INF3510 Information Security University of Oslo
 Spring 2017

Lecture 4 Cryptography

University of Oslo, spring 2017
Leif Nilsen

Outline

- What is cryptography?
- Brief crypto history
- Security issues
- Symmetric cryptography
- Stream ciphers
- Block ciphers

Want to learn more?
Look up UNIK 4220

- Hash functions
- Asymmetric cryptography
- Factoring based mechanisms
- Discrete Logarithms
- Digital signatures
- Quantum Resistant Crypto

Terminology

Cryptology

- Cryptography is the science of secret writing with the goal of hiding the meaning of a message.
- Cryptanalysis is the science and sometimes art of breaking cryptosystems.

What is cryptology?

Oscar

Model of symmetric cryptosystem

Caesar cipher

Example: Caesar cipher
 R = \{abcdefghijklmnopqrstuvwxyz\}
 § = \{DEFGHIJKLMNOPQRSTUVWXYZABC $\}$

Plaintext: kryptologi er et spennende fag
Chiphertext: NUBSWRORJL HU HT VSHQQHQGH IDJ
Note: Caesar chipher in this form does not include a variable key, but is an instance of a "shift-cipher" using key $K=3$.

Numerical encoding of the alphabet

| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| p | q | r | s | t | u | v | w | x | y | z | æ | $ø$ | a | |
| 14 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | |

Using this encoding many classical crypto systems can be expressed as algebraic functions over Z_{26} (English alphabet) or Z_{29} (Norwegian alphabet)

Shift cipher

$$
\begin{aligned}
& \text { Let } \mathcal{B}=\triangleq=\mathrm{Z}_{29} \text {. For } 0 \leq K \leq 28 \text {, we define } \\
& \mathrm{E}(x, K)=x+K(\bmod 29) \\
& \text { and }
\end{aligned}
$$

$$
\mathrm{D}(y, K)=y-K(\bmod 29)
$$

$$
\left(x, y \in Z_{29}\right)
$$

Question: What is the size of the key space?
Puzzle: ct =
LAHYCXPAJYQHRBWNNMNMOXABNLDANLXVVDWRLJCRXWB Find the plaintext!

Exhaustive search

$$
\begin{aligned}
& \text { For[i=0, } i<26, i++ \text {, Print["Key = ", i, " Plain = ", decrypt[ct,1,i]]] } \\
& \text { Key = } 0 \text { Plain = LAHYCXPAJYQHRBWNNMNMOXABNLDANLXVVDWRLJCRXWB } \\
& \text { Key = } 1 \text { Plain = KZGXBWOZIXPGQAVMMLMLNWZAMKCZMKWUUCVQKIBQWVA } \\
& \text { Key = } 2 \text { Plain = JYFWAVNYHWOFPZULLKLKMVYZLJBYLJVTTBUPJHAPVUZ } \\
& \text { Key = } 3 \text { Plain = IXEVZUMXGVNEOYTKKJKJLUXYKIAXKIUSSATOIGZOUTY } \\
& \text { Key = } 4 \text { Plain }=\text { HWDUYTLWFUMDNXSJJIJIKTWXJHZWJHTRRZSNHFYNTSX } \\
& \text { Key }=5 \text { Plain }=\text { GVCTXSKVETLCMWRIIHIHJSVWIGYVIGSQQYRMGEXMSRW } \\
& \text { Key }=6 \text { Plain = FUBSWRJUDSKBLVQHHGHGIRUVHFXUHFRPPXQLFDWLRQV } \\
& \text { Key }=7 \text { Plain }=\text { ETARVQITCRJAKUPGGFGFHQTUGEWTGEQOOWPKECVKQPU } \\
& \text { Key = } 8 \text { Plain = DSZQUPHSBQIZJTOFFEFEGPSTFDVSFDPNNVOJDBUJPOT } \\
& \text { Key }=9 \text { Plain }=\text { CRYPTOGRAPHYISNEEDEDFORSECURECOMMUNICATIONS } \\
& \text { Key }=10 \text { Plain }=\text { BQXOSNFQZOGXHRMDDCDCENQRDBTQDBNLLTMHBZSHNMR } \\
& \text { Key = } 11 \text { Plain = APWNRMEPYNFWGQLCCBCBDMPQCASPCAMKKSLGAYRGMLQ } \\
& \text { Key = } 12 \text { Plain = ZOVMQLDOXMEVFPKBBABACLOPBZROBZLJJRKFZXQFLKP }
\end{aligned}
$$

Substitution cipher - example

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o
U	D	M	I	P	Y	Æ	K	O	X	S	N	\AA	F	A
p	q	r	s	t	u	v	w	x	y	z	æ	ø	å	
E	R	T	Z	B	\varnothing	C	Q	G	W	H	L	V	J	

Plaintext: fermatssisteteorem
Ciphertext: YPTÅUBZZOZBPBPATPÅ
What is the size of the key space? 8841761993739701954543616000000 (1) 2^{103}

Lessons learned

- A cipher with a small keyspace can easily be attacked by exhaustive search
- A large keyspace is necessary for a secure cipher, but it is by itself not suffcient
- Monoalphabetical substitution ciphers can easily be broken

Enigma

- German WW II crypto machine - Many different variants
- Polyalphabetical substitution
- Analysed by Polish and English mathematicians

Enigma key list

Geheim!
Sonder - Maschinenschlüssel BGT

Dstum	Walzenlage	Ringstellung	Steckerverbindungen	Grundstellung
$\begin{aligned} & 31 . \\ & 30 . \\ & 29 . \end{aligned}$	IV II I III V $I I$ V $I V$ I	$\begin{array}{ccc} y & T & R \\ Y & v & p \\ 0 & H & A \end{array}$		vyj cqr vinf

Practical complexity for attacking Enigma

Cryptoanalytical assumptions during WW II:

- 3 out of 5 rotors with known wiring
- 10 stecker couplings
- Known reflector

$$
\begin{aligned}
& N=150738274937250 \cdot 60 \cdot 17576 \cdot 676= \\
& 107458687327250619360000 \text { (77 bits) }
\end{aligned}
$$

Attacking ENIGMA

Posisjon:
1234567 Chiffertekst: J T G E F P G Crib: \quad R O M M E L F

Cryptanalysis: Attacking Cryptosystems

- Classical Attacks
- Mathematical Analysis
- Brute-Force Attack
- Implementation Attack: Try to extract the key through reverse engineering or power measurement, e.g., for a banking smart card.
- Social Engineering: E.g., trick a user into giving up her password

Brute-Force Attack (or Exhaustive Key Search)

- Treats the cipher as a black box
- Requires (at least) 1 plaintext-ciphertext pair (x_{0}, y_{0})
- Check all possible keys until condition is fulfilled:

$$
d_{K}\left(y_{0}\right)=x_{0}
$$

- How many keys to we need?

Key length in bit	Key space	Security life time (assuming brute-force as best possible attack)
64	2^{64}	Short term (few days or less)
128	2^{128}	Long-term (several decades in the absence of quantum computers)
256	2^{256}	Long-term (also resistant against quantum computers - note that QC do not exist at the moment and might never exist)

Kerckhoff's principles

- The system should be, if not theoretically unbreakable, unbreakable in practice.
- The design of a system should not require secrecy and compromise of the system should not inconvenience the correspondents (Kerckhoffs' principle).
- The key should be rememberable without notes and should be easily changeable
- The cryptograms should be transmittable by telegraph
- The apparatus or documents should be portable and operable by a single person
- The system should be easy, neither requiring knowledge of a long list of rules nor involving mental strain

Attack models:

Known ciphertext
Known plaintext
Chosen plaintext (adaptive)
Chosen ciphertext (adaptive)
What are the goals of the attacker?

- Find the secret plaintext or part of the plaintext
- Find the encryption key
- Distinguish the encryption of two different plaintexts

How clever is the attacker?

Does secure ciphers exist?

- What is a secure cipher?
- Perfect security
- Computational security
- Provable security

"Tm sorry, we already have a direetor of security..."

A perfect secure crypto system

Offers perfect security assuming the key is perfectly random, of same length as The Message; and only used once. Proved by Claude E. Shannon in 1949.

ETCRRM

- Electronic Teleprinter Cryptographic Regenerative Repeater Mixer (ETCRRM)
- Invented by the Norwegian Army Signal Corps in 1950
- Bjørn Rørholt, Kåre Mesingseth
- Produced by STK
- Used for "Hot-line" between Moskva and Washington

- About 2000 devices produced

White House Crypto Room 1960s

Producing key tape for the one-time pad

PATENT SPECLEICATION

Inventor: BJØRN ARNOLD RORHOLT
784384
Date of Application and filing Complete Specification: March 2, 1956.
No. 6607/56.
Complete Specificotion Published: Oct. 9, 1957.

Index at acceptance:-Class 40(3), H15K.
International Classification:--H04L

COMPLETE SPECIFICATION

Electronic Apparatus for Producing Cipher Key Tape for
 Printing Telegraphy

We, Standard Telefon og Kabel- over the period occupied by a few key FABRIX A/S, a Norwegian Company, of P.O. character signalls), the proportion of code Box 749, Oslo, Norway, do hereby decilare
5 the inventiont for which we pray that a parten
5 may be granted to us, and the method by which it is to be pecformed to be particulatity described int and by the following state-ment:-
The present invention relates to electronic equipment for producing sipher key tape for printing toclegraphy.
The priscipal obisot of the inveation is to produce automatically as tape punched with a series of andond key character signals. element periods during which the aumber of control pulses is even (or odd), will not generally be equal to 0.5 , but converges the this value as the average reperition frequency of the control pulses increases. In practice it is found that an average respetition frequency of 350 puises per second (corresponding on the average, to seven control pulses por code element period) is sufficient to producce random key signalls. This is well withint the capability of a Geiger-Muller counter tube. In the teleprinter field itr is well known that the intan кn

Symmetric encryption

Is it possible to design secure and practical crypto?

Stream Cipher vs. Block Cipher

Stream cipher

Plaintext stream

Symmetric stream cipher

LFSR

Linear feedback shift register

Using n flip-flops we may generate a binary sequence of period $2^{n}-1$

$$
s_{n+i}=c_{0} s_{i}+c_{1} s_{i+1}+\cdots+c_{n-1} s_{i+n-1}
$$

Note: The stream cipher is stateful

LFSR - properties

- Easy to implement in HW, offers fast clocking
- The output sequence is completely determined of the initial state and the feedback coefficients
- Using "correct" feedback a register of length n may generate a sequence with period $2^{n}-1$
- The sequence will provide good statistical properties
- Knowing $2 n$ consecutive bits of the key stream, will reveal the initial state and feedback
- The linearity means that a single LFSR is completely useless as a stream cipher, but LFSRs may be a useful building block for the design of a strong stream cipher

Symmetric block cipher

Plaintext

Ciphertext

- The algorithm represents a family of permutations of the message space
- Normally designed by iterating a less secure round function
- May be applied in different operational modes
- Must be impossible to derive K based on knowledge of P and C

Itrerated block cipher design

Algorithm:

$$
\begin{aligned}
& w^{0} \leftarrow x \\
& w^{1} \leftarrow g\left(w^{0}, K^{1}\right) \\
& w^{2} \leftarrow g\left(w^{1}, K^{2}\right) \\
& \cdot \\
& \cdot \\
& w^{N r-1} \leftarrow g\left(w^{N r-2}, K^{N r-1}\right) \\
& w^{N r} \leftarrow g\left(w^{N r-1}, K^{N r}\right) \\
& y \leftarrow w^{N r}
\end{aligned}
$$

NB! For a fixed K, g must be injective in order to decrypt y

Substitusjon-Permutasjon nettverk (SPN):

Round function g :

Data Encryption Standard

- Published in 1977 by the US National Bureau of Standards for use in unclassified government applications with a 15 year life time.
- 16 round Feistel cipher with 64 -bit data blocks, 56-bit keys.
- 56-bit keys were controversial in 1977; today, exhaustive search on 56 -bit keys is very feasible.
- Controversial because of classified design criteria, however no loop hole was ever found.

DES architecture

$\operatorname{DES}(P):$
$\left(L_{o}, R_{0}\right)=I P(P)$
FOR $i=1$ TO 16
$L_{i}=R_{i-1}$
$R_{i}=L_{i-1} \oplus\left(R_{i-1} K_{i}\right)$
$C=I P^{-1}\left(R_{16}, L_{16}\right)$

64 bit data block 56 bit key

72.057.594.037.927.936

EFF DES-cracker

- Dedicated ASIC with 24 DES search engines
- 27 PCBs housing 1800 circuits
- Can test 92 billion keys per second
- Cost 250000 \$

- DES key found July 1998 after 56 hours search
- Combined effort DES Cracker and 100.000 PCs could test 245 billion keys per second and found key after 22 hours

DES Status

- DES is the "work horse" which over 40 years have inspired cryptographic research and development

3DES

DESX

- Use 3DES (ANSI 9.52) or DESX

Advanced Encryption Standard

- Public competition to replace DES: because 56bit keys and 64-bit data blocks were no longer adequate.
- Rijndael nominated as the new Advanced Encryption Standard (AES) in 2001 [FIPS-197].
- Rijndael (pronounce as "Rhine-doll") designed by Vincent Rijmen and Joan Daemen.
- 128-bit block size (Note error in Harris p. 809)
- 128-bit, 196-bit, and 256-bit key sizes.
- Rijndael is not a Feistel cipher.

Rijndael round function

Rijndael encryption

1. Key mix (round key K_{0})
2. $N_{r}-1$ rounds containing:
a) Byte substitution
b) Row shift
c) Coloumn mix
d) Key mix (round key K_{i})
3. Last round containing:

Key	Rounds
128	10
192	12
256	14

a) Byte substitution
b) Row shift
c) Key mix (round key $K_{N r}$)

Block Ciphers: Modes of Operation

- Block ciphers can be used in different modes in order to provide different security services.
- Common modes include:
- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Output Feedback (OFB)
- Cipher Feedback (CFB)
- Counter Mode (CTR)
- Galois Counter Mode (GCM) \{Authenticated encryption\}

Use a secure mode!

Plaintext

Ciphertext using ECB mode

Ciphertext using secure mode

Integrity Check Functions

Hash functions

Hash function

Hash value

Applications of hash functions

- Protection of password
- Comparing files
- Authentication of SW distributions
- Bitcoin
- Generation of Message Authentication Codes (MAC)
- Digital signatures
- Pseudo number generation/Mask generation functions
- Key derivation

Hash functions (message digest functions)

Requirements for a one-way hash function h :

1. Ease of computation: given x, it is easy to compute $h(x)$.
2. Compression: h maps inputs x of arbitrary bitlength to outputs $h(x)$ of a fixed bitlength n.
3. One-way: given a value y, it is computationally infeasible to find an input x so that $h(x)=y$.
4. Collision resistance: it is computationally infeasible to find x and x^{\prime}, where $x \neq x^{\prime}$, with $h(x)=h\left(x^{\prime}\right)$ (note: two variants of this property).

Properties of hash functions

Ease of computationresistance \qquad

Collision Weak collision resistance ($2^{\text {nd }}$ pre-image resistance resistance)

Frequently used hash functions

- MD5: 128 bit digest. Broken. Often used in Internet protocols but no longer recommended.
- SHA-1 (Secure Hash Algorithm):160 bit digest. Potential attacks exist. Designed to operate with the US Digital Signature Standard (DSA);
- SHA-256, 384, 512 bit digest. Still secure. Replacement for SHA-1 (SHA-2 family)
- RIPEMD-160: 160 bit digest. Still secure. Hash function frequently used by European cryptographic service providers.
- NIST competition for new secure hash algorithm, announcement of winner in 2012: SHA-3 = Keccak

And the winner is?

- NIST announced Keccak as the winner of the SHA-3 Cryptographic Hash Algorithm Competition on October 2, 2012, and ended the fiveyear competition.
- Keccak was designed by a team of cryptographers from Belgium and Italy, they are:
- Guido Bertoni (Italy) of STMicroelectronics,
- Joan Daemen (Belgium) of STMicroelectronics,
- Michaël Peeters (Belgium) of NXP Semiconductors, and
- Gilles Van Assche (Belgium) of STMicroelectronics.

Keccak and sponge functions

MAC and MAC algorithms

- MAC means two things:

1. The computed message authentication code $h(M, k)$
2. General name for algorithms used to compute a MAC

- In practice, the MAC algorithm is e.g.
- HMAC (Hash-based MAC algorithm))
- CBC-MAC (CBC based MAC algorithm)
- CMAC (Cipher-based MAC algorithm)
- MAC algorithms, a.k.a. keyed hash functions, support data origin authentication services.

Practical message integrity with MAC

HMAC

- Define: ipad $=3636 \ldots 36$ (512 bit)
- opad = 5C5C...5C (512 bit)
- $\operatorname{HMAC}_{K}(x)=$ SHA-1 $((K \oplus$ opad $) \|$ SHA-1 $((K \oplus i p a d) \| x))$

CBC-MAC

- CBC-MAC (x, K)
- $\operatorname{sett} x=x_{1}\left\|x_{2}\right\| \ldots \| x_{n}$
- $\mathrm{IV} \leftarrow 00 \ldots 0$
- $y_{0} \leftarrow \mathrm{IV}$
- for $i \leftarrow 1$ to n
do $y_{i} \leftarrow e_{k}\left(y_{i-1} \oplus x_{i}\right)$
- return $\left(y_{n}\right)$

Public-Key Cryptography

Symmetric cryptosystem

Asymmetric crypto system

Public key inventors?

Marty Hellman and Whit Diffie, Stanford 1976
R. Rivest, A. Shamir and L. Adleman, MIT 1978

James Ellis, CESG 1970

C. Cocks, M. Williamson, CESG 1973-1974

Asymmetric crypto

Public key Cryptography was born in May 1975, the child of two problems and a misunderstanding!

One-way functions

Modular power function

Given $n=p q$, where p and q are prime numbers. No
efficient algoritms to find p and q.
Chose a positive integer b and define $f: Z_{n} \rightarrow Z_{n}$

$$
f(x)=x^{b} \bmod n
$$

Modular exponentiation
Given prime p, generator g and a modular power $a=g^{x}(\bmod p)$. No
efficient algoritms to find $x . f: Z_{p} \rightarrow Z_{p}$

$$
f(x)=g^{x} \bmod p
$$

Diffie-Hellman key agreement (key exchange)

 (provides no authentication)Alice picks random integer a

$g^{a} \bmod p$
$g^{b} \bmod p$
Computationally impossible to compute discrete logarithm

Bob picks random integer b

Alice computes the shared secret

$$
\left(g^{b}\right)^{a}=g^{a b} \bmod p
$$

Bob computes the same secret

$$
\left(g^{a}\right)^{b}=g^{a b} \bmod p .
$$

Example

- Z_{11} using $g=2$:
$-2^{1}=2(\bmod 11) 2^{6}=9(\bmod 11)$
$-2^{2}=4(\bmod 11) 2^{7}=7(\bmod 11)$
$-2^{3}=8(\bmod 11) 2^{8}=3(\bmod 11)$
$-2^{4}=5(\bmod 11) 2^{9}=6(\bmod 11)$
$-2^{5}=10(\bmod 11) 2^{10}=1(\bmod 11)$
- $\log _{2} 5=4$
- $\log _{2} 7=7$
- $\log _{2} 1=10(\equiv 0 \bmod 10)$

Example (2)

Abstract

p $=$ 3019662633453665226674644411185277127204721722044543980521881984280643980698016315342127777985323 7655786915947633907457862442472144616346714598423225826077976000905549946633556169688641786953396 0040623713995997295449774004045416733136225768251717475634638402409117911722715606961870076297223 4159137526583857970362142317237148068590959528891803802119028293828368386437223302582405986762635 8694772029533769528178666567879514981999272674689885986300092124730492599541021908208672727813714 8522572014844749083522090193190746907275606521624184144352256368927493398678089550310568789287558 75522700141844883356351776833964003 g = 1721484410294542720413651217788953849637988183467987659847411571496616170507302662812929883501017 4348250308006877834103702727269721499966768323290540216992770986728538508742382941595672248624817 9949179397494476750553747868409726540440305778460006450549504248776668609868201521098873552043631 7965394509849072406890541468179263651065250794610243485216627272170663501147422628994581789339082 7991578201408649196984764863302981052471409215846871176739109049866118609117954454512573209668379 5760420560620966283259002319100903253019113331521813948039086102149370446134117406508009893347295 86051242347771056691010439032429058

Finn a når $g^{\mathrm{a}}(\bmod \mathrm{p})=$ 4411321635506521515968448863968324914909246042765028824594289876687657182492169027666262097915382 0952830455103982849705054980427000258241321067445164291945709875449674237106754516103276658256727 2413603372376920980338976048557155564281928533840136742732489850550648761094630053148353906425838 5317698361559907392252360968934338558269603389519179121915049733353702083721856421988041492207985 6566434665604898681669845852964624047443239120501341277499692338517113201830210812184500672101247 2700988032756016626566167579963223042395414267579262222147625965023052419869061244027798941410432 6855174387813098860607831088110617

Solution

a =

71893136149709653804503478677866573695060790720621260648699193249561437588126371185 81694154929099396752251787268346548051895320171079663652680741564200286881487888963 19895353311170236034836658449187117723820644855184055305945501710227615558093657781 93109639893698220411548578601884177129022057550866690223052160523604836233675971504 25938247630127368253363295292024736143937779912318142315499711747531882501424082252 28164641111954587558230112140813226698098654739025636607106425212812421038155501562 37005192231836155067262308141154795194735834753570104459663325337960304941906119476 18181858300094662765895526963615406

It is easy to compute $g^{a}(\bmod p)\{0.016 \mathrm{~s}\}$, but it is computaionally infeasable to compute the exponent a from the g^{a}.

Ron Rivest, Adi Shamir and Len Adleman

- Read about public-key cryptography in 1976 article by Diffie \& Hellman: "New directions in cryptography"
- Intrigued, they worked on finding a practical algorithm
- Spent several months in 1976 to re-invent the method for non-secret/public-key encryption discovered by Clifford Cocks 3 years earlier
- Named RSA algorithm

RSA parametre (textbook version)

- Bob generates two large prime numbers p and q and computes $n=p \cdot q$.
- He then computes a public encryption exponent e, such that
- $(e,(p-1)(q-1)))=1$ and computes the corresponding decryption exsponent d, by solving:

$$
d \cdot e \equiv 1(\bmod (p-1)(q-1))
$$

- Bob's public key is the pair $\mathrm{P}_{\mathrm{B}}=(e, n)$ and the corresponding private and secret key is $\mathrm{S}_{\mathrm{B}}=(d, n)$.

> Encryption: $\mathrm{C}=\mathrm{M}^{e}(\bmod n)$
> Decryption: $\mathrm{M}=\mathrm{C}^{d}(\bmod n)$

RSA toy example

- Set $p=157, q=223$. Then $n=p \cdot q=157 \cdot 223=35011$ and $(p-1)(q-1)=156 \cdot 222=34632$
- Set encryption exponent: $e=14213\{\operatorname{gcd}(34632,14213)=1\}$
- Public key: $(14213,35011)$
- Compute: $d=e^{-1}=14213^{-1}(\bmod 34632)=31613$
- Private key: $(31613,35011)$
- Encryption:
- Plaintext $\mathrm{M}=19726$, then $\mathrm{C}=19726^{14213}(\bmod 35011)=32986$
- Decryption:
- Cipherertext C $=32986$, then $M=32986{ }^{31613}(\bmod 35011)=19726$

Factoring record- December 2009

- Find the product of
- $p=33478071698956898786044169848212690817704794983713768568$
- 912431388982883793878002287614711652531743087737814467999489
- and
- $q=367460436667995904282446337996279526322791581643430876426$
- 76032283815739666511279233373417143396810270092798736308917 ?

Answer:
$\mathrm{n}=123018668453011775513049495838496272077285356959533479219732$ 245215172640050726365751874520219978646938995647494277406384592 519255732630345373154826850791702612214291346167042921431160222 1240479274737794080665351419597459856902143413

Computation time ca. 0.0000003 s on a fast laptop!
RSA768 - Largest RSA-modulus that have been factored (12/12-2009)
Up to 2007 there was $50000 \$$ prize money for this factorisation!

Computational effort?

- Factoring using NFS-algorithm (Number Field Sieve)
- 6 mnd using 80 cores to find suitable polynomial
- Solding from August 2007 to April 2009 (1500 AMD64-år)
- 192796550 * 192795550 matrise (105 GB)
- 119 days on 8 different clusters
- Corresponds to 2000 years processing on one single core 2.2 GHz AMD Opteron (ca. 2^{67} instructions)

Asymmetric Ciphers: Examples of Cryptosystems

- RSA: best known asymmetric algorithm.
- RSA = Rivest, Shamir, and Adleman (published 1977)
- Historical Note: U.K. cryptographer Clifford Cocks invented the same algorithm in 1973, but didn't publish.
- ElGamal Cryptosystem
- Based on the difficulty of solving the discrete log problem.
- Elliptic Curve Cryptography
- Based on the difficulty of solving the EC discrete log problem.
- Provides same level of security with smaller key sizes.

Elliptic curves

- Let $p>3$ be a prime. An elliptic curve $y^{2}=x^{3}+a x+b$ over $\mathrm{GF}(p)=\mathrm{Z}_{p}$ consist of all solutions $(x, y) \in Z_{p} \times Z_{p}$ to the equation

$$
y^{2} \equiv x^{3}+a x+b(\bmod p)
$$

- where $a, b \in Z_{p}$ are constants such that $4 a^{3}+27 b^{2} \neq 0(\bmod p)$, together with a special point m_{J} which is denoted as the point at infinity.

Elliptic curve over R

Point addition

Asymmetric Encryption: Basic encryption operation

- In practice, large messages are not encrypted directly with asymmetric algorithms. Hybrid systems are used, where only symmetric session key is encrypted with asymmetric alg.

Hybrid Cryptosystems

- Symmetric ciphers are faster than asymmetric ciphers (because they are less computationally expensive), but ...
- Asymmetric ciphers simplify key distribution, therefore ...
- a combination of both symmetric and asymmetric ciphers can be used - a hybrid system:
- The asymmetric cipher is used to distribute a randomly chosen symmetric key.
- The symmetric cipher is used for encrypting bulk data.

Confidentiality Services: Hybrid Cryptosystems

Digital Signatures

Digital Signature Mechanisms

- A MAC cannot be used as evidence that should be verified by a third party.
- Digital signatures used for non-repudiation, data origin authentication and data integrity services, and in some authentication exchange mechanisms.
- Digital signature mechanisms have three components:
- key generation
- signing procedure (private)
- verification procedure (public)
- Algorithms
- RSA
- DSA and ECDSA

Practical digital signature based on hash value

Digital Signatures

- To get an authentication service that links a document to A's name (identity) and not just a verification key, we require a procedure for B to get an authentic copy of A's public key.
- Only then do we have a service that proves the authenticity of documents 'signed by A '.
- This can be provided by a PKI (Public Key Infrastructure)
- Yet even such a service does not provide nonrepudiation at the level of persons.

Difference between MACs \& Dig. Sig.

- MACs and digital signatures are both authentication mechanisms.

- MAC: the verifier needs the secret that was used to compute the MAC; thus a MAC is unsuitable as evidence with a third party.
- The third party does not have the secret.
- The third party cannot distinguish between the parties knowing the secret.
(3) - Digital signatures can be validated by third parties, and can in theory thereby support both non-repudiation and authentication.

Key length comparison:

Symmetric and Asymmetric ciphers offering comparable security

AES Key Size	RSA Key Size	Elliptic curve Key Size
-	1024	163
128	3072	256
192	7680	384
256	15360	512

Another look at key lengths

Table 1. Intuitive security levels.

security level				
	volume of water to bring to a boil	symmetric key	cryptographic hash	RSA modulus
teaspoon security	0.0025 liter	35	70	242
shower security	coler	50	100	453
pool security	2500000 liter	65	130	745
rain security	$0.082 \mathrm{~km}^{3}$	80	160	1130
lake security	$89 \mathrm{~km}^{3}$	90	180	1440
sea security	$3750000 \mathrm{~km}^{3}$	105	210	1990
global security	$1400000000 \mathrm{~km}^{3}$	114	228	2380
solar security	-	140	280	3730

The eavesdropper strikes back!

MIT
 Technology
 Review

Computing

NSA Says It "Must Act Now" Against the Quantum Computing Threat

 computers will neutralize our best encryption - but doesn't yet know what to do about that problem.

by Tom Simonite February 3,2016

Quantum Computers

- Proposed by Richard Feynman 1982
- Boosted by P. Schor's algorithm for integer factorization and discrete logarithm in quantum polynomial time
- Operates on qubit - superposition of 0 and 1
- IBM built a 7-bit quantum computer and could find the factors of the integer 15 using NMR techniques in 2001
- NMR does not scale
- Progress continues, but nobody knows if or when a large scale quantum computer ever can be constructed
- QC will kill current public key techniques, but does not mean an end to symmetric crypto
- Post Quantum Crypto (PQC) represents current research initiatives to develop crypto mechanisms that can resist quantum computer attacks!

Current world record of QF!

Table 5: Quantum factorization records					
Number	\# of factors	\# of qubits needed	Algorithm	Year implemented	Implemented without prior knowledge of solution
15	2	8	Shor	2001 [2]	x
	2	8	Shor	2007 [3]	x
	2	8	Shor	2007 [3]	x
	2	8	Shor	2009 [5]	x
	2	8	Shor	2012 [6]	x
21	2	10	Shor	2012 [7]	x
143	2	4	minimization	2012 [1]	\checkmark
56153	2	4	minimization	2012 [1]	\checkmark
291311	2	6	minimization	not yet	\checkmark
175	3	3	minimization	not yet	\checkmark

Scientific America Technology, Jan 2017

Quantum Computers Ready to Leap Out of the Lab in 2017

Google, Microsoft and a host of labs and start-ups are racing to turn scientific curiosities into working machines

By Davide Castelvecchi, Nature magazine on January 4, 2017 Véalo en español

Credit: Mehau Kulyk Getty Images

Quantum computing has long seemed like one of those technologies that are 20 years away, and always will be. But 2017 could be the year that the field sheds its research-only image.

Computing giants Google and Microsoft recently hired a host of leading lights, and have set challenging goals for this year. Their ambition reflects a broader transition taking place at start-ups and academic research labs alike: to move from pure science towards engineering.
"People are really building things," says Christopher Monroe, a physicist at the University of Maryland in College Park who co-founded the start-up IonQ in 2015. "I've never seen anything like that. It's no longer just research."

Brave new crypto world.................

End of lecture

