
INF3510 Information Security

Lecture 6: Computer Security

Universitetet i Oslo

Laszlo Erdödi

Audun Jøsang INF3510 2018 L06 - Computer Security 2

Lecture Overview

Secure computer architectures

Virtualization architectures

Trusted computing

System & Communication Security

"Using encryption on the Internet is the equivalent of
arranging an armored car to deliver credit card
information from someone living in a cardboard box to

(Gene Spafford)

INF3510 2018 L06 - Computer Security 3

Vulnerabilities of the PC today

INF3510 2018 L06 - Computer Security 4

Vulnerable
to sw

attacks

Vulnerable
to sw

attacks

Vulnerable
to sw

attacks

Vulnerable
to sw

attacks

Vulnerabilities of the PC today

INF3510 2018 L06 - Computer Security 5

Access to
keyboard or
mouse data

Access to
protected
memory
through DMA

Access to
graphics
frame buffer

Access to
process
memory: most
of the attacks
are carried out
this way!!!

Insert malicious code
into file that will be
executed later

INF3510 2018 L06 - Computer Security 6

Approaches to strengthening platform security

Harden the operating system
SE (Security Enhanced) Linux, Trusted Solaris, Windows 7/8/10

Add security features to the CPU
Protection Layers, NoExecute, ASLR

Virtualisation technology
Separates processes by separating virtual systems

Trusted Computing
Add secure hardware to the commodity platform

E.g. TPM (Trusted Platform Module)

Rely on secure hardware external to commodity platform
Smart cards

Hardware tokens

OS protections Launching a process

INF3510 2018 L06 - Computer Security 7

- When the system runs an
executable, the code and the
data of the executable are
loaded into the Random Access
Memory

- The OS analyze the code and
also copies the required
dependencies and the
necessary OS API files into the
memory

- Each process has an own Virtual
Address Space, where all
necessary code and data are
loaded

- The process can access only its
own Virtual Address Space by
CPU instructions

OS protections Process Virtual
Address Space

INF3510 2018 L06 - Computer Security 8

- The process code can access its own address space, but this addressing
is different from the global physical addressing. Each process has the
maximum addressable memory range: a virtual memory in a virtual
address space (this is 232 (4GB) i.e. in 32bit systems 0x00000000
0xffffffff)

- To ensure the correct memory operations the OS has to provide a runtime
address translation between virtual memory to the physical memory

- Because of this way of operation the OS provides 2 protections by design:
The program code that is executed cannot access the physical memory
directly (We cannot write code to access physical memory in none of the
programming languages)

- And also the OS protects the process code and data from eachother.
Normally a process cannot have access to another process memory
(except debugging a process by another process or using specific OS
features such as CreateRemoteThread)

OS protections Runtime Address
Translation

INF3510 2018 L06 - Computer Security 9

- The runtime address translation is to optimize memory usage of processes
and also to protect the process data

OS protections Virtual Address Space

INF3510 2018 L06 - Computer Security 10

- The Virtual Address Space is separated into kernel and user space

OS protections Code vulnerabilities

INF3510 2018 L06 - Computer Security 11

- The kernel space can be accessed through only specific OS APIs (e.g. in
Windows using the native API, Hardware protection CPU rings - see later)

Kernelbase.dll

Ntdll.dll

OS protections Software supported
Data Execution Prevention (DEP)

INF3510 2018 L06 - Computer Security 12

- The vulnerable code has no access directly to kernel space, but without
DEP it can modify the code in the user space (even the OS API in user
space) or can execute an attacker placed malicious code

- The OS can enforce DEP (i.e nxAlwaysOn settings on Windows)

OS protections Address Space
Layout Randomization (ASLR)

INF3510 2018 L06 - Computer Security 13

- Because of DEP the attackers turned into code reuse. To prevent it
OS provides code randomization in the Virtual Address Space

OS advanced protections new
directions

INF3510 2018 L06 - Computer Security 14

- Increasing the entropy of ASLR makes brute-forcing
less effective (High Entropy ASLR)

- Address Space Layout Permutation (ASLP) the
place of the libraries are randomized as well as the
order of the methods in the Virtual Address Space

- Code diversity (OS protection ?)
- Multiple heaps and protected heap segments (e.g.

late free, MS Edge)
- Execute no Read segments (XnR protection,

hardware support later?)
- Control Flow Integrity (observation of unintended

use-cases)

CPU protection

INF3510 2018 L06 - Computer Security 15

- Protection rings
- Hardware supported Data Execution Prevention
- Hardware supported Control Flow Integrity (not in

- Intel sgx (Protecting memory regions from higher
privileged access)

Reference Monitor
A reference monitor is any security model for enforcing an
access control policy over subjects' (e.g., processes and
users) ability to perform operations (e.g., read and write) on
objects (e.g., files, memory and sockets) on a system.

The reference monitor must always be invoked (complete mediation).

The reference monitor must be tamperproof (tamperproof).

The reference monitor must be small enough to be subject to analysis
and tests, the completeness of which can be assured (verifiable).

The security kernel of an OS is a low-level (close to the
hardware) implementation of a reference monitor.

INF3510 2018 L06 - Computer Security 16

Subject Object

Reference
monitor

?

Request
access

Grant
access

Deny access

L06 - Computer Security

OS security kernel as reference monitor

Hierarchic security levels were introduced in
X86 CPU architecture in 1985 (Intel 80386)

4 ordered privilege levels
Ring 0: highest

Ring 3: lowest

INF3510 2018 17

What happened to rings 1 & 2 ?

... it eventually became clear that the hierarchical
protection that rings provided did not closely match
the requirements of the system programmer and
gave little or no improvement on the simple system of
having two modes only. Rings of protection lent
themselves to efficient implementation in hardware,
but there was little else to be said for them. [...]. This
again proved a blind alley...

Maurice Wilkes (1994)

L06 - Computer Security
18

INF3510 2018

CPU Protection Ring structure from 2006

New Ring -1 introduced for virtualization.

Necessary for protecting hypervisor from
VMs (Virtual Machines) running in Ring 0.

Hypervisor controls VMs in Ring 0

Ring 0 is aka.: Supervisor Mode

INF3510 2018 L06 - Computer Security 19

v-1

0

1

2

3Ring 3: User Mode

Ring 2: Not used

Ring 1: Not used

Ring 0: Kernel Mode (Unix root, Win. Adm.)

Ring -1: Hypervisor Mode

Privileged Instructions

programs.

The privileged instructions control system functions
(such as the loading of system registers). They can be
executed only when the Privilege Level is 0 or -1 (most
privileged).

If one of these instructions is attempted when the
Privilege Level is not 0 or -1, then a general-protection
exception (#GP) is generated, and the program crashes.

INF3510 2018 20L06 - Computer Security

Principle of protection ring model

A process can access and
modify any data and software
at the same or less privileged
level as itself.

A process that runs in kernel
mode (Ring 0) can access data
and SW in Rings 0, 1, 2 and 3

but not in Ring -1

The goal of attackers is to get
access to kernel or hypervisor
mode.

through exploits

by tricking users to install
software

INF3510 2018 L06 - Computer Security 21

Ring 3

Ring 2

Ring 1

Ring 0

Ring -1

SW

DataSW

Data

Data

SW

SW

Data

SW

L06 - Computer Security 22

User processes access to system resources

User processes need to access system resources
(memory and drivers)
User application processes should not access system
memory directly, because they could corrupt memory.
The CPU must restrict direct access to memory
segments and other resources depending on the
privilege level (Current Privilege Level, CPL).

Question 1: How can a user process execute instructions
that require kernel mode, e.g. for writing to memory ?

Answer: The CPU must switch between privilege levels

Question 2: How should privilege levels be switched?
Answer: Through Controlled invocation of code segments

INF3510 2018

Ring 3

Kernel
Code Segments

Code segment of
user process

Call Gate

Rings 1 & 2 (no code segments)

Ring 0

Ring -1

1

23

4

Hypervisor
Code Segments

Driver
Code Segments

INF3510 2018 L06 - Computer Security 23 L06 - Computer Security 24

Controlled Invocation

The user process executes code in specific code
segments.
Each code segment has an associated mode which
dictates the privilege level the code executes under.
Simply setting the mode of user process code to Kernel
would give kernel-privilege to user process without any
control of what the process actually does. Bad idea!
Instead, the CPU allows the user process to call kernel
code segments that only execute a predefined set of
instructions in kernel mode, and then returns control
back to the user-process code segment in user mode.
We refer to this mechanism as controlled invocation.

INF3510 2018

L06 - Computer Security 25

Hardware supported Data Execution
Prevention

Intel Processors with XD support
AMD processors with NX support

Hardware-enforced DEP marks all memory locations as non-
executable (you cannot execute code in this portion of memory) unless
the location explicitly contains executable code.
Hardware-enforced DEP relies on processor hardware to mark memory
with an attribute that indicates that code should not be executed from
that memory.
Processors that support hardware-enforced DEP are capable of raising
an exception when code is executed from a memory location where it
should not be executed.
To use these processor features, the processor must run in Physical
Address Extension (PAE) mode. HP ships Windows XP with PAE
enabled.

INF3510 2018 L06 - Computer Security 26

Control Flow Enforcement (in plan)

Processors will directly support: Shadow (call) stack
tracking. Method return addresses are stored in data
stack and the shadow stack too. Shadow stack is not
accessible, the processor checks the return addresses, if

-matching return then control protection
exception is raised
Processors also support: indirect branch tracking. After
each legitimate indirect branch instruction the code must
contain a nop-like special instruction. If the program
execution is redirected by an attacker, the nop-like
instruction is missing and a control flow protection error
is raised.
Control Flow Enforcement Technology is announced by
Intel in June 2016. Release date is unknown.

INF3510 2018

Intel Software Guard Extension (SGX)

https://newsroom.intel.com/news/intel-microsoft-enterprise-blockchain-service/

INF3510 2018 L06 - Computer Security 27

TCB Trusted Computing Base

The trusted computing base (TCB) of a computer
system is the set of all hardware, firmware, and/or
software components that are critical to its security,
in the sense that bugs or vulnerabilities occurring
inside the TCB might jeopardize the security
properties of the entire system.

By contrast, parts of a computer system outside the
TCB must not be able to breach the security policy
and may not get any more privileges than are
granted to them in accordance to the security policy

From TCSEC

Trusted Computer Evaluation Criteria, 1985.

INF3510 2018 L06 - Computer Security 28

System

TCB
Security-
Relevant

Components

Components
that are

irrelevant for
security

Platform Virtualization

Platform Virtualization

Hypervisor (aka. VMM - Virtual Machine Monitor) is needed
to manage multiple guest OSs (virtual machines) in the
same hardware platform.

Many types of hypervisors available

VMWare is most known Commercial product (Type 1&2)

Free version comes with a limitations

VirtualBox is a hypervisor for x86 virtualization

It is freely availably under GPL, Type 2

Runs on Windows, Linux, OS X and Solaris hosts

Hyper-

Requires Windows Server

Xen, powerful open source hypervisor, (Type 1)

INF3510 2018 L06 - Computer Security 30

Type 1 VM Architecture (native)

No host OS

Hypervisor runs directly on hardware

High performance

Traditionally limited GUI, but is improved in modern versions

HW support can be an issue

Hardware (X86 CPU from Intel or AMD)

Hypervisor

Guest OS VM
e.g. Linux

App.

Guest OS VM
e.g. Mac OS

Virtual
Machines

App. App. App.

Guest OS VM
e.g. Windows

App. App.

INF3510 2018 L06 - Computer Security 31

Type 2 VM Architecture (hosted)

Host OS (e.g. Windows, Linux or Mac OS)

Hardware (X86 CPU from Intel or AMD)

Hypervisor

Guest OS VM
e.g. Linux

App.

Guest OS VM
e.g. Windows

Virtual
Machines

App. App. App.App. App.

Hypervisor runs on top of host OS

Performance penalty, because hardware access goes through 2 OSs

Traditionally good GUI

Traditionally good HW support, because host OS drivers available

INF3510 2018 L06 - Computer Security 32

Hardware

Hypervisor

Guest OS VM

App.

Guest OS VM

App. App. App.

VMs and Apps in a VM must
not know that Hypervisor
exists or that they share HW
resources with other VMs

Hypervisor must protected itself
from all VMs

memory areas from each other

Hypervisor must present virtual
hardware interface to VMs

INF3510 2018 L06 - Computer Security 33

Guest OS VMs are less privileged than the hypervisor.
Hypervisor is well protected from the VMs.
Good performance and good security !

Type 1 VM Architecture Ring Allocation

Ring 3

Ring 0

Hardware

Hypervisor

Guest OS VM

App.

Guest OS VM

App. App. App.

Ring -1

Run VMs in Ring 0

Run Hypervisor in Ring -1

INF3510 2018 L06 - Computer Security 34

Guest OS VMs run in Ring 3.
Guest OS VMs call privileged instructions that are forbidden in Ring 3.
Forbidden instructions cause exceptions that are handled by
interrupt/exception handler to be executed.
Slow performance !

Type 2 VM Architecture Ring Allocation

Ring 3

Host OS

Hardware

Hypervisor

Guest OS VM

App. App.App. App.

Ring 0

Run VMs in Ring 3

Run Hypervisor in Ring 3

Run Host OS in Ring 0

Guest OS VM

INF3510 2018 L06 - Computer Security 35

Platform Virtualisation Products

INF3510 2018 L06 - Computer Security 36

Microsoft Hyper-V
VMWare ESX
Citrix XenServer (Xen)
ORACLE VM Server (Xen)
Amazon EC2 (Xen)
IBM System Z Hypervisor

Type 1
(Native)

Microsoft Virtual PC
VMWare Workstation
Citrix XenClient
VirtualBox

Type 2
(Hosted)

Hypervisor types

Operating system level virtualization

INF3510 2018 L06 - Computer Security 37

https://www.slideshare.net/GiacomoVacca/docker-from-scratch

Modern Intel and AMD X86 CPUs support virtualization
Intel-VT (Intel Virtualization Technology)
AMD-V (AMD Virtualization)

Must be enabled in BIOS
Can be enabled and disabled
Computers with single OS typically have virtualization disabled

Access to data- and code segments for hypervisor can
be restricted to processes running in hypervisor mode
Some instructions are reserved for hypervisor mode

Intel Core i7 CPU
AMD Phenom CPU

INF3510 2018 L06 - Computer Security 38

Why use platform virtualization
Efficient use of hardware and resources

Improved management and resource utilization

Saves energy

Improved security
Malware can only infect the VM

Safe testing and analysis of malware

Isolates VMs from each other

Distributed applications bundled with OS
Allows optimal combination of OS and application

Ideal for cloud services

Powerful debugging
Snapshot of the current state of the OS

Step through program and OS execution

Reset system state

INF3510 2018 39L06 - Computer Security

Hypervisor examples of use

Cloud providers run large server parks
Each customer gets its own VM

Many customers share the same hardware

Migrated VMs between servers to
increase/reduce capacity

Testing and software analysis
Potentially damaging experiments can be
executed in isolated environment

Take a snapshot of the current state of the OS

Use this later on to reset the system to that state

Malware Analysis

INF3510 2018 L06 - Computer Security 40

Amazon EC2 Data Centre

Trusted Computing

L06 - Computer SecurityINF3510 2018 41

Trusted Computing Motivation
Software alone can not be trusted.
Malware infection in OS kernel remains undetected
by anti-malware tools.
Physical access to computers opens up for attacks
that can circumvent traditional TCBs (Trusted
Computing Base), e.g. secure operating systems.
Remote parties do not know the status of systems
they are communicating with.
Remote parties do not know the physical identity of
hosts they are communicating with.

L06 - Computer SecurityINF3510 2018 42

Basic idea of Trusted Computing

Use specialised security hardware as part of TCB in a
computer system

Can not be compromised by malware

Can verify the integrity of OS kernel

Can make physical tampering difficult

Can report status of system to remote parties

Can report identity of system to remote parties

Gives increased level of trust that the system will
perform as expected/specified

43L06 - Computer SecurityINF3510 2018

To have confidence in assumptions about security
Trust is to believe that security assertions will hold
A trusted component, operation, or process is one whose

behaviour is assumed to be correct under any operating
condition, and which is assumed to resist subversion by
malicious software, viruses, and manipulations
A trusted component enforces the security policy as long
as these assumptions hold
A trusted component violates the security policy if it breaks

Q2: Trusted by whom to do what ?
Trusted by user, by vendor, or by 3rd party (NSA)
What if they have conflicting interests ?

L06 - Computer SecurityINF3510 2018 44

Characteristics of Trusted Hardware

Physically secure hardware component

Environmental monitoring (temperature, power
supply, structural integrity)
Tamper responsive
Implementations

CPU
ROM for OS and application code
Specialized hardware for cryptography and for storing
secrets

L06 - Computer SecurityINF3510 2018 45

Trusted Hardware Example

IBM 4765 Secure Coprocessor

L06 - Computer SecurityINF3510 2018 46

Trusted Computing Group
TCG History & Evolution

October 1999: TCPA formed
Trusted Computing Platform Alliance
Founders: IBM, HP, Compaq, Intel and Microsoft

2001: 1st TPM specification released
Trusted Platform Module

2002: TCPA changes its name to TCG
Trusted Computing Group
Industry standards organization

2003: TCPA TPM spec. adopted by TCG as TPM 1.2
2012: Draft TPM Specification 2.0 published

TPM 2.0 spec. not compatible with TPM 1.2 spec.

2015: Official TPM specification 2.0

L06 - Computer SecurityINF3510 2018 47

Pervasiveness of the TPM

The TPM chip sits
on the motherboard

Installed in 2 billion
devices per 2015

Relatively obscure
technology for most
people

INF3510 2018 L06 - Computer Security 48

L06 - Computer Security

TPM 1.2 Functionality

INF3510 2018 49

TPM usage
TPM is both the name of a standard and a chip
TPM chip at the heart of hardware / software approach to
trusted computing

Current TPM chips implement TPM spec. 2.0
Latest version of TPM spec. 2.0 is from 2015

TPM chip mounted on motherboard,

TPM equipped computing platforms
Laptops, servers, pads, mobile phones

Used by software platforms
Windows Vista / 7 / 8 / 10, Linux, and MAC OS

Supports 3 basic services:
Authenticated/measured boot,
Sealed Storage / Encryption
Remote attestation,

L06 - Computer Security 50INF3510 2018

Boot protection
BIOS /UEFI

Loaded by processor code at power-on

BIOS/UEFI initializes and identifies system
devices such as display and keyboard

BIOS/UEFI then loads software (OS) held on
a peripheral device such as a hard disk

BIOS/UEFI firmware is stored in ROM

Boot protection
CRTM (Core Root-of-Trust for Measurement)

Boot protection focuses on verifying the
integrity of the OS during boot.

CRTM can provide integrity assurance of OS

The usage of CRTM can be to check PCR or
to check Digital Signatures of software.

L06 - Computer Security 51INF3510 2018

optional

Boot Protection with TPM
The CRTM is the initial code which starts running at CPU power-on.

The boot integrity depends on the CRTM integrity.

Multiple options for storing the CRTM, e.g. in CPU or external ROM

Multiple options for storing PCR, e.g. in TPM or in other ROM chip.

L06 - Computer Security 52INF3510 2018

1

2

3

5

Measure
Check PCR

CRTM
options

4

Check PCR

6

Check PCR

Measure

Measure

Boot Protection with UEFI
Unified Extensible Firmware Interface (replaces BIOS)

The CRTM is the UEFI code which starts at CPU power-on.

The boot integrity depends on the UEFI/CRTM integrity.

The root public key must be stored in CPU.

L06 - Computer Security 53INF3510 2018

1

3

Measure

Measure

CRTM 2

Check DigSig

4

Check DigSig

Two modes of boot protection

Secure boot with UEFI (not with TPM, see UEFI later)
The platform owner can define expected (trusted) measurements
(hash values) of OS software modules.

Hash values stored in memory signed by private PK (Platform Key).

Public PK stored in secure firmware on platform

Measured has values can be compared with stored values.

Matching measurement values guarantee the integrity of the
corresponding software modules.

Boot process terminates if a measurement does not match the
stored value for that stage of the boot process.

Authenticated/Measured boot with TPM
Records measured values in PCRs and reports to remote party

Does not terminate boot if measured values are wrong

L06 - Computer Security 54INF3510 2018

Sealed Storage / Encryption

Encrypts data so it can be decrypted
by a certain machine in given configuration

Depends on
Storage Root Key (SRK) unique to machine
Decryption only possible on unique machine

Can also extend this scheme upward
create application key for desired application version running on
desired system version

Supports disk encryption

L06 - Computer Security 55INF3510 2018

Remote Attestation

TPM can certify configuration to others
with a digital signature in configuration info

giving another user confidence in it

Based on Attestation Key (AK)

Remote parties can validate signature based on a PKI

Provides hierarchical certification approach
trust TPM, then trust the OS, then trust applications

L06 - Computer Security 56INF3510 2018

System

Attestation about platform identity
and SW status

Remote party

End of lecture

INF3510 2018 57L06 - Computer Security

