INF3510 Information Security University of Oslo Spring 2018

Lecture 3

 Cryptography

University of Oslo, spring 2018
Leif Nilsen

Outline

- What is cryptography?
- Brief crypto history
- Security issues
- Symmetric cryptography - Stream ciphers

Want to learn more?
Look up UNIK 4220

- Block ciphers
- Hash functions
- Asymmetric cryptography
- Factoring based mechanisms
- Discrete Logarithms
- Digital signatures
- Quantum Resistant Crypto

The security pyramid

What is cryptology?

Terminology

- Cryptography is the science of secret writing with the goal of hiding the meaning of a message.
- Cryptanalysis is the science and sometimes art of breaking cryptosystems.

Model of symmetric cryptosystem

Numerical encoding of the alphabet

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & \mathrm{f} & \mathrm{~g} & \mathrm{~h} & \mathrm{i} & \mathrm{j} & \mathrm{k} & \mathrm{l} & \mathrm{~m} & \mathrm{n} & \mathrm{o} \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\mathrm{p} & \mathrm{q} & \mathrm{r} & \mathrm{~s} & \mathrm{t} & \mathrm{u} & \mathrm{v} & \mathrm{w} & \mathrm{x} & \mathrm{y} & \mathrm{z} & \mathfrak{x} & \varnothing & \mathrm{a} & \\
\hline 14 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 &
\end{array}
$$

Using this encoding many classical crypto systems can be expressed as algebraic functions over Z_{26} (English alphabet) or Z_{29} (Norwegian alphabet)

Shift cipher

Let $\mathbf{P}=\mathbf{C}=\mathrm{Z}_{26}$. For $0 \leq K \leq 25$, we define
$\mathrm{E}(x, K)=x+K(\bmod 26)$
and
$\mathrm{D}(y, K)=y-K(\bmod 26)$
$\left(x, y \in Z_{26}\right)$
Question: What is the size of the key space?
Puzzle: ct =
LAHYCXPAJYQHRBWNNMNMOXABNLDANLXVVDWRLJCRXWB Find the plaintext!

Substitution cipher - example

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o
U	D	M	I	P	Y	Æ	K	O	X	S	N	\AA	F	A
p	q	r	s	t	u	v	v	w	x	y	z	x	Ø	a
E	R	T	Z	B	Ø	C	Q	G	W	H	L	V	J	

Plaintext: fermatssisteteorem Ciphertext: YPTÅUBZZOZBPBPATPÅ

What is the size of the key space?

8841761993739701954543616000000 (2103

Exhaustive search

For[i=0, i<26, i++, Print["Key = ", i, " Plain = ", decrypt[ct, 1 , ill
Key = 0 Plain = LAHYCXPAJYQHRBWNNMNMOXABNLDANLXVVDWRLJCRXWB Key = 1 Plain = KZGXBWOZIXPGQAVMMLMLNWZAMKCZMKWUUCVQKIBQWVA Key = 2 Plain = JYFWAVNYHWOFPZULLKLKMVYZLJBYLJVTTBUPJHAPVUZ Key $=3$ Plain $=$ IXEVZUMXGVNEOYTKKJKJLUXYKIAXKIUSSATOIGZOUTY Key $=4$ Plain $=$ HWDUYTLWFUMDNXSJJIJIKTWXJHZWJHTRRZSNHFYNTSX Key = 5 Plain $=$ GVCTXSKVETLCMWRIIHIHJSVWIGYVIGSQQYRMGEXMSRW Key = 6 Plain = FUBSWRJUDSKBLVQHHGHGIRUVHFXUHFRPPXQLFDWLRQV Key = 7 Plain = ETARVQITCRJAKUPGGFGFHQTUGEWTGEQOOWPKECVKQPU Key $=8$ Plain = DSZQUPHSBQIZJTOFFEFEGPSTFDVSFDPNNVOJDBUJPOT Key = 9 Plain = CRYPTOGRAPHYISNEEDEDFORSECURECOMMUNICATIONS Key = 10 Plain = BQXOSNFQZOGXHRMDDCDCENQRDBTQDBNLLTMHBZSHNMR Key = 11 Plain = APWNRMEPYNFWGQLCCBCBDMPQCASPCAMKKSLGAYRGMLQ Key = 12 Plain = ZOVMQLDOXMEVFPKBBABACLOPBZROBZLJJRKFZXQFLKP
-

Lessons learned

- A cipher with a small keyspace can easily be attacked by exhaustive search
- A large keyspace is necessary for a secure cipher, but it is by itself not suffcient
- Monoalphabetical substitution ciphers can easily be broken

Enigma

- German WW II crypto machine
- Many different variants
- Polyalphabetical substitution
- Analysed by Polish and English mathematicians

Practical complexity for attacking Enigma

Cryptoanalytical assumptions during WW II:

- 3 out of 5 rotors with known wiring
- 10 stecker couplings
- Known reflector

```
N = 150738274 937 250 * 60 · 17 576 · 676 =
107458687327250619360000 (77 bits)
```


Enigma key list

Geheim!
 Sonder - Maschinenschlüssel BGT

Datum	Walzenlage	Ringstollung	Steckerverbindungen	Grundstellung
31.	IV II I	F T A	Ha AT [a sis uy jy or int bo kix	vyj
3.	III V II	Y V p	OR KI JV Of: zk Kiv by yc ds ge	cqr
29.	V IV I	0 \% A		var

Attacking ENIGMA

| Posisjon: | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Chiffertekst: | J | T | G | E | F | P | G |
| Crib: | R | O | M | M | E | L | F |

Cryptanalysis: Attacking Cryptosystems

- Classical Attacks
- Mathematical Analysis
- Brute-Force Attack
- Implementation Attack: Try to extract the key through reverse engineering or power measurement, e.g., for a banking smart card. - Social Engineering: E.g., trick a user into giving up her password

Attack models:

Known ciphertext

Known plaintext
Chosen plaintext (adaptive)
Chosen ciphertext (adaptive)
What are the goals of the attacker?

- Find the secret plaintext or part of the plaintext
- Find the encryption key
- Distinguish the encryption of two different plaintexts

How clever is the attacker?

Brute-Force Attack (or Exhaustive Key Search)

- Treats the cipher as a black box
- Requires (at least) 1 plaintext-ciphertext pair (x_{0}, y_{0})
- Check all possible keys until condition is fulfilled:

$$
d_{K}\left(y_{0}\right)=x_{0}
$$

- How many keys to we need ?

Key length in bit	Key space	Security life time (assuming brute-force as best possible attack)
64	2^{64}	Short term (few days or less)
128	2^{128}	Long-term (several decades in the absence of quantum computers)
256	2^{256}	Long-term (also resistant against quantum computers - note that QC do not exist at the moment and might never exist)

Does secure ciphers exist?

-What is a secure cipher?

- Perfect security
- Computational security
- Provable security

A perfect secure crypto system

White House Crypto Room 1960s

ETCRRM

- Electronic Teleprinter Cryptographic Regenerative Repeater Mixer (ETCRRM)
- Invented by the Norwegian Army Signal Corps in 1950
- Bjørn Rørholt, Kåre Mesingseth
- Produced by STK
- Used for "Hot-line" between Moskva and Washington
- About 2000 devices produced

Producing key tape for the one-time pad

Symmetric encryption

- Is it possible to design secure and practical crypto?

Symmetric stream cipher

Stream Cipher vs. Block Cipher

LFSR

Linear feedback shift register

Y $\sigma v \gamma$ n $\phi \imath \pi-\phi \circ \pi \sigma \omega \varepsilon \mu \alpha \psi \gamma \varepsilon v \varepsilon \rho \alpha \tau \varepsilon \alpha \beta v \alpha \rho \psi \sigma \varepsilon \theta v \varepsilon v \chi \varepsilon$ оф $\pi \varepsilon \rho \circ \delta 2^{\mathrm{n}}-1$

$$
s_{n+i}=c_{0} s_{i}+c_{1} s_{i+1}+\cdots+c_{n-1} s_{i+n-1}
$$

Note: The stream cipher is stateful

LFSR - properties

- Using "correct" feedback a register of length $\mathrm{n} \mu \alpha \psi$ $\gamma \varepsilon v \varepsilon \rho \alpha \varepsilon \alpha \sigma \varepsilon \theta \cup \varepsilon v \chi \varepsilon \omega i m \pi \varepsilon \rho \circ \delta 2^{n}-1$

Itrerated block cipher design

Symmetric block cipher

Ciphertext

- The algorithm represents a family of permutations of the message space
- Normally designed by iterating a less secure round function
- May be applied in different operational modes
- Must be impossible to derive K based on knowledge of P and C

Substitution-Permutation network (SPN):

Round function g :

Data Encryption Standard

- Published in 1977 by the US National Bureau of Standards for use in unclassified government applications with a 15 year life time.
- 16 round Feistel cipher with 64-bit data blocks, 56-bit keys.
- 56-bit keys were controversial in 1977; today, exhaustive search on 56 -bit keys is very feasible.
- Controversial because of classified design criteria, however no loop hole was ever found.

EFF DES-cracker

- Dedicated ASIC with 24 DES search engines
- 27 PCBs housing 1800 circuits
- Can test 92 billion keys per second
- Cost 250000 \$

- DES key found July 1998 after 56 hours search
- Combined effort DES Cracker and 100.000 PCs could test 245 billion keys per second and found key after 22 hours

DES architecture

DES(P):

$$
\left(L_{0}, R_{0}\right)=I P(P)
$$

$$
\mathrm{FOR} \mathrm{i}=1 \mathrm{TO} 16
$$

$\mathrm{L}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}-1}$
$R_{i}=L_{i-1} \oplus f\left(R_{i-1} K_{i}\right)$
$\mathrm{C}=\mathrm{IP}^{-1}\left(\mathrm{R}_{16}, \mathrm{~L}_{16}\right)$

64 bit data block

56 bit key

72.057.594.037.927.936

DES Status

- DES is the "work horse" which over 30 years have inspired cryptographic research and development

- "Outdated by now"!
- Single DES can not be considered as a secure block cipher
- Use 3DES (ANSI
 9.52) or DESX

Advanced Encryption Standard

- Public competition to replace DES: because 56bit keys and 64-bit data blocks no longer adequate.
- Rijndael nominated as the new Advanced Encryption Standard (AES) in 2001 [FIPS-197].
- Rijndael (pronounce as "Rhine-doll") designed by Vincent Rijmen and Joan Daemen.
- 128-bit block size (Note error in Harris p. 809)
- 128-bit, 196-bit, and 256-bit key sizes.
- Rijndael is not a Feistel cipher.

Rijndael encryption

1. Key mix (round key K_{0})
2. $N_{r}-1$ rounds containing:
a) Byte substitution
b) Row shift
c) Coloumn mix
d) Key mix (round key K_{i})
3. Last round containing:
a) Byte substitution
b) Row shift
c) Key mix (round key $K_{N_{r}}$)

Rijndael round function

Block Ciphers: Modes of Operation

- Block ciphers can be used in different modes in order to provide different security services.
- Common modes include:
- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Output Feedback (OFB)
- Cipher Feedback (CFB)
- Counter Mode (CTR)
- Galois Counter Mode (GCM) \{Authenticated encryption\}

Integrity Check Functions

Hash functions

Hash function

Applications of hash functions

- Protection of password
- Comparing files
- Authentication of SW distributions
- Bitcoin
- Generation of Message Authentication Codes (MAC)
- Digital signatures
- Pseudo number generation/Mask generation functions
- Key derivation

Hash functions (message digest functions)

Requirements for a one-way hash function h :

1. Ease of computation: given x, it is easy to compute $h(x)$.
2. Compression: h maps inputs x of arbitrary bitlength to outputs $h(x)$ of a fixed bitlength n.
3. One-way: given a value y, it is computationally infeasible to find an input x so that $h(x)=y$.
4. Collision resistance: it is computationally infeasible to find x and x^{\prime}, where $x \neq x^{\prime}$, with $h(x)=h\left(x^{\prime}\right)$ (note: two variants of this property).
L03 Cryptography INF3510- UiO $2018 \quad 45$

Frequently used hash functions

- MD5: 128 bit digest. Broken. Often used in Internet protocols but no longer recommended.
- SHA-1 (Secure Hash Algorithm): 160 bit digest. Potential attacks exist. Designed to operate with the US Digital Signature Standard (DSA);
- SHA-256, 384, 512 bit digest. Still secure. Replacement for SHA-1
- RIPEMD-160: 160 bit digest. Still secure. Hash function frequently used by European cryptographic service providers.
- NIST competition for new secure hash algorithm, closed in 2012 with the winner:

Properties of hash functions

Ease of Pre-image Collision Weak collision Strong computationresistance resistance collision (2 ${ }^{\text {nd }}$ pre-image resistance resistance)

And the winner is?

- NIST announced Keccak as the winner of the SHA-3 Cryptographic Hash Algorithm Competition on October 2, 2012, and ended the fiveyear competition.
- Keccak was designed by a team of cryptographers from Belgium and Italy, they are:
- Guido Bertoni (Italy) of STMicroelectronics,
- Joan Daemen (Belgium) of STMicroelectronics,
- Michaël Peeters (Belgium) of NXP Semiconductors, and
- Gilles Van Assche (Belgium) of STMicroelectronics.

Keccak and sponge functions

MAC and MAC algorithms

- MAC means two things:

1. The computed message authentication code $h(M, k)$
2. General name for algorithms used to compute a MAC

- In practice, the MAC algorithm is e.g.
- HMAC (Hash-based MAC algorithm))
- CBC-MAC (CBC based MAC algorithm)
- CMAC (Cipher-based MAC algorithm)
- MAC algorithms, a.k.a. keyed hash functions, support data origin authentication services.

HMAC

- Define: ipad $=3636 \ldots . .36$ (512 bit)
- opad $=5 \mathrm{C} 5 \mathrm{C} \ldots 5 \mathrm{C}$ (512 bit)
- $\operatorname{HMAC}_{K}(x)=$ SHA- $1((K \oplus$ opad $) \|$ SHA- $1((K \oplus i p a d) \| x))$

CBC-MAC

CBC-MAC(x, K)

Public-Key Cryptography

Asymmetric crypto system

Public key inventors?

Marty Hellman and Whit Diffie, Stanford 1976
R. Rivest, A. Shamir and L. Adleman, MIT 1978

James Ellis, CESG 1970

C. Cocks, M. Williamson, CESG 1973-1974

One-way functions

Modular power function

Given $n=p q$, where p and q are prime numbers. No efficient algoritms to find p and q.
Chose a positive integer b and define $f: Z_{n} \rightarrow Z_{n}$

$$
f(x)=x^{b} \bmod n
$$

Modular exponentiation

Given prime p, generator g and a modular
power $a=g^{x}(\bmod p)$. No
efficient algoritms to find $x . f: Z_{p} \rightarrow Z_{p}$

$$
f(x)=g^{x} \bmod p
$$

Asymmetric crypto

Public key Cryptography was born in May 1975, the child of two problems and a misunderstanding!

Key Distribution!

Digital signing!

Diffie-Hellman key agreement (key exchange)
(provides no authentication)

Bob picks random integer b

Bob computes the same secret
$\left(g^{a}\right)^{b}=g^{a b} \bmod p$.

Alice computes the shared secret
$\left(g^{b}\right)^{a}=g^{a b} \bmod p$

Example

- Z_{11} using $g=2$:
$-2^{1}=2(\bmod 11) 2^{6}=9(\bmod 11)$
$-2^{2}=4(\bmod 11) 2^{7}=7(\bmod 11)$
$-2^{3}=8(\bmod 11) 2^{8}=3(\bmod 11)$
$-2^{4}=5(\bmod 11) 2^{9}=6(\bmod 11)$
$-2^{5}=10(\bmod 11) 2^{10}=1(\bmod 11)$
- $\log _{2} 5=4$
- $\log _{2} 7=7$
- $\log _{2} 1=10(\equiv 0 \bmod 10)$

Example (2)

$\mathrm{p}=$
3019662633453665226674644411185277127204721722044543980521881984280643980698016315342127777985323 7655786915947633907457862442472144616346714598423225826077976000905549946633556169688641786953396 0040623713995997295449774004045416733136225768251717475634638402409117911722715606961870076297223 4159137526583857970362142317237148068590959528891803802119028293828368386437223302582405986762635 8694772029533769528178666567879514981999272674689885986300092124730492599541021908208672727813714 8522572014844749083522090193190746907275606521624184144352256368927493398678089550310568789287558
$\mathrm{g}=$
1721484410294542720413651217788953849637988183467987659847411571496616170507302662812929883501017 4348250308006877834103702727269721499966768323290540216992770986728538508742382941595672248624817 7965394509849072406890541468179263651065250794610243485216627272170663501147422628994581789339082 7991578201408649196984764863302981052471409215846871176739109049866118609117954454512573209668379 5760420560620966283259002319100903253019113331521813948039086102149370446134117406508009893347295 86051242347771056691010439032429058
Finn a når
$\mathrm{g}^{\mathrm{a}}(\bmod \mathrm{p})=$
411321635506521515968448863968324914909246042765028824594289876687657182492169027666262097915382 0952830455103982849705054980427000258241321067445164291945709875449674237106754516103276658256727 2413603372376920980338976048557155564281928533840136742732489850550648761094630053148353906425838 5317698361559907392252360968934338558269603389519179121915049733353702083721856421988041492207985 656634665604898681669845852964624047443239120501341277499692338517113201830210812184500672101247 2700918032756016626566167579963223042395414267579262222147625965023052419869061244027798941410432 6855174387813098860607831088110617

Diffie-Hellman Applications

- IPSec (IP Security)
- IKE (Internet Key Exchange) is part of the IPSec protocol suite
- IKE is based on Diffie-Hellman Key Agreement
- SSL/TLS
- Several variations of SSL/TLS protocol including
- Fixed Diffie-Hellman
- Ephemeral Diffie-Hellman
- Anonymous Diffie-Hellman

Ron Rivest, Adi Shamir and Len

Adleman

- Read about public-key cryptography in 1976 article by Diffie \& Hellman: "New directions in cryptography"
- Intrigued, they worked on finding a practical algorithm
- Spent several months in 1976 to re-invent the method for non-secret/public-key encryption discovered by Clifford Cocks 3 years earlier
- Named RSA algorithm

RSA toy example

- Set $p=157, q=223$. Then $n=p \cdot q=157 \cdot 223=35011$ and $(p-1)(q-1)=156 \cdot 222=34632$
- Set encryption exponent: $e=14213\{\operatorname{gcd}(34632,14213)=1\}$
- Public key: $(14213,35011)$
- Compute: $d=e^{-1}=14213^{-1}(\bmod 34632)=31613$
- Private key: $(31613,35011)$
- Encryption:
- Plaintext $\mathrm{M}=19726$, then $\mathrm{C}=19726^{14213}(\bmod 35011)=32986$
- Decryption:
- Cipherertext $C=32986$, then $M=329866^{31613}(\bmod 35011)=19726$

RSA parametre (textbook version)

- Bob generates two large prime numbers p and q and computes $n=$ $p \cdot q$.
- He then computes a public encryption exponent e, such that
- $(e,(p-1)(q-1)))=1$ and computes the corresponding decryption exsponent d, by solving:

$$
d \cdot e \equiv 1(\bmod (p-1)(q-1))
$$

- Bob's public key is the pair $\mathrm{P}_{\mathrm{B}}=(e, n)$ and the corresponding private and secret key is $\mathrm{S}_{\mathrm{B}}=(d, n)$.

> Encryption: $\mathrm{C}=\mathrm{M}^{e}(\bmod n)$
> Decryption: $\mathrm{M}=\mathrm{C}^{d}(\bmod n)$

Factoring record- December 2009

Find the product of
$p=33478071698956898786044169848212690817704794983713768568$ 912431388982883793878002287614711652531743087737814467999489
and
$q=367460436667995904282446337996279526322791581643430876426$
$76032283815739666511279233373417143396810270092798736308917 ?$

Answer:

$\mathrm{n}=123018668453011775513049495838496272077285356959533479219732$
245215172640050726365751874520219978646938995647494277406384592 519255732630345373154826850791702612214291346167042921431160222 1240479274737794080665351419597459856902143413

Computation time ca. 0.0000003 s on a fast laptop!
RSA768 - Largest RSA-modulus that have been factored (12/12-2009)
Up to 2007 there was $50000 \$$ prize money for this factorisation!

Computational effort?

- Factoring using NFS-algorithm (Number Field Sieve)
- 6 mnd using 80 cores to find suitable polynomial
- Solding from August 2007 to April 2009 (1500 AMD64-år)
- 192796550 * 192795550 matrise (105 GB)
- 119 days on 8 different clusters
- Corresponds to 2000 years processing on one single core 2.2GHz AMD Opteron (ca. 2^{67} instructions)

Elliptic curves

- Let $p>3$ be a prime. An elliptic curve $y^{2}=x^{3}+a x+b$ over $\operatorname{GF}(p)=Z_{p}$ consist of all solutions $(x, y) \in Z_{p} \times Z_{p}$ to the equation

$$
y^{2} \equiv x^{3}+a x+b(\bmod p)
$$

- where $a, b \in Z_{p}$ are constants such that $4 a^{3}+27 b^{2} \neq 0(\bmod p)$, together with a special point O which is denoted as the point at infinity.

Asymmetric Ciphers:

Examples of Cryptosystems

- RSA: best known asymmetric algorithm.
- RSA = Rivest, Shamir, and Adleman (published 1977)
- Historical Note: U.K. cryptographer Clifford Cocks invented the same algorithm in 1973, but didn't publish.
- ElGamal Cryptosystem
- Based on the difficulty of solving the discrete log problem.
- Elliptic Curve Cryptography
- Based on the difficulty of solving the EC discrete log problem.
- Provides same level of security with smaller key sizes.

Elliptic curve over R

Point addition

Hybrid Cryptosystems

- Symmetric ciphers are faster than asymmetric ciphers (because they are less computationally expensive), but ...
- Asymmetric ciphers simplify key distribution, therefore
- a combination of both symmetric and asymmetric ciphers can be used - a hybrid system:
- The asymmetric cipher is used to distribute a randomly chosen symmetric key.
- The symmetric cipher is used for encrypting bulk data.

Asymmetric Encryption:

Basic encryption operation

- In practice, large messages are not encrypted directly with asymmetric algorithms. Hybrid systems are used, where only symmetric session key is encrypted with asymmetric

Confidentiality Services: Hybrid Cryptosystems

Digital Signatures

Practical digital signature based on hash value

Digital Signature Mechanisms

- A MAC cannot be used as evidence that should be verified by a third party.
- Digital signatures used for non-repudiation, data origin authentication and data integrity services, and in some authentication exchange mechanisms.
- Digital signature mechanisms have three components:
- key generation
- signing procedure (private)
- verification procedure (public)
- Algorithms
- RSA
- DSA and ECDSA

L03 Cryptography
INF3510 - UiO 2018

Digital Signatures

- To get an authentication service that links a document to A 's name (identity) and not just a verification key, we require a procedure for B to get an authentic copy of A 's public key.
- Only then do we have a service that proves the authenticity of documents 'signed by A '.
- This can be provided by a PKI (Public Key Infrastructure)
- Yet even such a service does not provide nonrepudiation at the level of persons.

Difference between MACs \& Dig. Sig.

- MACs and digital signatures are both authentication mechanisms.
- MAC: the verifier needs the secret that was used to compute the MAC; thus a MAC is unsuitable as evidence with a third party.
- The third party does not have the secret.

- The third party cannot distinguish between the parties knowing the secret.
- Digital signatures can be validated by third parties, and can in theory thereby support both non-repudiation and authentication.

Another look at key lengths

Table 1. Intuitive security levels

security level		volume of water to bring to a boil	symmetric key	cryptographic hash
teaspoon security	0.0025 liter	35	70	RSA modulus
shower security	80 liter	50	100	242
pool security	2500000 liter	65	130	453
rain security	$0.082 \mathrm{~km}^{3}$	80	160	745
lake security	$89 \mathrm{~km}^{3}$	90	180	1130
sea security	$3750000 \mathrm{~km}^{3}$	105	210	1440
global security	$1400000000 \mathrm{~km}^{3}$	114	228	1990
solar security	-	140	280	2380

Key length comparison:
Symmetric and Asymmetric ciphers offering comparable security

AES Key Size	RSA Key Size	Elliptic curve Key Size
-	1024	163
128	3072	256
192	7680	384
256	15360	512

The eavesdropper strikes back!

Computing
 NSA Says It "Must Act Now" Against the Quantum Computing Threat

The National Security Agency is worried that quantum computers will neutralize our best encryption - but doesn't yet
know what to do about that problem.

by Tom Simonite February 3,2016

Quantum Computers

- Proposed by Richard Feynman 1982
- Boosted by P. Schor's algorithm for integer factorization and discrete logarithm in quantum polynomial time
- Operates on qubit - superposition of 0 and 1
- IBM built a 7 -bit quantum computer and could find the factors of the integer 15 using NMR techniques in 2001
- NMR does not scale
- Progress continues, but nobody knows if or when a large scale quantum computer ever can be constructed
- QC will kill current public key techniques, but does not mean an end to symmetric crypto

Classical bit vs. qubits

- 1
- 0

$$
\Psi=\alpha|0\rangle+\beta|1\rangle, \text { where }|\alpha|^{2}+|\beta|^{2}=1
$$

Qubit (bra-ket notation)

A qubit is a unit vector in a two dimensional complex vector space with fixed basis. Orthonormal basis $\mid 0$? and $\mid 1$? may correspond $\mid \uparrow$? and $\mid \rightarrow$ (vertical or horizontal polarization) The basis states $\mid 0$ and $\mid 1$ 回 are taken to represent the classical bit values 0 and 1 respectively
Qubits can be in a superposition of $\mid 0$ and \mid 1回 such as

Thus, $|\alpha|^{2}$ and $|\beta|^{2}$ are the probabilities that the measured value are $\mid 0$ and $\mid 1$? respectively

Operations on qubits

Quantum logic

Current world record of QF!

Table 5: Quantum factorization records					
Number	\# of factors	\# of qubits needed	Algorithm	Year implemented	Implemented without prior knowledge of solution
15	2	8	Shor	$2001[2]$	\times
	2	8	Shor	2007 [3]	\times
	2	8	Shor	$2007[3]$	\times
	2	8	Shor	$2009[5]$	x
21	2	8	Shor	$2012[6]$	\times
143	2	10	Shor	$2012[7]$	\times
56153	2	4	minimization	$2012[1]$	\checkmark
291311	2	4	minimization	$2012[1]$	\checkmark
175	3	6	minimization	not yet	\checkmark
		3	minimization	not yet	\checkmark

QC impact to cryptography

-When will a quantum computer be built?
-15 years, $\$ 1$ billion USD, nuclear power plant (PQCrypto 2014, Matteo Mariantoni)

- Impact:
-Public key crypto:
-RSA
EElliptic Curve Cryptography (ECDSA)
- Finite Field Cryptography (DSA)
-Diffie-Hellman key exchange
-Symmetric key crypto:
-AES Need larger keys

-Triple DES Need larger keys
-Hash functions:
-SHA-1, SHA-2 and SHA-3 Use longer output

Two variants of quantum safe crypto

Quantum cryptography:

-The use of quantum mechanics to guarantee secure communication.
-It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages.

Quantum resistant cryptography:

-The use of cryptographic mechanisms based on computationally difficult problems for which no efficient quantum computing algorithm is known

Quantum Key Distribution

Follow Post Quantum crypto!

- https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

NGT

```
Iformation Technoloey I aboraton
```

COMPUTER SECURITY RESOURCE CENTER

Post-Quantum Cryptography
f G .
Round 1 Submissions

Quantum Resistant Cryptography

> Code Based Asymmetric Algorithms
> Lattice Based Asymmetric Algorithms
> Asymmetric Crypto based on Multivariate Polynomials
> Asymmetric Crypto based on Cryptographic Hash Functions
$>$ Asymmetric Crypto based on Isogenies of (supersingular) elliptic curves

Scientific America Technology, 10 Jan 2017
Quantum Computers Ready to Leap Out of the Lab in 2017

Google, Microsoft and a host of labs and start-ups are racing to turn scientific curiosities into working machines
[
-
sy Dance Castevechti. Nature magzaine on January 4 . 2017 Véalo en español

Quantum computing has long seemed like one of those technologies that are 20 years away, and always will be. But 2017 could be the year that the field sheds its research-only image

Computing giants Google and Microsoff recently hired a host of leading lights, and have set challenging goals for this year. Their ambition reflects a broader transition taking place at start-ups and academic research labs alike: to move from pure science towards engineering.
"People are really building things," says Christopher Monroe, a physicist "People are really building things," says Christopher Monroe, a physicist
at the University of Maryland in College Park who co-founded the start-up IonQ in 2015. "Tve never seen anything like that. It's no longer just research."

QKD via satellite

Update from two months ago

IBM Announces Advances to IBM Quantum Systems \& Ecosystem

-- Client systems with 20 qubits ready for use; next-generation IBM Q system in development with first working 50 qubit processor
-- IBM expands its open-source quantum software package QISKit; offers the worid's most advanced ecosystem for quantum computing

Select a topic or year

\downarrow News release	\downarrow Contact(s) information
\downarrow Related XML feeds	\downarrow Related resources

Yorktown Heights, N.Y. - 10 Nov 2017: IBM (NYSE: IBM) announced today two significant quantum processor upgrades for its IBM Q early-access commercial systems. These upgrades represent rapid advances in quantum hardware as IBM continues to drive progress across the entire quantum computing technology stack, with focus on systems, software, applications and
enablement.

More updates
Europe's billion-euro quantum project takes shape Sclentists ofter more detall on tlagstip programme to harness quantum entects in cevices. Elizabeth Giiney
03 May 2017

As China and the Unted States threaten to comer the market on quantum tecchnologies. Europe is
 and it should start to invite grant applications later this year: Eut scientists coordinating the project say that they are arready concemed beccuuse industry partners seem revuctant to invest

Swedish news from November

kVantedatamaskin

Svenske forskere får nær en milliard kroner til å utvikle kvantedatamaskin

Brave new crypto world...............

End of lecture

