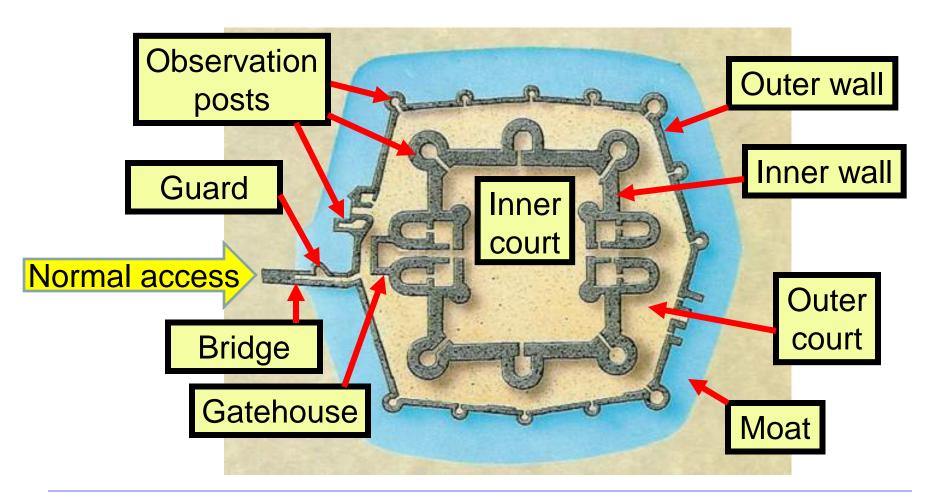
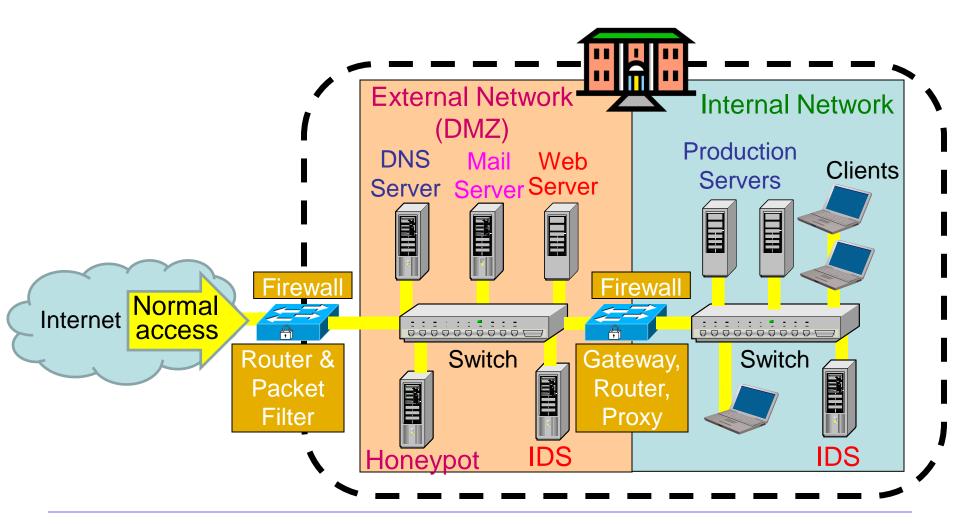
## **INF3510 Information Security**

# Lecture 11: Network Perimeter Security



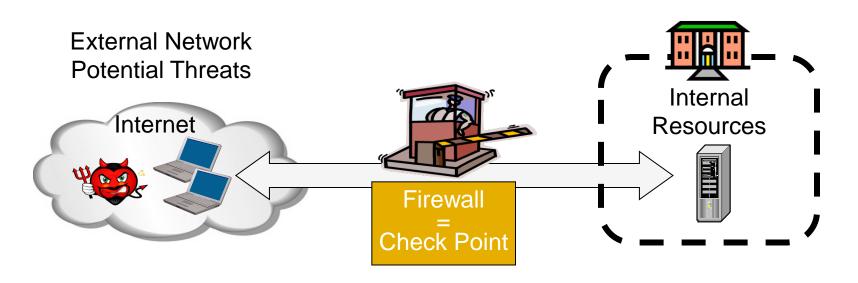

Audun Jøsang
University of Oslo
Spring 2016


## **Outline**

- Firewalls
  - Routers
  - Proxies
  - Architectures
- Intrusion Detection Systems
  - Host-based
  - Network based
  - Dealing with false alarms
- Wireless LAN Access Control
  - Evolution & history
  - WPA2: Robust Security Network architecture (RNS)

# Perimeter security analogy Medieval Castle Defences




# Defending local networks Network Perimeter Security



# **Firewalls**

# Network perimeter security method: Firewalls

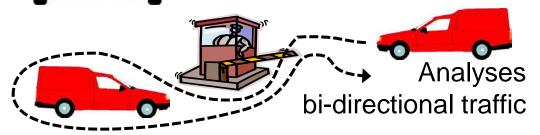
- A firewall is a check point that protects the internal networks against attack from outside networks
- The check point decide which traffic can pass in & out based on rules



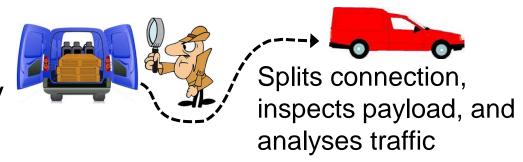
#### Firewalls: Overview 1

- If the risk of having a connection to the Internet is unacceptable, the most effective way of treating the risk is to avoid the risk altogether and disconnect completely.
- If disconnection from the Internet is not practical, then firewalls may provide an effective level of protection that can reduce the risk to an acceptable level.
- Firewalls are often the first line of defence against external attacks, but should not be the only defence.
- A firewall's purpose is to prevent unauthorized access to or from a private network.

#### Firewalls: Overview 2

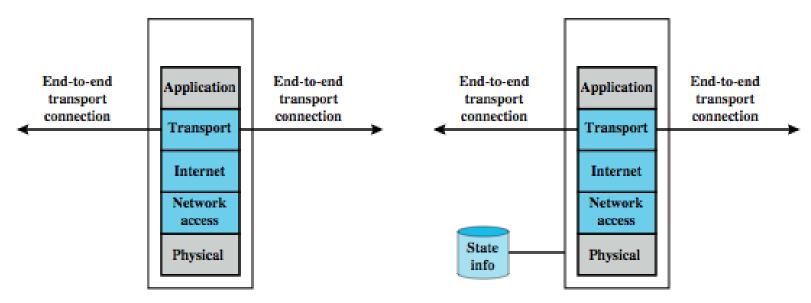

- All traffic entering or leaving must pass through firewall
- The network owner must define criteria for what is (un)authorized
- The effectiveness of firewalls depends on specifying authorized traffic in terms of rules
  - The rules defines what to let pass through;
  - The rules defines what to block.
- Firewalls must be effectively administered, updated with the latest patches and monitored.
- Firewalls can be implemented in both hardware and software, or a combination of both.

## Types of Firewall Technology (vehicle analogy)


Router Packet Filters

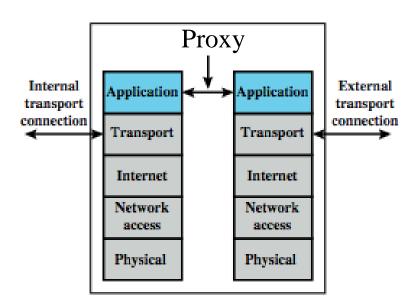
Inspects packet headers only

Stateful Packet Filters

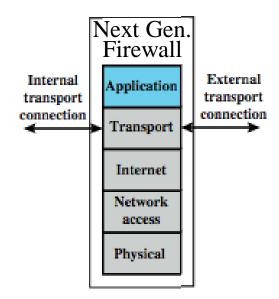



Application Layer Proxy




Next Generation Firewall






Simple Packet Filter

Stateful Packet Filter



**Application Proxy Firewall** 



**Next Generation Firewall** 

#### Router-based Packet Filter

- A packet filter is a network router that can accept/reject packets based on headers
- Packet filters examine each packet's headers and make decisions based on attributes such as:
  - Source or Destination IP Addresses
  - Source or Destination Port Numbers
  - Protocol (UDP, TCP or ICMP)
  - ICMP message type
  - And which interface the packet arrived on
  - Unaware of session states at internal or external hosts
  - High speed, but primitive filter

#### **Host-based Packet Filters**

- A host can also perform packet filtering, in addition to performing other host tasks such as web serving
  - in this case the packet filter is designed to protect the host itself,
     not other hosts on the network
- Common packet filter software includes:
  - IPChains for Linux (superseded)
  - TCP Wrappers for various Unix
  - IP Filter for Sun Solaris

#### Stateful Packet Filters

- Stateful packet filters track current state of a connection
  - More 'intelligent' than simple packet filters.
- Stateful packet filters keep track of sessions
  - Recognise if a particular packet is part of an established connection by 'remembering' recent traffic history.
  - Will add a temporary rule to allow the reply traffic back through the firewall.
  - When session is finished, the temporary rule is deleted.
- This makes the definition of filtering rules easier to accomplish and therefore potentially more secure.
  - High speed, can use relatively advanced filter rules
- Requires memory
  - So can be subject to DOS (Denial of Service) attacks

## Packet Filter Strengths and Weaknesses

#### Strengths:

- Low overhead and high throughput
- Supports almost any application

#### Weaknesses:

- Unable to interpret application layer data/commands
  - may allow insecure operations to occur
- Allows direct connection between hosts inside & outside firewall
- Non-stateful packet filters only: primitive and more difficult to write complex rules

#### Personal Firewalls

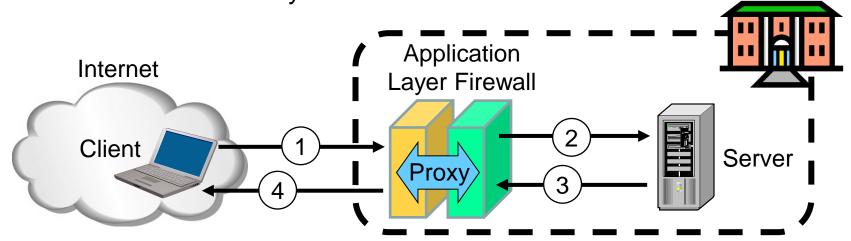
- A personal firewall is a program that is designed to protect the computer on which it is installed.
- Personal firewalls are frequently used by home users to protect themselves from the Internet.
- Personal firewalls are usually a stateful packet filter.
- Some products include anti-virus software as well (usually at extra cost).
  - Vendors such as ZoneAlarm, and Sygate provide a free version of their product for personal use.
  - Windows clients and Windows servers ship with Internet Connection Firewall (ICF).

# IPv4 Network Address Translation (NAT)

- NAT used to increase IPv4 address space
- Each local network can reuse private IP address ranges
  - Artificially increases the number of usable IP addresses
- Possibilities:
  - Static mapping
    - permanent mapping of public to private address (no gain)
  - Dynamic mapping
    - mapping of public to private address when needed
    - unmapped when no longer needed
  - PAT (Port Address Translation)
    - multiple internal addresses mapped to same public address but with different port numbers

### IPv4 NAT: + & -

### Advantages


- Helps enforce control over outbound connections
- Helps restrict incoming traffic
- Helps conceal internal network configuration
- Makes port scanning more difficult

#### Can't be used with:

- protocols that require a separate back-channel
- protocols that encrypt TCP headers such as IPSec
- embedded TCP address info
- (Not recommended with) IPv6

## **Application Layer Proxy**

- External client sends a request to the server, which is intercepted by the outwards-facing firewall proxy
- 2. Inwards-facing proxy sends request to server on behalf of client.
- 3. Server sends reply back to inwards-facing firewall proxy.
- 4. Outwards facing proxy sends reply to the client.
- Client and server both think they communicate directly with each other, not knowing that they actually talk with a proxy.
- The proxy can inspect the application data at any level of detail, and can even modify the data



## Next Generation Firewalls (NGFW)

- Inspects payload in end-to-end application connection
- Can support specific application protocols
  - e.g. http, telnet, ftp, smtp etc.
  - each protocol supported by a specific proxy HW/SW module
- Can be configured to filter specific user applications
  - E.g. Facebook, Youtube, LinkedIn
  - Can filter detailed elements in each specific user application
- Very high processing load in firewall
  - High volume needs high performance hardware, or else will be slow







## High performance NGFWs





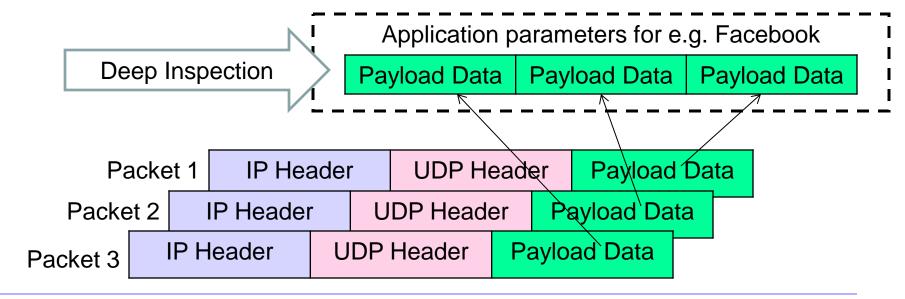
High range model: PA-7050

Up to 120 Gbps throughput

Prices starting from: US\$ 200,000

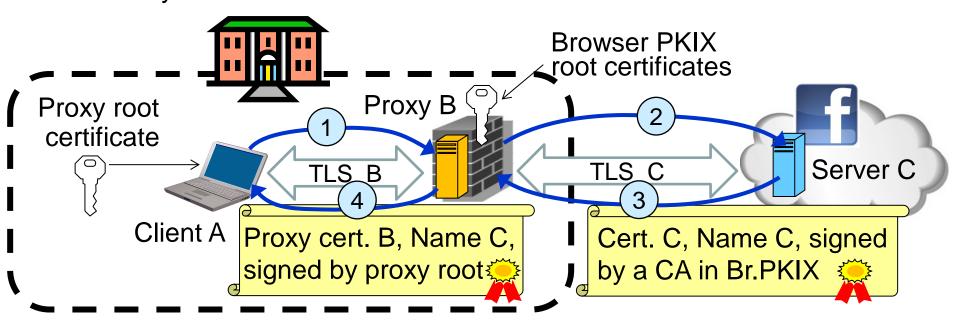





High range model: 61000 Security system

Up to 400 Gbps throughput

Prices starting from: US\$ 200,000


# Inline Deep Packet Inspection

- Deep Packet Inspection looks at application content instead of individual or multiple packets.
- Deep inspection keeps track of application content across multiple packets.
- Potentially unlimited level of detail in traffic filtering



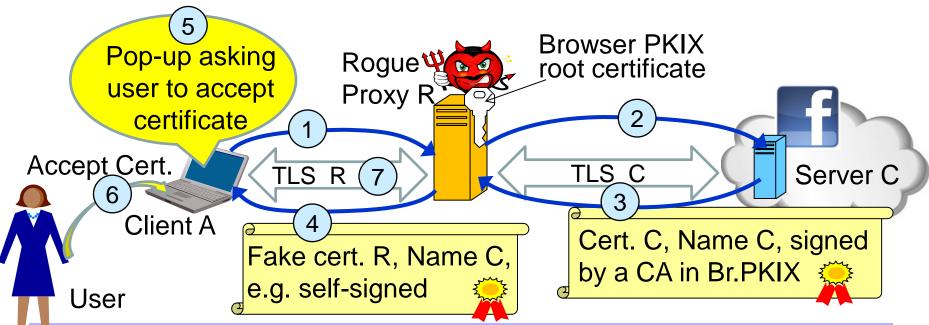
## TLS/SSL content inspection in firewalls

- TLS designed for end-to-end encryption, normally impossible to inspect
- In order to inspect TLS, proxy must pretend to be external TLS server
- Proxy creates proxy server certificate with the name of external server (e.g. facebook.com), signed by proxy root private key
- Assumes that proxy root certificate is installed on all internal hosts
- The proxy server certificate is automatically validated by internal client, so user may believe that he/she has TLS connection to the external server



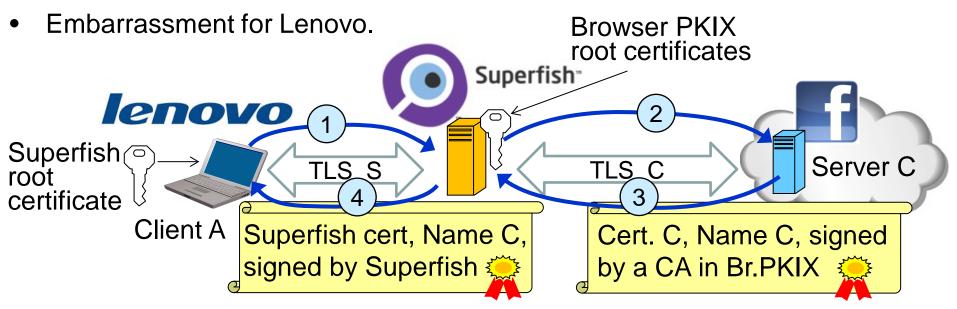
## Application Proxy Firewalls + & -

#### Strengths:

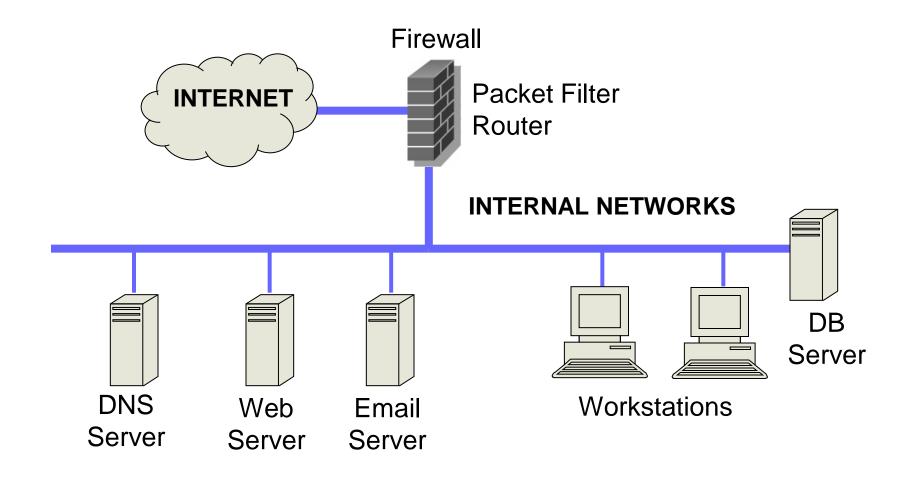

- Easy logging and audit of all incoming traffic
- Provides potential for best security through control of application layer data/commands

#### Weaknesses:

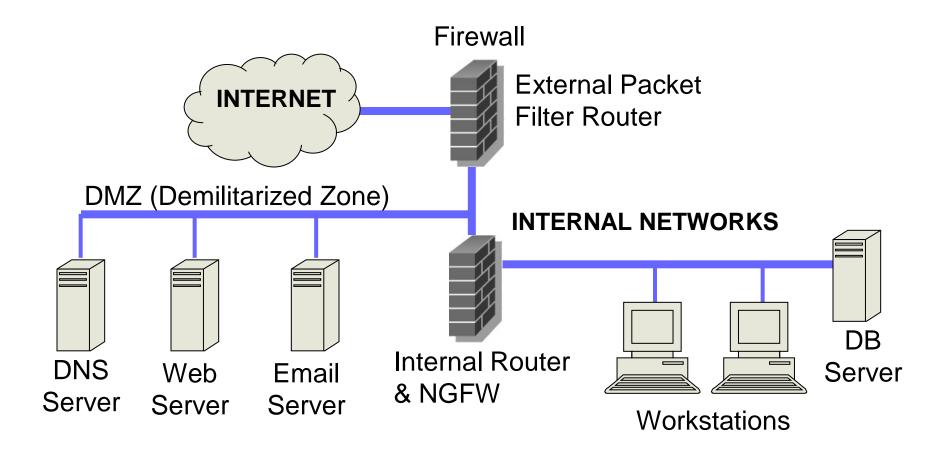
- May require some time for adapting to new applications
- Much slower than packet filters
- Much more expensive than packet filters


## TLS inspection attack with rogue proxy server

- Depending on network, attackers may be able to install rogue proxy
- SSL inspect does not assume pre-installed client proxy root certificate
- Proxy creates fake server certificate with the name of external server (e.g. facebook.com), that e.g. can be self-signed
- Fake server certificate is not validated, so browser asks user to accept it
- Fake certificate has (name = domain dame), so browser sets up TLS, and user believes that he/she has TLS connection to the external server




## Lenovo and the Superfish scam


- Superfish root certificate and diversion on some Lenovo models during 2014
- All https connections diverted to Superfish server to inject advertisements.
- Superfish created fake server certificates with names of web servers (e.g. facebook.com), signed by Superfish root private key.
- Fake server certificates were automatically validated, so users got the impression that he/she had https connection to the web server.
- Scam discovered in 2015, Superfish cert. deleted and diversion removed.



# Firewalls: Simple Firewall Architecture



# Firewalls: DMZ Firewall Architecture



# **Intrusion Detection Systems**

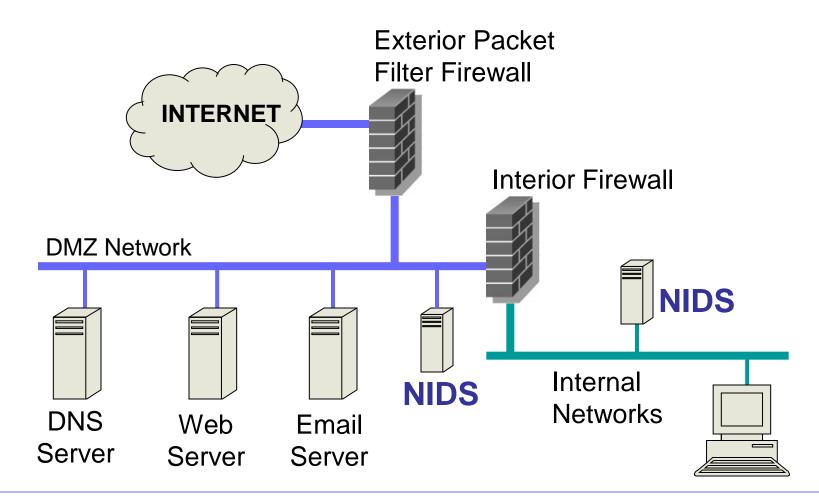
#### Intrusion Detection and Prevention

#### Intrusion

 Actions aimed at compromising the security of a target network (confidentiality, integrity, availability of resources)

#### Intrusion detection

- The identification of possible intrusion through intrusion signatures and network activity analysis
- IDS: Intrusion Detection Systems


#### Intrusion prevention

- The process of both detecting intrusion activities and managing automatic responsive actions throughout the network
- IPS: Intrusion Prevention Systems
- IDPS: Intrusion Detection and Prevention Systems

## Intrusion Detection Systems:

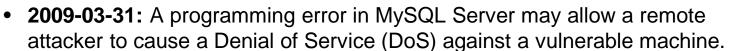
- IDS are automated systems that detect suspicious activity
- IDS can be either host-based or network-based.
- A host based IDS is designed to detect intrusions only on the host it is installed on
  - monitor changes to host's OS files and traffic sent to the host
- Network based IDS (NIDS) detect intrusions on one or more network segments, to protect multiple hosts
  - monitor network/s looking for suspicious traffic
- What can be detected:
  - Attempted and successful misuse, both external and internal agents
  - Malware: Trojan programs, viruses and worms
  - DOS (Denial Of Service) attacks

## Network IDS Deployment



# Intrusion Detection Techniques

#### Misuse detection


- Use attack "signatures" (need a model of the attack)
  - Sequences of system calls, patterns of network traffic, etc.
- Must know in advance what attacker will do (how?)
- Can only detect known attacks
- Relatively few false positives

#### Anomaly detection

- Using a model of normal system behavior, try to detect deviations and abnormalities
  - E.g., raise an alarm when a statistically rare event(s) occurs
- Can potentially detect unknown attacks
- Many false positives

# Popular NIDS

- Snort (popular open-source tool)
  - Large rule sets for known vulnerabilities, e.g.

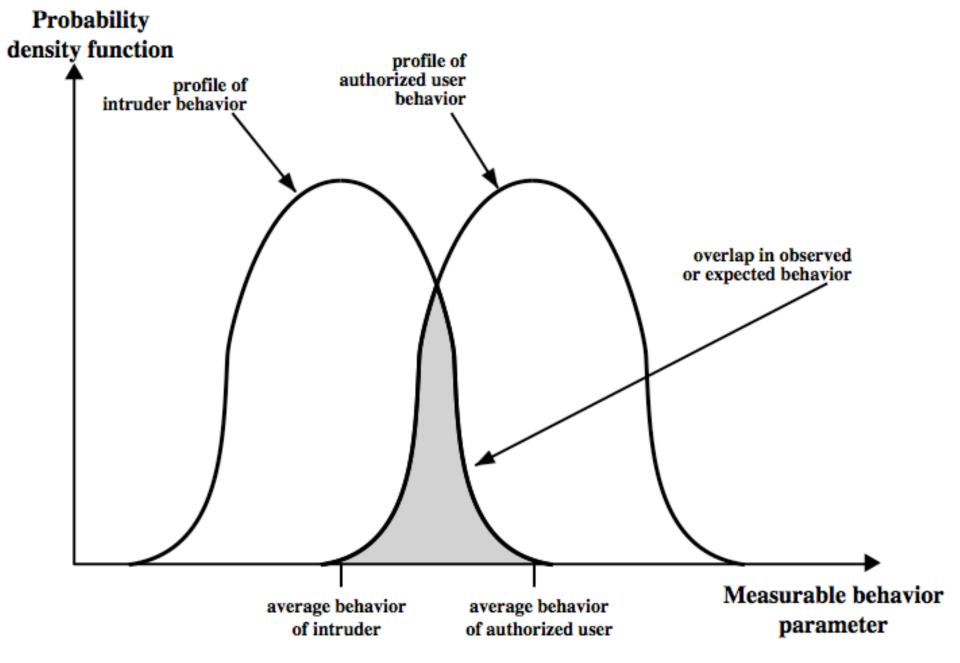


- 2009-03-27: Microsoft Windows GDI Buffer Overflow: A programming error in the Microsoft Windows kernel may allow a remote attacker to execute code with system level privileges. This may be exploited when specially crafted EMF files are viewed using Microsoft Internet Explorer.
- Bro (developed by Vern Paxson)
  - Separates data collection and security decisions
    - Event Engine distills the packet stream into high-level events describing what's happening on the network
    - Policy Script Interpeter uses a script defining the network's security policy to decide what to do in response



Bro

# Port Scanning


- Many vulnerabilities are OS-specific
  - Bugs in specific implementations, default configuration
- Port scan is often a prelude to an attack
  - Attacker tries many ports on many IP addresses
    - For example, looking for an old version of some daemon with an unpatched buffer overflow
  - If characteristic behavior detected, mount attack
  - "The Art of Intrusion": virtually every attack involves port scanning and password cracking

## Intrusion Detection Problems

- Lack of training data with real attacks
  - But lots of "normal" network traffic, system call data
- Data drift
  - Statistical methods detect changes in behavior
  - Attacker can attack gradually and incrementally
- Discriminating characteristics hard to specify
  - Many attacks may be within bounds of "normal" range of activities
- False identifications are very costly
  - Sysadm will spend many hours examining evidence

## Intrusion Detection Errors

- False negatives: attack is not detected
  - Big problem in signature-based misuse detection
- False positives: harmless behavior is classified as attack
  - Big problem in statistical anomaly detection
- Both types of IDS suffer from both error types
- Both false positives and false negatives are problematic
  - Attacks are fairly rare events
  - IDS often suffer from "base-rate fallacy"



## Base Rate Fallacy

- Consider statements: r: "attack occurs", s: "signature detected"
  p(r|s): probability of attack, given that signature is detected
  p(s|r): probability of detecting signature, given that attack occurs
  p(s|¬r): probability of detecting signature when no attack occurs
  a(r): base rate of attacks (i.e. average rate of attack per connection)
- Learning produces p(s|r) and  $p(s|\neg r)$ , but detection requires p(r|s)
- Base rate fallacy is to assume  $p(r|s) \approx 1$  without considering a(r) '  $p(r|s) \approx 1$ ' is a good approximation when  $a(r) \approx 1$  or  $p(s|\neg r) \approx 0$  '  $p(r|s) \approx 1$ ' is a <u>bad</u> approximation when a(r) < 1 and  $p(s|\neg r) > 0$
- Correct p(r|s) requires a(r):  $p(r|s) = \frac{a(r)p(s|r)}{a(r)p(s|r) + (1-a(r))p(s|\neg r)}$

#### Remarks on Intrusion Detection

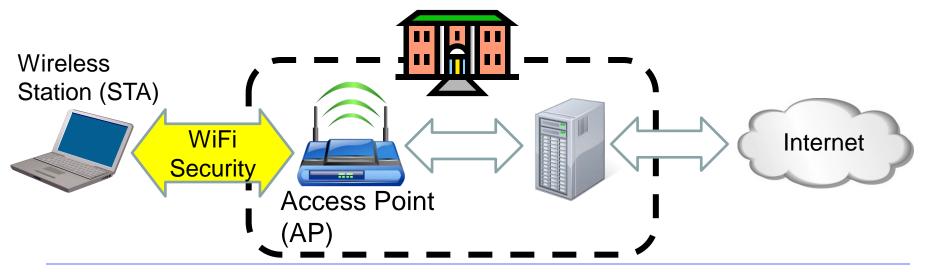
- Most alarms are false positives
  - Requires automated screening and filtering of alarms
- Most true positives are trivial incidents
  - can be ignored,
  - the attacks will never be able to penetrate any system
- Serious incidents need human attention
  - Can be dealt with locally
  - May require external expertise
- Potential for improvement through more intelligent IDS
  - Less false positives
  - Better detection of advanced attacks (APT)

### Honeypots

#### A honeypot:

- is a computer configured to detect network attacks or malicious behaviour,
- appears to be part of a network, and seems to contain information or a resource of value to attackers.
- But honeypots are isolated, are never advertised and are continuously monitored
- All connections to honeypots are per definition malicious
- Can be used to extract attack signatures
- Honeynet is an international security club, see next slide

## Intrusion Prevention Systems


- Intrusion Prevention System (IPS) is a relatively new term that can mean different things
- Most commonly, an IPS is a combination of an IDS and a firewall
- A system that detects an attack and can stop it as well
- Can be application specific
  - Deployed on a host to stop attacks on specific applications such as IIS
- Can be an extension of an NIDS
- False positives are problematic, because automated prevention measures can block services

# **WLAN Security**



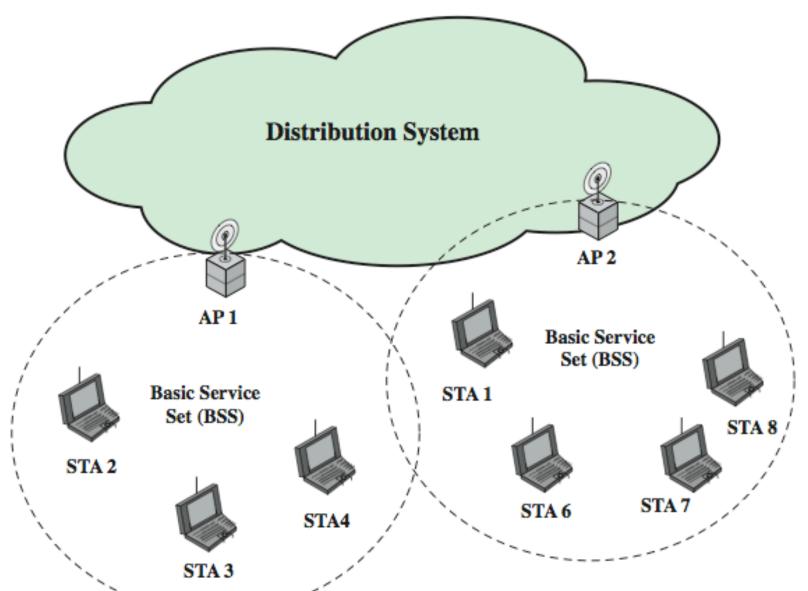
#### IEEE 802.11 Standards for WLAN

- IEEE 802.11 formed in 1990's
  - charter to develop a protocol & transmission specifications for wireless LANs (WLANs)
- Since then the demand for WLANs, at different frequencies and data rates, has exploded
- New ever-expanding list of standards issued
  - from 10Mbps to 1Gbps transmission rate

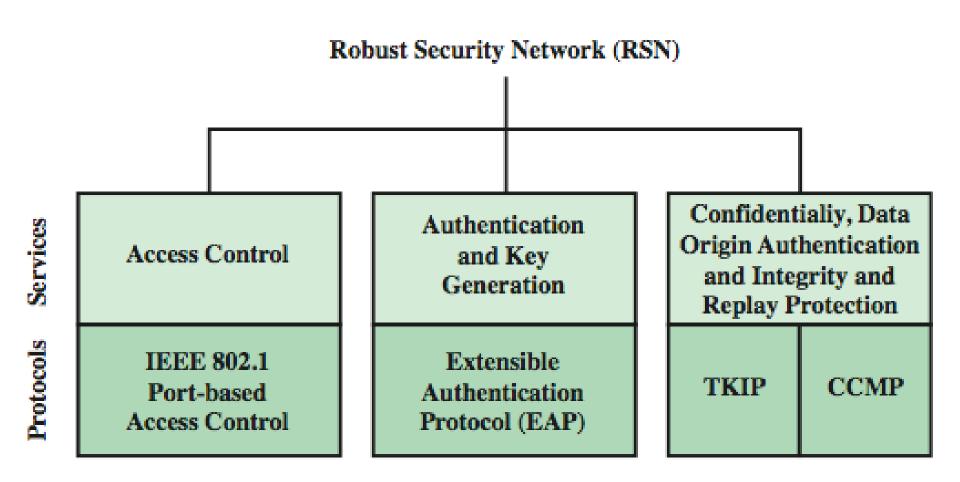


### 802.11 WiFi Security

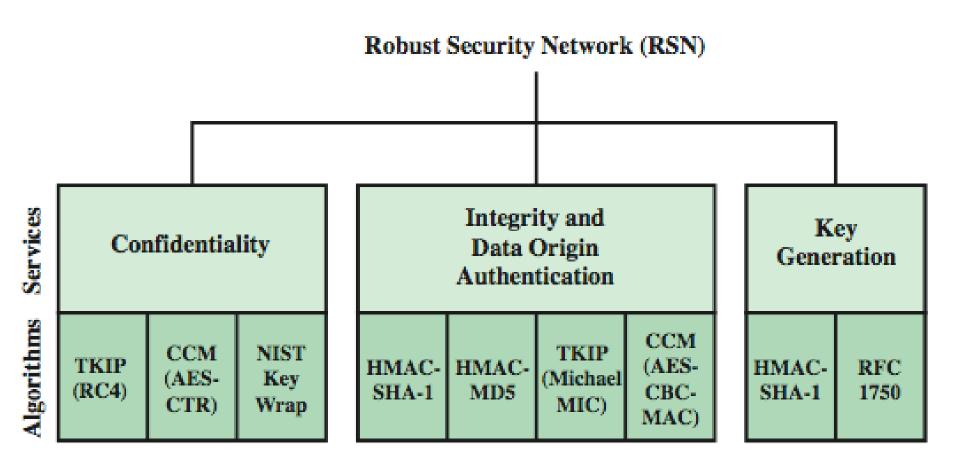
- Only authorized terminals (or users) may get access through Wireless LAN
- Should be impossible to set up rogue AP
- Interception of traffic by radios within range should be impossible


|                  | WEP (1999)<br>801.11b | WPA (2003)<br>802.11i (subset) | WPA2 (2004) (aka. RSN)<br>802.11i (full set) |
|------------------|-----------------------|--------------------------------|----------------------------------------------|
| Auth. & key gen. | WEP                   | EAP                            | EAP                                          |
| Encryption       | RC4                   | RC4+TKIP                       | CCMP AES CTR (or TKIP)                       |

- WEP: Wired Equivalent Privacy (broken)
- WPA: WiFi Protected Access
- EAP: Extensible Authentication Protocol
- RC4: Rivest Cipher 4 (a stream cipher)
- TKIP: Temporal-Key Integrity Protocol
- CCMP: Counter Mode with CBC Message Authentication Protocol
- RSN: Robust Security Network

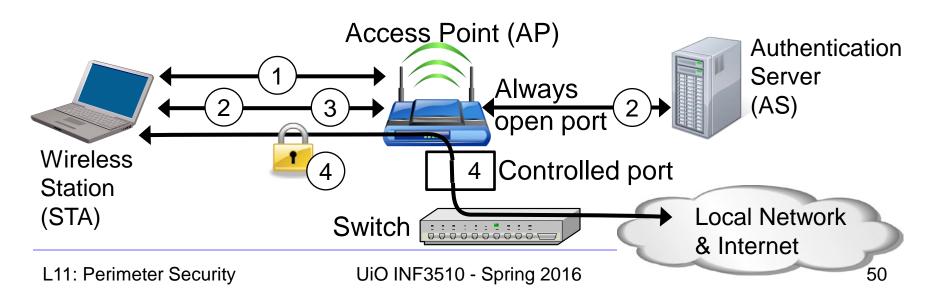

## **IEEE 802 Terminology**

- Station (STA)
  - Wireless terminal that communicates with 802.11 functionality
- Access Point (AP)
  - Receives radio signals and controls access to network
- Basic Service Set (BSS)
  - Set of stations and one AP
- Extended Service Set (ESS)
  - Set of multiple BSSs
- Distribution System (DS)
  - Contains an Authentication Server (AS)
  - Integrates multiple BSSs into one ESS


#### Network Components & Architecture



#### 802.11i RSN Services and Protocols




### 802.11i RSN Cryptographic Algorithms



#### 802.11i WiFi Access Control

- Mutual identity request between STA and AP
- Mutual authentication between STA and AS.
- 3. Derive pairwise master key (PMK) between STA and AP.
- 4. Encrypt radio link and open port (connect) to network access
- Controlled port from AP to network
  - is closed (disconnected) before authentication
  - is open (connected) after successful authentication



#### When you don't control the WLAN

- Often you want to connect to a wireless LAN over which you have no control, e.g. in café
- Options:
  - If you can, connect securely (WPA2, 802.11i, etc.)
    - Beware of SSL-stripping
  - If unsecured, connect to online resources securely:
    - Use a VPN (Virtual Private Network)
      - IPSEC connection to home gateway
      - TLS/SSL connections to secure web server (with HSTS)
  - Be careful not to expose passwords
  - Watch for direct attacks on untrusted networks

#### **End of Lecture**

This lecture presented:

- Firewall techniques
- Intrusion detection techniques
- WLAN Access