
Delivering Transformation. Together.

Application and Development Security
Lillian Røstad, PhD
Head of Information Security Consulting, Sopra Steria
Adjunct Associate Professor, NTNU
Chairman of the board, Norwegian Information Security Forum

1 What is Software Security?
2 Common Bugs and Flaws - OWASP Top 10
3 Development Security MS SDL, BSIMM and OpenSAMM

2

3

NewsBites
Why software security?

Software Security is the practice of building software to be secure and to continue
to function properly under malicious attack. (Gary McGraw)

Vulnerability Attack Incident

Let's try to make make less of these!

The Trinity of Trouble

ComplexityConnectivity

Extensibility

The three pillars of software security

Learning to think like an attacker

To be able to build more secure systems

Photo: Colourbox

No more - «Penetrate & Patch»

A move towards:
Building Security In

Photos: Colourbox

Watch out for trust boundaries

RISK Bugs & Flaws

Bug Flaw

Injection: why an
issue?

System complexity

Trust-assumption fails
Trust no client
Trust no network
Do all validation server-side

SQL injection

Hackmageddon.com

SQL injection basics

Fundamental problem
concatenation of untrusted data (raw user input) to trusted data and the whole
strings is being sent to the backend database for execution.

HOW
Bypass checks (--)
Inject information (;)

You need to know:
Is there a database?
What type of database?
SQL syntax

Steps to plan & execute SQLi

1. Survey application

2. Determine user-controllable input susceptibel to injection

3. Experiment and try to exploit SQLi vulnerability

Indicators

Negative: Attacker receives normal response from server.

Positive: Attacker receives an error message from the server indicating that
there was a problem with the SQL query.

SQL injection: examples SQL injection: protection

XSS

Cross-site scripting

Cross-site scripting

XSS worms
Cross-site scripting: protection

CSRF
(XSRF)

Cross-site request forgery

CSRF Command injection

Buffer overflow

Top Ten Software Security Design Flaws
and how to avoid them

Assume data are compromised

Prevent the user from changing identity
without re-authentication, once
authenticated.

Consider the strength of the
authentication a user has provided before
taking action
Make use of time outs

Authorization depends on a given set of
privileges, and on the context of the
request
Failing to revoke authorization can result
in authenticated users exercising out-of-
date authorizations

Co-mingling data and control instructions in
a single entity is bad

Use a centralized validation mechanism

Watch out for assumptions about data

Avoid blacklisting, use whitelisting

Use standard algorithms and libraries

Centralize and re-use

Get help from real experts

Watch out for key management issues

Avoid non- randomness

Classify your data into categories

Watch out for trust boundaries

Design for change

Integrating Software Security
Into the Development Process

The Trustworthy Computing Security Development
Lifecycle

Michael Howard, 2005

Security Development Lifecycle (SDL)

52

MS SDL Agile Every sprint practices

53

MS SDL Agile Bucket practices

54

MS SDL Agile One-Time practices

55

Risk Management Framework

Software Security Touchpoints The Touchpoints in order of effectiveness

1.Code review
2.Architectural risk analysis
3.Penetration testing
4.Risk-based security tests
5.Abuse cases
6.Security requirements
7.Security operations

10 Guiding Principles for Software
Security

1. Secure the weakes link
2. Practice defense in depth
3. Fail securely
4. Follow the principle of least privilege
5. Compartmentalize
6. Keep it simple
7. Promote privacy
8. Remeber that hiding secrets is hard
9. Be reluctant to trust
10.Use your community resources

The Building Security In Maturity Model
BSIMM
www.bsimm.com

A Framework based on established practices

Study of 67 software security initiatives
Since 2008

Why BSIMM?

Informed risk management decisions

Clarity on what the right thing everyone involved in
software security

Cost reduction through standard, repeatable processes

Improved code quality

BSIMM core:
The Software Security Framework

-fits-all prescription. Instead, the
BSIMM is a reflection of the software security state of the art.

Linking it all to the Business Goals

The 12 most common activities observed
in BSIMM
1.Use external penetration testers to find problems. (62)
2.Ensure host and network security basics are in place. (61)
3.Identify software defects found in operations monitoring and feed
them back to development. (59)
4.Identify gate locations, gather necessary artifacts. (57)
5.Perform security feature review. (56)
6.Drive tests with security requirements and security features. (55)
7.Build and publish security features. (54)
8.Identify PII obligations. (52)
9.Provide awareness training. (50)
10.Use automated tools along with manual review. (50)
11.Create a data classification scheme and inventory. (43)
12.Create security standards. (48)

the BSIMM is to compare and contrast your own initiative with the data
about what other organizations are doing contained in the model. You can
then identify goals and objectives of your own and look to the BSIMM to

The BSIMM data show that high maturity initiatives are well rounded
carrying out numerous activities in all twelve of the practices described by
the model.

OpenSAMM
www.opensamm.org

02.05.2016

BSIMM vs OpenSAMM
BSIMM forked from SAMM-beta

BSIMM based on study of software security practices

Enables you to compare yourself against others
Descriptive
OpenSAMM based on ... experience and knowledge?

Enables you to evalute yourself against best practice
Prescriptive

OpenSAMM overview

For each Business Function, SAMM defines three Security Practices.

For each Security Practice, SAMM defines three Maturity Levels as Objectives.
02.05.2016

Maturity Levels

02.05.2016

Verification: Security Testing

02.05.2016

Conducting assessment

The Norwegian BSIMM Study

About the study
Why?

Benchmark

Who?

Public sector

32 invited 20 respondents (62,5%)

Conservative Maturity
Scale 0-3

Weighted Maturity

Scale 0-6

High Watermark Maturity
Scale 0-3

Maturity levels

BSIMM
score card

(example)

Example
contd.

Results

Activities - distribution

Most common activities

82

Conservative maturity for the three most mature
organizations

Goal:
Transparency of expectations and accountability of results.
Management buy-in

Maturity: low

83

Strategy and metrics

Goal:
Compliance rules and regulations.
Generate artefacts for audit.

Maturity: good (better than BSIMM average)

84

Compliance and policy

Goal:
Increase knowledge and test procedures.

Maturity: low

85

Training

Goal:
Knowledge relevant attacks.

Maturity: low

86

Attack models

Goals:
Knowledge of security features, frameworks and patterns.

Only 15% do SFD1.1 (Our software security group builds and publishes a library of
security features),

While 80% claim to do

SFD 1.2 (Security is a regular part

of our organization's software

architecture discussion).

Security Features and Design

Goal:
Establish guidelines.
Also to be used by external contributors.

maturity: good (for 50% of organizations)

Standards and requirements

Goal:
Quality assurance.

Maturity: low

Architectural analysis

Goal:
Quality assurance.

Maturity: low

Code review

Security testing

Goal:
Quality assurance

Maturity: low

Goal:
Change management

Maturity: medium

Configuration Management and Vulnerability
Management

Goal:
Change management.

Maturity: high

Network security is more mature than software security.

93

Software Environment

Goal:
Quality assurance
Discover vulnerabilities

Maturity: low/average (many do activites on level 1)

94

Penetration testing

Limitations? What will this be used for?

Benchmark

Status
Are our efforts having an impact?

Are we improving?

Title presentation97

Delivering Transformation. Together.

Lillian.Rostad@soprasteria.com

http://www.soprasteria.no/karriere/graduate-programmet

