be returned.
• Data leak.

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015

XKCD – Little Bobby tables

L12: App. & Dev.
Security

21 UiO INF3510 - Spring 2015

22

Prevention of SQL Injection

• Check and filter user input.
– Length limit on input (most attacks depend on

long query strings).
– Different types of inputs have a specific

language and syntax associated with them,
i.e. name, email, etc

– Do not allow suspicious keywords (DROP,
INSERT, SELECT, SHUTDOWN) as name for
example.

– Try to bind variables to specific types.

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015

Stored XSS

Attacker

Web server
trusted by victim

Input to website in the
form of attack script
disguised as user content

1

Access web
page

3

Attack script hidden
in web page HTML,

4

Victim

Script
executes

5

Store and display
attack script

2

L12: App. & Dev.
Security

24 UiO INF3510 - Spring 2015

Stored XSS

• Stored, persistent, or second-order XSS.
• Data provided by users to a web application is stored

persistently on server (in database, file system, …)
and later displayed to users in a web page.

• Typical example: online message boards.
• Attacker uploads data containing malicious script to

server.
• Every time the vulnerable web page is visited, the

malicious script gets executed in client browser.
• Attacker needs to inject script just once.

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 25

XSS: Script Injection Demo

L12: App. & Dev.
Security

26 UiO INF3510 - Spring 2015

Reflected XSS

Attacker

Web server
trusted by victim

Script reflected
in web page

3

Attack script
hidden in URL

2

Phish email with
URL containing
attack script

1

Victim

Script
executes

4

L12: Dev.Ops. Security 27 UiO INF3510 - Spring 2014

Reflected XSS

• Data provided by client is used by server-side scripts to
generate results page for user.

• User tricked to click on attacker’s link for attack to be
launched; page contains a frame that requests page
from server with script as query parameter.

• If unvalidated user data is echoed in results page
(without HTML encoding), code can be injected into this
page.

• Typically delivered via email, containing an innocently
looking URL that contains a script.
– E.g., search engine redisplays search string on the result page;

in a search for a string that includes some HTML special
characters code may be injected.

28 L12: App. & Dev.
Security

UiO INF3510 - Spring 2015

XSS – The Problem

• Ultimate cause of the attack: The client only
authenticates ‘the last hop’ of the entire page, but not the
true origin of all parts of the page.

• For example, the browser authenticates the bulletin
board service but not the user who had placed a
particular entry.

• If the browser cannot authenticate the origin of all its
inputs, it cannot enforce a code origin policy.

29 L12: App. & Dev.
Security

UiO INF3510 - Spring 2015

Preventing SQL injection and XSS

• Hide information about Error handling
– Error messages divulge information that can be used by hacker
– Error messages must not reveal potentially sensitive information

• Validate all user entered parameters

– CHECK data types and lengths
– DISALLOW unwanted data (e.g. HTML tags, JavaScript)
– ESCAPE questionable characters (ticks, --,semi-colon, brackets,

etc.)

L12: App. & Dev.
Security

30 UiO INF3510 - Spring 2015

Login to website
to access service

1

CSRF (Cross-Site Request Forgery)

Attacker

Web server
trusted by user

Provide service, and
let user stay logged-in

2

Victim user
trusted by

web server

Forged request
from attacker via
logged-in user

5

Access malicious
website, e.g.
because it looks
attractive, or via
phishing email

3

Web page with
forged request
disguised as image
request or iframe

4
Request
fulfilled 6

L12: Dev.Ops. Security 31 UiO INF3510 - Spring 2014

CSRF – Problem and Fix
• Users stay logged-in at websites even when not using them

– Can be exploited by attackers sending fake requests via users
• Forged HTTP requests for a specific website that requires

user login are hidden on attacker’s webpage in the form of
fake image requests, iframes or other elements.

• Browser accesses webpage and forwards forged requests.
• Preventing CSRF usually requires the inclusion of an

unpredictable reference token (e.g. a random number) with
each HTTP request to websites requiring login. Request
tokens should at a minimum be unique per user session.

• Because the request token is unpredictable, the attacker is
unable to create a forged request that will be accepted and
fulfilled by the web server.

L12: App. & Dev.
Security

32 UiO INF3510 - Spring 2015

Login to website
to access service

1

Broken Authentication and Session Mgmt

Cheshire Cat

Web server
trusted by
user

Provide service, and
let user stay logged-in

2

Alice

Email info about
website, including
URL containing
session Id

3 Access website
as Alice and
request service

4

Request
fulfilled 5

L12: Dev.Ops. Security 33 UiO INF3510 - Spring 2014

Broken Authentication and Session Mgmnt
Problem and Fix

• User authentication does not necessarily provide continuous
authentication assurance
– User authentication is only at one point in time

• Easy for developers to implement session control with a
simple session Id which is passed in the URL
– Unfortunately this can be misused

• Recommendations for session Id must be followed
– E.g friom OWASP

• Examples of controls for session Id:
– Link session Id to e.g. IP address, TLS session Id

• .

L12: App. & Dev.
Security

34 UiO INF3510 - Spring 2015

Software Development Security

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 35

The web application security challenge

Firew
all

Hardened OS
Web Server
App Server

Firew
all

D
at

ab
as

es

Le
ga

cy
 S

ys
te

m
s

W
eb

 S
er

vi
ce

s
D

ire
ct

or
ie

s
Hu

m
an

 R
es

rc
s

B
ill

in
g Custom Developed

Application Code
APPLICATION

ATTACK

Ne
tw

or
k

La
ye

r
Ap

pl
ic

at
io

n
La

ye
r

Your security “perimeter” has huge holes at the
application layer

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 36 Network security (firewall, SSL, IDS, hardening) does not stop application attacks

OWASP
The Open Web Application Security Project

• Non-profit organisation
– Local chapters in most countries, also in Norway

• OWASP promotes security awareness and security
solutions for Web application development.

• OWASP Top-10 security risks identify the most critical
security risks of providing online services
– The Top 10 list also recommends relevant security solutions.

• OWASP ASVS (Application Security Verification Standard)
specifies requirements for application-level security.

• Provides and maintains many free tools for scanning and
security vulnerability fixing

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 37

Top-10 Web Application Risks

1. Injection
2. Broken Authentication and Session Management
3. Cross-Site Scripting (XSS)
4. Insecure Direct Object References
5. Security Misconfiguration
6. Sensitive Data Exposure
7. Missing Function Level Access Control
8. Cross-Site Request Forgery (CSRF)
9. Using Components with Known Vulnerabilities
10.Unvalidated Redirects and Forwards

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 38

39

SDLC: Software Development Life Cycle
 SDLC model contains 5 basic stages:

1. Requirements Specification
2. Design
3. Implementation
4. Verification and Testing
5. Deployment and Maintenance

 Each SDLC model organises/integrates these
basic stages in a specific way
 Waterfall
 Agile (XP: Extreme Programming).
 Iteration model
 etc…

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015

40

Secure SDLC

• Secure Software Development Life Cycle
– Used along with traditional/current software development

lifecycle methods in order to ensure that security is considered
during the SDLC.

• Three essential elements of secure SDLC
1. Include security related tasks in each stage of the SDLC
2. Security education for system engineers
3. Metrics and accountability to assess security of system

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015

Waterfall and Secure Waterfall

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 41

Verification

Maintenance

Design

Requirements

Implementation

Waterfall SDLC (Software
Development Life Cycle)

Microsoft SDL (Secure Development Lifecycle)

SDL Security Training
• New employees typically do not arrive with ability

to develop secure software
– Security training as a part of New Employee Orientation
– Specialised security training for technical staff
– Update and fresh up security skills annually

• Universities without adequate IT-security training
are part of the problem of software insecurity
– What about UiO ?
– IFI has weak focus on IT-security training

• No mandatory courses in security
• No practical security development training
• No pen-testing training
• No digital forensics training

– UiO must become part of the solution !
L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 42

SDL Requirements Phase

• Opportunity to consider security at the outset
• Consider having Security Buddy for development projects
• Development team identifies security requirements
• Security Buddy reviews product plan, makes

recommendations, ensures adequate security resources
• Security Buddy assesses security milestones and

exit criteria

• The Security Buddy stays with the project through the
Final Security Review

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 43

SDL Design

• Design stage
– Define and document security architecture
– Identify security critical components (“trusted base”)
– Identify design techniques (e.g., layering, managed code, least

privilege, attack surface minimization)
– Document attack surface and limit through default settings
– Create threat models (e.g., identify assets, interfaces, threats,

risk) and mitigate threats through countermeasures
– Identify specialized test tools
– Define supplemental ship criteria due to unique product issues

(e.g., cross-site scripting tests)
– Confer with Security Buddy on questions

• Exit criteria: Design review complete and signed off by
development team and Security Buddy

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 44

SDL Development

• Apply coding and testing standards (e.g., safe string
handling)

• Apply fuzz testing tools (structured invalid inputs to
network protocol and file parsers)

• Apply static code analysis tools (to find, e.g., buffer
overruns, integer overruns, uninitialized variables)

• Conduct code reviews

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 45

SDL Verification

• Software functionality complete and enters Beta
• Test both new and possible legacy code
• Security push:

– Provides an opportunity to focus on security
• Code reviews (especially legacy/unchanged code)
• Penetration and other security testing
• Review design, architecture, threat models in light of

new threats

• Security push is not a substitute for security work
during development

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 46

SDL Release
• Final Security Review (FSR)

– Additional penetration testing, possibly by outside
contractors to supplement security team

– Analysis of any newly reported vulnerabilities affecting
libraries used

– FSR results: If the FSR finds a pattern of remaining
vulnerabilities, the proper response is not just to fix the
vulnerabilities found, but to revisit the earlier phases
and take pointed actions to address root causes (e.g.,
improve training, enhance tools)

• Make security response plan

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 47

SDL Response Phase

• Sustained engineering teams for security
• Patch management
• Post mortems and feedback to the SDL

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 48

Fuzzing
• Malformed input should be handled in
 a consistent way by software and systems

– Should be rejected with/without appropriate error message
• … but malformed input often leads to system crash due to

software bugs
• Fuzzing is to generate many forms of malformed input and

then to analyse resulting system crashes
– The software location of a crash points to the location of the bug

• Some crashes can be exploited by attackers
– Then the bug is a security vulnerability

• Developers and attackers use fuzzing to find vulnerabilities
• Infinitely many different malformed inputs

– Impossible to test them all ⇒ impossible to find all vulnerabilities

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 49

Agile Software Development

• Requirements are specified as stories
• Each story implemented as sprint
• Run multiple sprint cycles until all stories

are implemented

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 50

Evaluate current
system Release new software Develop, integrate &

test new functionality

Plan new release
Break down user story

into functions
Select user stories for

the next release

Deploy system

Project planning

Secure Agile Software Development

• Add security related development tasks
– (yellow boxes)

• Secure agile SDLC is challenging
• Security necessarily makes SDLC less agile

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 51

Evaluate system &
review security

Release new
software

Develop, integrate
& test new function

Plan new release Break down user
story into functions

Select user stories
for next release

Collect stakeholder
security concerns

Identify threat
scenarios to control

Project planning

Deploy system

Software Security Maturity Models

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 52

• OpenSAMM
– Software Assurance

Maturity Model
– Promoted by

OWASP

• BSIMM
– Build Security In

Maturity Model

Open SAMM
Software Assurance Maturity Model

 53

Design Build Test Production

vulnerability
scanning -

WAF

security testing
dynamic test

tools

coding guidelines
code reviews

static test tools

security
requirements /

threat modeling

reactive proactive

Secure Development Lifecycle
(SAMM)

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 53

SAMM Security Practices

• From each of the Business Functions, 3 Security Practices are
defined

• The Security Practices cover all areas relevant to software security
assurance

• Each one is a ‘silo’ for improvement

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 54

Under each Security Practice
• Three successive Objectives under each Practice define how it can be

improved over time
• This establishes a notion of a Level at which an organization fulfills a

given Practice

• The three Levels for a Practice generally correspond to:
• (0: Implicit starting point with the Practice unfulfilled)
• 1: Initial understanding and ad hoc provision of the Practice
• 2: Increase efficiency and/or effectiveness of the Practice
• 3: Comprehensive mastery of the Practice at scale

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 55

Per Level, SAMM defines...

• Objective
• Activities
• Results
• Success Metrics
• Costs
• Personnel
• Related Levels

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 56

BSIMM SSF

• 4 main domains.
 i) Governance, ii) Intelligence, iii) SSDL, iv) Deployment.
• 12 separate practices (3 per domain)
• 112 activities spread over the 12 practices
 L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 57

BSIMM Radar Map Maturity Chart

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 58

• 12 practices
• Score for each practice
• 4 levels
• ↑ size ⇒ ↑ maturity

Windows 10 Security

• Next and last lecture
• Monday 27 April 2015
• Time 10:30h – 12:00h
• Guest lecturer :Ole Tom Seierstad (Microsoft)

Try to addend.
Will be interesting !

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 59

End of Lecture

L12: App. & Dev.
Security

UiO INF3510 - Spring 2015 60

	INF3510 Information Security��Lecture 12:�Application and Development Security
	Outline
	Malicious Software
	How do computers get infected ?
	Backdoor or Trapdoor
	Logic Bomb
	Trojan Horse
	Mobile Code
	Multiple-Threat Malware
	Viruses
	Some virus types
	Worms
	Worm Propagation Speed
	What is a botnet ?
	Botnet Architecture
	DDoS�Flood Types
	What is SQL?
	SQL at back-end of websites
	What is SQL Injection?
	What is SQL Injection?
	XKCD – Little Bobby tables
	Prevention of SQL Injection
	Stored XSS
	Stored XSS
	XSS: Script Injection Demo
	Reflected XSS
	Reflected XSS
	XSS – The Problem
	Preventing SQL injection and XSS
	CSRF (Cross-Site Request Forgery)
	CSRF – Problem and Fix
	Broken Authentication and Session Mgmt
	Broken Authentication and Session Mgmnt�Problem and Fix
	Software Development Security
	The web application security challenge
	OWASP�The Open Web Application Security Project
	Top-10 Web Application Risks
	SDLC: Software Development Life Cycle
	Secure SDLC
	Waterfall and Secure Waterfall
	SDL Security Training
	SDL Requirements Phase
	SDL Design
	SDL Development
	SDL Verification
	SDL Release
	SDL Response Phase
	Fuzzing
	Agile Software Development
	Secure Agile Software Development
	Software Security Maturity Models
	Open SAMM�Software Assurance Maturity Model�
	SAMM Security Practices
	Under each Security Practice
	Per Level, SAMM defines...
	BSIMM SSF
	BSIMM Radar Map Maturity Chart
	Windows 10 Security
	End of Lecture

