		Outline					
Ur	F3510 Information Security niversity of Oslo pring 2018	 What is cryptography? Brief crypto history Security issues Symmetric cryptography 					
	Lecture 3	 Stream ciphers Block ciphers Hash functions 	Want to learn more? Look up UNIK 4220				
	Cryptography	 Asymmetric cryptography Factoring based mechanisms Discrete Logarithms Digital signatures 					
ASUTAS OSLOP	University of Oslo, spring 2018	– Quantum Resistant Crypto					
Mocceti	Leif Nilsen	L03 Cryptography INF3510 - UiO 2018		2			

What is cryptology?

Caesar cipher

Example: Caesar cipher

P = {abcdefghijklmnopqrstuvwxyz}

C = {DEFGHIJKLMNOPQRSTUVWXYZABC }

Plaintext: kryptologi er et spennende fag **Chiphertext:** NUBSWRORJL HU HT VSHQQHQGH IDJ Note: Caesar chipher in this form does not include a variable key, but is an instance of a "shift-cipher" using key *K* = 3.

Model of symmetric cryptosystem

Numerical encoding of the alphabet

	а	b	c	d	e	f	g	h	i	j	k	1 11	m	n	0	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
		I		I					1		ı	1	I	ı	1	ı
_	р	q	r	S	t	u	v	V	v	X	У	Z	æ	ø	å 28	
	14	16	17	18	19	20	21	2	22	23	24	25	26	27	28	

Using this encoding many classical crypto systems can be expressed as algebraic functions over Z_{26} (English alphabet) or Z_{29} (Norwegian alphabet)

7

L03 Cryptography

Shift cipher

Let $P = C = Z_{26.}$ For $0 \le K \le 25$, we define $E(x, K) = x + K \pmod{26}$ and $D(y, K) = y - K \pmod{26}$ $(x, y \in Z_{26})$

Question: What is the size of the key space?

Puzzle: ct =

LAHYCXPAJYQHRBWNNMNMOXABNLDANLXVVDWRLJCRXWB Find the plaintext!

L03 Cryptography	INF3510 - UiO 2018	9	L03 Cryptography	INF3510 - UiO 2018

Substitution cipher - example

	a	b	c	d	e	f	g	h	li	j	k	1 N	m	n	0	
	U	D	М	Ι	Р	Y	Æ	Κ	0	X	S	N	Å	F	A	
ľ	,	q	r	s	t	u	v	1	v	X	у	z	æ	ø	å J	
I	Ξ	R	Т	Ζ	В	Ø	C		5	G	W	Н	L	V	J	

Plaintext: fermatssisteteorem Ciphertext: YPTÅUBZZOZBPBPATPÅ

What is the size of the key space? 8841761993739701954543616000000 2 2¹⁰³

Exhaustive search

<u>F0[[I=0, I>20, I++, P</u>	<u> </u>
Key = 0 Plain = LAHYCXPA	JYQHRBWNNMNMOXABNLDANLXVVDWRLJCRXWB
Key = 1 Plain = KZGXBWOZ	ZIXPGQAVMMLMLNWZAMKCZMKWUUCVQKIBQWVA
Key = 2 Plain = JYFWAVNY	'HWOFPZULLKLKMVYZLJBYLJVTTBUPJHAPVUZ
Key = 3 Plain = IXEVZUMX0	GVNEOYTKKJKJLUXYKIAXKIUSSATOIGZOUTY
Key = 4 Plain = HWDUYTLV	VFUMDNXSJJIJIKTWXJHZWJHTRRZSNHFYNTSX
Key = 5 Plain = GVCTXSKV	/ETLCMWRIIHIHJSVWIGYVIGSQQYRMGEXMSRW
Key = 6 Plain = FUBSWRJU	JDSKBLVQHHGHGIRUVHFXUHFRPPXQLFDWLRQV
Key = 7 Plain = ETARVQITC	CRJAKUPGGFGFHQTUGEWTGEQOOWPKECVKQPU
Key = 8 Plain = DSZQUPHS	BQIZJTOFFEFEGPSTFDVSFDPNNVOJDBUJPOT
Key = 9 Plain = CRYPTOGR	RAPHYISNEEDEDFORSECURECOMMUNICATIONS
Key = 10 Plain = BQXOSNF	QZOGXHRMDDCDCENQRDBTQDBNLLTMHBZSHNMR
Key = 11 Plain = APWNRME	EPYNFWGQLCCBCBDMPQCASPCAMKKSLGAYRGMLC
Key = 12 Plain = ZOVMQLD	OXMEVFPKBBABACLOPBZROBZLJJRKFZXQFLKP
• .	
•	

Lessons learned

- A cipher with a small keyspace can easily be attacked by *exhaustive search*
- A *large keyspace* is necessary for a secure cipher, but it is by itself not suffcient
- Monoalphabetical substitution ciphers can easily be broken

11

Enigma

- · German WW II crypto machine
- Many different variants
- Polyalphabetical substitution
- Analysed by Polish and English mathematicians

L03 Cryptography

INF3510 - UiO 2018

13

Enigma key list

Geneim!

Sonder - Maschinenschlüssel BGT

Datum	Walzenlage		Ringstellung		Steckerverbindungen										Grundstellung		
31.	1V	11	1	F	т	R	HR	AT	гя.	зк	UΥ	ъ¥	ov	IJ	ьo	ых	vyj
30.	III	V	II	Y	v	P	OR	KI	JV	OE:	$\mathbb{Z}\mathbb{K}$	ΜU	ъ¥	YC	DS	GP	cqr
29.	v	IV	1	0	н	R	UX	JC	Pb	ЪK	TA	ED	ST	DS	LU	FI	vhf

L03 Cryptography

INF3510 - UiO 2018

14

Practical complexity for attacking Enigma

Cryptoanalytical assumptions during WW II:

- 3 out of 5 rotors with known wiring
- 10 stecker couplings
- Known reflector

N = 150 738 274 937 250 · 60 · 17 576 · 676 = 107458687327250619360000 (77 bits)

Attacking ENIGMA

 Posisjon:
 1
 2
 3
 4
 5
 6
 7

 Chiffertekst:
 J
 T
 G
 E
 F
 P
 G

 Crib:
 R
 O
 M
 M
 E
 L
 F

15

L03 Cryptography

INF3510 - UiO 2018

L03 Cryptography

Cryptanalysis: Attacking Cryptosystems

- Classical Attacks
 - Mathematical Analysis
 - Brute-Force Attack

• **Implementation Attack**: Try to extract the key through reverse engineering or power measurement, e.g., for a banking smart card.

• Social Engineering: E.g., trick a user into giving up her password

```
L03 Cryptography
```

INF3510 - UiO 2018

Brute-Force Attack (or Exhaustive Key Search)

- Treats the cipher as a black box
- Requires (at least) 1 plaintext-ciphertext pair (x_0, y_0)
- Check all possible keys until condition is fulfilled:

$$d_{\mathcal{K}}(y_0) = x_0$$

• How many keys to we need ?

Key length in bit	Key space	Security life time (assuming brute-force as best possible attack)
64	2 ⁶⁴	Short term (few days or less)
128	2 ¹²⁸	Long-term (several decades in the absence of quantum computers)
256	2 ²⁵⁶	Long-term (also resistant against quantum computers – note that QC do not exist at the moment and might never exist)

```
L03 Cryptography
```

INF3510 - UiO 2018

18

Attack models:

Known ciphertext

Known plaintext

Chosen plaintext (adaptive)

Chosen ciphertext (adaptive)

What are the goals of the attacker?

- Find the secret plaintext or part of the plaintext
- Find the encryption key
- Distinguish the encryption of two different plaintexts

How clever is the attacker?

Does secure ciphers exist?

- What is a secure cipher?
 - Perfect security
 - Computational security
 - Provable security

19

17

INF3510 - UiO 2018

A perfect secure crypto system

L03 Cryptography

INF3510 - UiO 2018

ETCRRM

- Electronic Teleprinter Cryptographic Regenerative Repeater Mixer (ETCRRM)
- Invented by the Norwegian Army Signal Corps in 1950
- Bjørn Rørholt, Kåre Mesingseth
- Produced by STK
- Used for "Hot-line" between Moskva and Washington
- About 2000 devices produced

INF3510 - UiO 2018

22

White House Crypto Room 1960s

L03 Cryptography

INF3510 - UiO 2018

23

21

Producing key tape for the one-time pad

PATENT Inventor Date of Appli No. 6607/56.

PATENT SPECIFICATION

Internet: BJORN ARNOLD RØRHOLT 784.384 Date of Application and filing Complete Specification: March 2, 1956.

Complete Specification Published: Oct. 9, 1957

lex at acceptance:-Class 40(3), H15K.

COMPLETE SPECIFICATION

Electronic Apparatus for Producing Cipher Key Tape for

Printing Telegraphy

- we obtained while the optimized of Additional Additiona
- The principal object of the investion is a produce automatically a tape punched with a series of random key character signals

over the period occupied by a few key historics signals), the proposition of code sensent periods during which the number of outtoin pulses in even (or odd), well not comesative as the two 0.5, but converges to this value as the two 0.5, but converges to this value as the two 0.5, but converges to this beam of the two 0.5, but converges to this value as two 0.5, but converges to this were the control pulses increased. In production, the control pulses increased, and the two were constrained to the two of the two were the two of the two of the two were the two of the two of the two were the two of the two of the two were the two of the two of the two were the two of the two of the two were the two of the two of the two were two of the two of two of the two were two of the two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two were two of two of two of two of two of two were two of two of two of two of two of two were two of two of two of two of two of two of two were two of two of two of two of two of two of two were two of two

L03 Cryptography

Symmetric encryption Is it possible to design secure and practical • Key crypto?

Stream Cipher vs. Block Cipher

Symmetric stream cipher Key MI Key MI Pseudorandom-Pseudorandomgenerator generator Κεψστρεαμ Κεψστρεαμ L03 Cryptography INF3510 - UiO 2018

INF3510 - UiO 2018

L03 Cryptography

LFSR

LFSR - properties

- Easy to im the mention $H\Omega$, obters fast chart charter in the
- Τηε ουπυτσεθυενχε ισχομ πλετελι δετερι ινεδ οφτηε ινιτιαλ στατε ανδ τηε φεεδβαχκ χοεφιχιεντσ
- Using "correct" feedback a register of length n $\mu \alpha \psi$ yeverate a sequence with period 2^n -1
- Της σεθυενγε ωιλπωταδε γοοδ στατιστιγαλπωπεριεσ
- Κνοωινγ 2n χονσε χυπσε βιτσ οφτηε κεψστρε αμ, ωίλ ρε ττε αλτηε ινιτιαλοτατε ανδ φεεδβαγκ
- The line approximate a give le $\Delta \Phi \Sigma P$ is complete ly υσελεσσ ασ α στρε αμ χιπηε β βυτ ΑΦΣΡ σ μ αψ βε α υσε φυλ βυίδινη βλογκ φορτηε δεσηνοφαστρονη στρεαμ γιπηερ

L03 Cryptography	INF3510 - UiO 2018	29
		_,

Symmetric block cipher

- The algorithm represents a family of permutations of the message space
- Normally designed by iterating a less secure round function
- May be applied in different operational modes
- Must be impossible to derive K based on knowledge of P and C

L03 Cryptography	INF3510 - UiO 2018	30

Itrerated block cipher design **Algorithm:** w⁰ $W^0 \leftarrow X$ $W^1 \leftarrow g(W^0, K^1)$ $g(w^0, K^1)$ $w^2 \leftarrow g(w^1, K^2)$ W^1 $w^{Nr-1} \leftarrow q(w^{Nr-2}, K^{Nr-1})$ $g(w^1, K^2)$ $w^{Nr} \leftarrow g(w^{Nr-1}, K^{Nr})$ $V \leftarrow W^{Nr}$ NB! For a fixed *K*, *g* must be injective in order to decrypt $g(w^{Nr-1}, K^{Nr})$ **K**Nr WNr L03 Cryptography INF3510 - UiO 2018

Substitution-Permutation network (SPN):

Data Encryption Standard

- Published in 1977 by the US National Bureau of Standards for use in unclassified government applications with a 15 year life time.
- 16 round Feistel cipher with 64-bit data blocks, 56-bit keys.
- 56-bit keys were controversial in 1977; today, exhaustive search on 56-bit keys is very feasible.

INF3510 - UiO 2018

• Controversial because of classified design criteria, however no loop hole was ever found.

DES architecture

EFF DES-cracker

L03 Cryptography

- Dedicated ASIC with 24 DES search engines
- 27 PCBs housing 1800 circuits
- Can test 92 billion keys per second

- Cost 250 000 \$
- DES key found July 1998 after 56 hours search
- Combined effort DES Cracker and 100.000 PCs could test 245 billion keys per second and found key after 22 hours

DES Status

- DES is the "work horse" which over 30 years have inspired cryptographic research and development
- "Outdated by now"!
- Single DES can not be considered as a secure block cipher
- Use 3DES (ANSI 9.52) or DESX

Advanced Encryption Standard

- Public competition to replace DES: because 56bit keys and 64-bit data blocks no longer adequate.
- Rijndael nominated as the new Advanced Encryption Standard (AES) in 2001 [FIPS-197].
- Rijndael (pronounce as "Rhine-doll") designed by Vincent Rijmen and Joan Daemen.
- 128-bit block size (Note error in Harris p. 809) •
- 128-bit, 196-bit, and 256-bit key sizes.
- Rijndael is not a Feistel cipher.

L03 Cryptography	INF3510 - UiO 2018	37

Rijndael round function

Rijndael encryption 1. Key mix (round key K_0) 2. N_r -1 rounds containing: a) Byte substitution Rounds Key b) Row shift 128 10 c) Coloumn mix 192 12 d) Key mix (round key K_i) 256 14 3. Last round containing: a) Byte substitution b) Row shift c) Key mix (round key K_{Nr}) L03 Cryptography INF3510 - UiO 2018 39

Block Ciphers: Modes of Operation

- Block ciphers can be used in different modes in order to provide different security services.
- Common modes include:
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Output Feedback (OFB)
 - Cipher Feedback (CFB)
 - Counter Mode (CTR)
 - Galois Counter Mode (GCM) {Authenticated encryption}

Use a secu	ire mode!			Integrity Che	eck Functions	
Plaintext	Ciphertext using ECB mode	Ciphertext using secure mode				
L03 Cryptography	INF3510 - UiO 2018		41	L03 Cryptography	INF3510 - UiO 2018	42

Hash functions

Applications of hash functions

- Protection of password
- Comparing files
- Authentication of SW distributions
- Bitcoin
- Generation of Message Authentication Codes (MAC)
- Digital signatures
- Pseudo number generation/Mask generation functions
- Key derivation

Hash functions (message digest functions)

Requirements for a one-way hash function *h*:

- 1. Ease of computation: given x, it is easy to compute h(x).
- 2. Compression: *h* maps inputs *x* of arbitrary bitlength to outputs h(x) of a fixed bitlength *n*.
- 3. One-way: given a value y, it is computationally infeasible to find an input x so that h(x)=y.
- 4. Collision resistance: it is computationally infeasible to find x and x', where $x \neq x'$, with h(x)=h(x') (note: two variants of this property).

```
L03 Cryptography
```

```
INF3510 - UiO 2018
```

Properties of hash functions

Frequently used hash functions

- MD5: 128 bit digest. Broken. Often used in Internet protocols but no longer recommended.
- SHA-1 (Secure Hash Algorithm):160 bit digest. Potential attacks exist. Designed to operate with the US Digital Signature Standard (DSA);
- SHA-256, 384, 512 bit digest. Still secure. Replacement for SHA-1
- RIPEMD-160: 160 bit digest. Still secure. Hash function frequently used by European cryptographic service providers.
- NIST competition for new secure hash algorithm, closed in 2012 with the winner:

And the winner is?

- <u>NIST announced Keccak as the winner</u> of the SHA-3 Cryptographic Hash Algorithm Competition on October 2, 2012, and ended the fiveyear competition.
- <u>Keccak</u> was designed by a team of cryptographers from Belgium and Italy, they are:
 - Guido Bertoni (Italy) of STMicroelectronics,
 - Joan Daemen (Belgium) of STMicroelectronics,
 - Michaël Peeters (Belgium) of NXP Semiconductors, and
 - Gilles Van Assche (Belgium) of STMicroelectronics.

47

45

L03 Cryptography

INF3510 - UiO 2018

Keccak and sponge functions

MAC and MAC algorithms

- MAC means two things:
 - 1. The computed message authentication code h(M, k)
 - 2. General name for algorithms used to compute a MAC
- In practice, the MAC algorithm is e.g.
 - HMAC (Hash-based MAC algorithm))
 - CBC-MAC (CBC based MAC algorithm)
 - CMAC (Cipher-based MAC algorithm)
- MAC algorithms, a.k.a. keyed hash functions, support data origin authentication services.

L03 Cryptography

INF3510 - UiO 2018

50

52

HMAC

- Define: *ipad* = 3636....36 (512 bit)
- opad = 5C5C...5C (512 bit)
- $HMAC_{\kappa}(x) = SHA-1((K \oplus opad) || SHA-1((K \oplus ipad) || x))$

Symmetric cryptosystem

Asymmetric crypto system

One-way functions

Given n = pq, where p and q are prime numbers. No efficient algoritms to find *p* and *q*. Chose a positive integer b and define $f: \mathbb{Z}_n \to \mathbb{Z}_n$ $f(x) = x^b \mod n$

Modular exponentiation

Given prime *p*, generator *g* and a modular power $a = q^x \pmod{p}$. No efficient algoritms to find x. $f: \mathbb{Z}_{p} \to \mathbb{Z}_{p}$ $f(x) = q^x \mod p$

Diffie-Hellman key agreement (key exchange) (provides no authentication)

Example

- Z₁₁ using *g* = 2:
 - $\begin{array}{l} \ 2^{1} = 2 \pmod{11} & 2^{6} = 9 \pmod{11} \\ \ 2^{2} = 4 \pmod{11} & 2^{7} = 7 \pmod{11} \\ \ 2^{3} = 8 \pmod{11} & 2^{8} = 3 \pmod{11} \\ \ 2^{4} = 5 \pmod{11} & 2^{9} = 6 \pmod{11} \\ \ 2^{5} = 10 \pmod{11} & 2^{10} = 1 \pmod{11} \end{array}$
- $\log_2 5 = 4$
- $\log_2 7 = 7$
- $\log_2 1 = 10 \ (\equiv 0 \mod 10)$

L03 Cryptography

INF3510 - UiO 2018

61

Example (2)

=

 $\begin{array}{l} 3019662633453665226674644411185277127204721722044543980521881984280643980698016315342127777985323\\ 7655786915947633907457862442472144616346714598423225826077970000905549946633556169888641786953396\\ 0040623713995997295449774004045416733136225768251717475634638402409117911722715606961870076297223\\ 4159137526583857970362142317237148068590959528891803802119028293828368386437223302582405986762635\\ 8694772029533769528178666567879514981999272674689885986300092124730492599541021908208672727813714\\ 8522572014844749083522090193190746907275606521624184144352256368927493398678089550310568789287582\\ 7552270014184483356351776833964003 \end{array}$

g =

⁹7721484410294542720413651217788953849637988183467987659847411571496616170507302662812929883501017 4348250308006877834103702727269721499966768323290540216992770986728538508742382941595672248624817 99491793974944767505537478684097265404403057784600064505495042487766668609868201521098873552043631 796539450984907240689054146817926365106525079461024348521662727217066350114742262894581789339082 7991578201408649196984764863302981052471409215846871176739109049866118609117954454512573209668379 5760420560620966283259002319100903253019113331521813948039086102149370446134117406508009893347295 86051242347771056691010439032429058

Finn a når

g^a (mod p) =

 $\begin{array}{l} 4411321635506521515968448863968324914909246042765028824594289876687657182492169027666262097915382\\ 0952830455103982849705054980427000258241321067445164291945709875449674237106754516103276658256727\\ 24136033723765209803389760485571555642819285338401367427324898505506487610946300531483539064256338\\ 5317698361559907392252360968934338558269603389519179121915049733353702083721856421988041492207985\\ 6566434665604898681669845582964624047443239120501341277499692338517113201830210812184500672101247\\ 27009880327560166265666167579963223042395414267579262222147625965023052419869061244027798941410432\\ 6855174387813098860607831008110617\end{array}$

L03 Cryptography

```
INF3510 - UiO 2018
```

62

Solution

a =

 $71893136149709653804503478677866573695060790720621260648699193249561437588126371185\\81694154929099396752251787268346548051895320171079663652680741564200286881487888963\\19895353311170236034836658449187117723820644855184055305945501710227615558093657781\\93109639893698220411548578601884177129022057550866690223052160523604836233675971504\\25938247630127368253363295292024736143937779912318142315499711747531882501424082252\\28164641111954587558230112140813226698098654739025636607106425212812421038155501562\\37005192231836155067262308141154795194735834753570104459663325337960304941906119476\\18181858300094662765895526963615406$

It is easy to compute $g^a \pmod{p}$ {0.016 s}, but it is computaionally infeasable to compute the exponent *a* from the g^a .

Diffie-Hellman Applications

- IPSec (IP Security)
 - IKE (Internet Key Exchange) is part of the IPSec protocol suite
 - IKE is based on Diffie-Hellman Key Agreement
- SSL/TLS
 - Several variations of SSL/TLS protocol including
 - Fixed Diffie-Hellman
 - Ephemeral Diffie-Hellman
 - Anonymous Diffie-Hellman

Ron Rivest, Adi Shamir and Len Adleman

- Read about public-key cryptography in 1976 article by Diffie & Hellman: "New directions in cryptography"
- Intrigued, they worked on finding a practical algorithm
- Spent several months in 1976 to re-invent the method for non-secret/public-key encryption discovered by Clifford Cocks 3 years earlier

INF3510 - UiO 2018

Named RSA algorithm

RSA parametre (textbook version)

- Bob generates two large prime numbers p and q and computes n =p·q.
- He then computes a public encryption exponent *e*, such that
- (e, (p-1)(q-1))) = 1 and computes the corresponding decryption exsponent d, by solving:

 $d \cdot e \equiv 1 \pmod{(p-1)(q-1)}$

Bob's public key is the pair $P_{B} = (e, n)$ and the corresponding private and secret key is $S_{B} = (d, n)$.

Encryption: C = M ^e (mod <i>n</i>)	
Decryption: $M = C^d \pmod{n}$	

```
L03 Cryptography
```

INF3510 - UiO 2018

66

RSA toy example

- Set p = 157, q = 223. Then $n = p \cdot q = 157 \cdot 223 = 35011$ and $(p-1)(q-1) = 156 \cdot 222 = 34632$
- Set encryption exponent: e = 14213 {gcd(34632,14213) = 1}
- Public key: (14213, 35011)
- Compute: $d = e^{-1} = 14213^{-1} \pmod{34632} = 31613$
- Private key: (31613, 35011)
- Encryption:

L03 Cryptography

- Plaintext M = 19726, then C = 19726¹⁴²¹³ (mod 35011) = 32986
- Decryption:
- Cipherertext C = 32986, then M = $32986^{31613} \pmod{35011} = 19726$

Factoring record– December 2009

Find the product of

p = 33478071698956898786044169848212690817704794983713768568 912431388982883793878002287614711652531743087737814467999489 and q= 367460436667995904282446337996279526322791581643430876426 76032283815739666511279233373417143396810270092798736308917? Answer: n= 123018668453011775513049495838496272077285356959533479219732 245215172640050726365751874520219978646938995647494277406384592 519255732630345373154826850791702612214291346167042921431160222 1240479274737794080665351419597459856902143413 Computation time ca. 0.0000003 s on a fast laptop! RSA768 - Largest RSA-modulus that have been factored (12/12-2009) Up to 2007 there was 50 000\$ prize money for this factorisation! L03 Cryptography

L03 Cryptography

67

Computational effort?	Asymmetric Ciphers: Examples of Cryptosystems
 Factoring using NFS-algorithm (Number Field Sieve) 6 mnd using 80 cores to find suitable polynomial Solding from August 2007 to April 2009 (1500 AMD64-år) 192 796 550 * 192 795 550 matrise (105 GB) 119 days on 8 different clusters Corresponds to 2000 years processing on one single core 2.2GHz AMD Opteron (ca. 2⁶⁷ instructions) 	 RSA: best known asymmetric algorithm. RSA = Rivest, Shamir, and Adleman (published 1977) Historical Note: U.K. cryptographer Clifford Cocks invented the same algorithm in 1973, but didn't publish. ElGamal Cryptosystem Based on the difficulty of solving the discrete log problem. Elliptic Curve Cryptography Based on the difficulty of solving the EC discrete log problem. Provides same level of security with smaller key sizes.
L03 Cryptography INF3510 - UiO 2018 69	L03 Cryptography INF3510 - UiO 2018 70

Elliptic curves

• Let p > 3 be a prime. An elliptic curve $y^2 = x^3 + ax + b$ over $GF(p) = Z_p$ consist of all solutions $(x, y) \in Z_p \times Z_p$ to the equation

 $y^2 \equiv x^3 + ax + b \pmod{p}$

• where $a, b \in Z_p$ are constants such that $4a^3 + 27b^2 \neq 0 \pmod{p}$, together with a special point 0 which is denoted as *the point at infinity*.

Elliptic curve over R

L03 Cryptography

Hybrid Cryptosystems

- Symmetric ciphers are faster than asymmetric ciphers (because they are less computationally expensive), but ...
- Asymmetric ciphers simplify key distribution, therefore ...
- a combination of both symmetric and asymmetric ciphers can be used – a hybrid system:
 - The asymmetric cipher is used to distribute a randomly chosen symmetric key.
 - The symmetric cipher is used for encrypting bulk data.

Confidentiality Services: Hybrid Cryptosystems

Digital Signat	ures		Digital Signa	ature Mechanisms	
			 verified by a thi Digital signature authentication a authentication e 	es used for non-repudiation, da and data integrity services, and exchange mechanisms. e mechanisms have three com uure (private)	ata origin in some
			 DSA and EC 	CDSA	
L03 Cryptography	INF3510 - UiO 2018	77	L03 Cryptography	INF3510 - UiO 2018	78

Practical digital signature based on hash value

Digital Signatures

- To get an authentication service that links a document to *A*'s name (identity) and not just a verification key, we require a procedure for *B* to get an authentic copy of *A*'s public key.
- Only then do we have a service that proves the authenticity of documents 'signed by *A*'.
- This can be provided by a PKI (Public Key Infrastructure)
- Yet even such a service does not provide nonrepudiation at the level of persons.

```
L03 Cryptography
```

Difference between MACs & Dig. Sig.

 MACs and digital signatures are both authentication mechanisms.

- MAC: the verifier needs the secret that was used to compute the MAC; thus a MAC is unsuitable as evidence with a third party.
 - The third party does not have the secret.
 - The third party cannot distinguish between the parties knowing the secret.

 Digital signatures can be validated by third parties, and can in theory thereby support both non-repudiation and authentication.

L03 Cryptography	INF3510 - UiO 2018	81	L03 Cryptography	INF3510 - UiO 201

Another look at key lengths

Table 1. Intuitive security levels.

shower security pool security rain security lake security sea security	volume of water to bring to a boil	symmetric key	cryptographic hash	RSA modulus
teaspoon security	0.0025 liter	35	70	242
shower security	80 liter	50	100	453
pool security	2 500 000 liter	65	130	745
rain security	$0.082\mathrm{km^3}$	80	160	1130
lake security	$89 \mathrm{km}^3$	90	180	1440
sea security	$3750000{\rm km}^3$	105	210	1990
global security	$1400000000{ m km}^3$	114	228	2380
solar security	(21)	140	280	3730

Symmetric and Asymmetric ciphers offering comparable security

RSA Key Size

1024

3072

7680

15360

Key length comparison:

AES Key Size

-

128

192

256

82

Elliptic curve Key

Size

163

256

384

512

The eavesdropper strikes back!

L03 Cryptography

INF3510 - UiO 2018

83

L03 Cryptography

Quantum Computers

85

- Proposed by Richard Feynman 1982
- Boosted by P. Schor's algorithm for integer factorization and discrete logarithm in quantum polynomial time
- Operates on qubit superposition of 0 and 1
- IBM built a 7-bit quantum computer and could find the factors of the integer 15 using NMR techniques in 2001
- NMR does not scale
- Progress continues, but nobody knows if or when a large scale quantum computer ever can be constructed
- QC will kill current public key techniques, but does not mean an end to symmetric crypto

L03 Cryptography	
------------------	--

```
INF3510 - UiO 2018
```

Qubit (bra-ket notation)

A qubit is a unit vector in a two dimensional complex vector

space with fixed basis. Orthonormal basis | 02 and | 12 may correspond | ↑2 and | →2 (vertical or horizontal polarization) The basis states | 02 and | 12 are taken to represent the classical bit values 0 and 1 respectively

Qubits can be in a superposition of | 02 and | 12 such as

 $\Psi = \alpha \mid 0\mathbb{P} + \beta \mid 1\mathbb{P}$, where $|\alpha|^2 + |\beta|^2 = 1$

Thus, $|\alpha|^2$ and $|\beta|^2$ are the probabilities that the measured value are |02 and |12 respectively

L03 Cryptography

INF3510 - UiO 2018

86

Classical bit vs. qubits

Operations on qubits

L03 Cryptography

Current world record of QF!

Number	# of factors	# of qubits needed	Algorithm	Year implemented	Implemented without prior knowledge of solution
15	2	8	Shor	2001 [2]	x
	2	8	Shor	2007 [3]	×
	2	8	Shor	2007 [3]	x
	2	8	Shor	2009 [5]	x
	2	8	Shor	2012 [6]	×
21	2	10	Shor	2012 [7]	×
143	2	4	minimization	2012 [1]	\checkmark
56153	2	4	minimization	2012 [1]	\checkmark
291311	2	6	minimization	not yet	1
175	3	3	minimization	not yet	1

Two variants of quantum safe crypto

Quantum cryptography:

•The use of quantum mechanics to guarantee secure communication.

•It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages.

Quantum resistant cryptography:

•The use of cryptographic mechanisms based on computationally difficult problems for which no efficient quantum computing algorithm is known

Quantum Key Distribution

	Alice's random bit	0	1	1	0	1	0	0	1
Basis 0 1 + $\uparrow \rightarrow$ × \checkmark	Alice's random sending basis	+	+	×	+	×	×	×	+
	Photon polarization Alice sends	t	-	7	t	7	/	1	
	Bob's random measuring basis	+	×	×	×	+	×	+	+
	Photon polarization Bob measures	t	/	~	1	-	/	→	
	PUBLIC DISCUSSION OF BASIS							1	1
	Shared secret key	0		1			0		1

Quantum Resistant Cryptography

- Code Based Asymmetric Algorithms
- Lattice Based Asymmetric Algorithms
- Asymmetric Crypto based on Multivariate Polynomials
- Asymmetric Crypto based on Cryptographic Hash Functions
- Asymmetric Crypto based on Isogenies of (supersingular) elliptic curves

05-Feb-18

Introduction to Cryptography - Part 6

Follow Post Quantum crypto!

05-F

 https://csrc.nist.gov/projects/post-quantumcryptography/round-1-submissions

Scientific America Technology, 10 Jan 2017

COMPUTING

Quantum Computers Ready to Leap Out of the Lab in 2017

Google, Microsoft and a host of labs and start-ups are racing to turn scientific curiosities into working machines

By Davide Castelvecchi, Nature magazine on January 4, 2017 Véalo en español

Quantum computing has long seemed like one of those technologies that are 20 years away, and always will be. But 2017 could be the year that the field sheds its research-only image.

Computing giants Google and Microsoft recently hired a host of leading lights, and have set challenging goals for this year. Their ambition reflects a broader transition taking place at start-ups and academic research labs alike: to move from pure science towards engineering.

"People are really building things," says Christopher Monroe, a physicist at the University of Maryland in College Park who co-founded the start-up IonQ in 2015. "The never seen anything like that. It's no longer just research."

L03 Cryptography

QKD via s	atellite		More up		
	<image/> <complex-block><text><text><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></text></text></complex-block>			<text><text><section-header><text><text><text><complex-block><image/><image/></complex-block></text></text></text></section-header></text></text>	
L03 Cryptography	INF3510 - UiO 2018	97	L03 Cryptography	INF3510 - UiO 2018	ç

Update from two months ago

News room > News releases >

IBM Announces Advances to IBM Quantum Systems & Ecosystem

-- Client systems with 20 qubits ready for use; next-generation IBM Q system in development with first working 50 qubit processor -- IBM expands its open-source quantum software package QISKit; offers the world's most advanced ecosystem for quantum computing

Select a topic or year

		1 12		
4	News	re	ease	

L03 Cryptography

↓ Contact(s) information
 ↓ Related resources

Yorktown Heights, N.Y. - 10 Nov 2017: IBM (NYSE: IBM) announced today two significant quantum processor upgrades for its IBM Q early-access commercial systems. These upgrades represent rapid advances in quantum hardware as IBM continues to drive progress across the entire quantum computing technology stack, with focus on systems, software, applications and enablement.

INF3510 - UiO 2018

Swedish news from November

L03 Cryptography

99

INF3510 - UiO 2018

Brave new cryp	oto world				End of	flecture	
HOW'S YOUR QUANTUM COMPUTER PROTOTYPE COMING ALONG? GREAT!	THE PROJECT EXISTS IN A SIMULTANEOUS STATE OF BEING BOTH TOTALLY SUCCESST A NOT EVEN A NOT EVEN						
L03 Cryptography	INF3510 - UiO 2018	101	L03 C	Cryptography	INF351	0 - UiO 2018	102