INF3510 Information Security

Lecture 01:

- Course info
- Basic concepts in information security

University of Oslo, spring 2018

Course information

- Course organization
- Prerequisites
- Syllabus and text book
- Lecture plan
- Home exam
- Assessment and exams
- Security education
- AFSecurity

Course organisation

- Course activities
 - Attend 2 hours lectures per week
 - Lecture notes available at least one day prior to lecture
 - Work on the workshop questions
 - Will be discussed during the following week's workshop which follows immediately after the 2-hour lecture
 - Work on the home exam
 - Topic for the assignment can be freely chosen.
- Not just about facts, you also need to
 - understand concepts
 - apply those concepts
 - think about implications
 - understand limitations

Course Resources

- Learning material is available at:
 - http://www.uio.no/studier/emner/matnat/ifi/INF3510/v18/
 - lecture presentations, workshop questions, etc.
 - List of English security terms translated to Norwegian
- Assignment topic for home exam on:
 - https://wiki.uio.no/mn/ifi/INF3510-2018
- Various online resources
 - E.g. NIST special computer security publications http://csrc.nist.gov/publications/PubsSPs.html

Lecturer

- Prof. Audun Jøsang,
- Education
 - CISSP 2005, CISM 2010,
 - PhD Information Security, NTNU, 1998
 - MSc Information Security, Royal Holloway College, London, 1993
 - BSc Telematics, NTH 1987
 - Baccalaureat, Lycée Corneille, France, 1981

Work

- Professor, UiO, 2008 →
- Associate Professor, QUT, Australia, 2005-2007
- Research Leader, DSTC, Australia 2000-2004
- Associate Professor, NTNU, 1998-1999
- System design engineer, Alcatel, Belgium 1988-1992

Prerequisites

- Prerequisites
 - Basic computer and network technology
 - Basic mathematics
- Theoretic focus on a basic level
 - Discrete mathematics, number theory, modular arithmetic
 - Information theory
 - Probability calculus
 - Computer and network architecture

Syllabus and text book

- The syllabus for this course consists of the material presented during the lectures, as described in the lecture notes.
- Adequate comprehension of the material requires that you also
 - read parts of the text book and other documents
 - work out answers to the workshop questions
 - follow the lectures.
- Text book:

CISSP All-in-One Exam Guide 7th Edition, 2016

Authors: Shon Harris (⊕) and

Fernando Maymí

Shon Harris

Fernando Maymí

- The book covers the 8 CBK domains (Common Body of Knowledge) for the CISSP Exam (Certified Information Systems Security Professional).
- Easy to order book from amazon.com, price approx: US\$ 55
 https://www.amazon.com/CISSP-All-One-Guide-Seventh/dp/0071849270

How to use Harris & Maymí's CISSP book (7th ed.)

- 1340 pages in total
 - But exclude
 - 50 pages of appendix, glossary and index
 - 300 pages of tips, Q&A
 - Parts of chapters
 - Around 700 pages of readable material
 - The book is very easy to read ☺
 - Sometimes long explanations and examples ☺
- Each chapter has Main Sections (big font) and Subsections (small font), but no numbering
 - The lack of numbering of subsections can be confusing

Week	Date	#	Topic			
W04	22.01.2018	1	Course Information. Basic Concepts in IS			
W05	29.01.2018	2	IS Management, Human Factors for IS			
W06	05.02.2018	3	Cryptography			
W07	12.02.2018	4	Key Management and PKI			
W08	19.02.2018	5	Risk Management and Business Continuity Planning			
W09	26.02.2018	6	Computer Security			
W10	05.03.2018	7	Incident Response and Digital Forensics			
W11	12.03.2018	8	User Authentication			
W12	19.03.2018	9	Identity Management and Access Control			
W13	Easter break					
W14	Easter break					
W15	09.04.2018	10	Network Communication Security			
W16	16.04.2018	11	Network Perimeter Security			
W17	23.04.2018	12	System Development and Application Security			
W18	No lecture					
W19	No lecture					
W20	22.05.2018		Review			
W21	No lecture					
W22	01.06.2018 Digital exam, time: 09:00h - 13:00h (4 hours)					

Home Exam

- Write an essay on a security topic chosen by you
- Individual, or in group of 2 or 3 students
- Select topic and specify group on wiki https://wiki.uio.no/mn/ifi/INF3510-2018/
- Length: 5000 10000 words (approx. 10 15 pages)
- Due date: 07.05.2018
- Assessment criteria:
 - Structure and presentation: weight ¼
 - Scope and depth of content: weight ¼
 - Evidence of independent research and analysis: weight ¼
 - Proper use of references: weight ¼

Assessment and Marking

- Course weight: 10 study points
- Assessment items:
 - Home exam: weight 0.4
 - Digital exam: weight 0.6
- Required to get a pass score on both assessment items
 - At least 40% on home exam and 40% on written exam
 - Relatively easy to get a high score on home exam
 - Relatively difficult to get a high score on written exam
- Academic dishonesty (including plagiarism and cheating) is actively discouraged
 - See: https://www.uio.no/english/studies/admin/examinations/cheating/
 - Should be no problem ©

Exam statistics from previous years

Year	# students	# A (%)	# B (%)	# C (%)	# D (%)	# E (%)	# F (%)		
2017	138	9 (6%)	47 (34%)	66 (49%)	4 (3%)	3 (2%)	9 (6%)		
2016	147	6 (4%)	39 (37%)	59 (40%)	9 (6%)	10 (7%)	24 (16%)		
2015	121	10 (9%)	30 (25%)	45 (37%)	9 (7%)	9 (7%)	18 (15%)		
2014	103	4 (4%)	8 (7.5%)	45 (44%)	14 (13.5%)	9 (4.5%)	23 (22.5%)		
2013	0	For the 2013 spring semester the course was cancelled due to faculty politics.							
2012	34	2 (6%)	6 (18%)	14 (41%)	0 (0.0%)	6 (17.5%)	6 (17.5%)		
2011	70	1 (2%)	10 (14%)	33 (47%)	9 (13%)	10 (14%)	7 (10%)		

Other security courses at IFI

- IN4XXX: Ethical Hacking
 - Laszlo Erdödi (autumn)
- IN5XXX: Security by Design
 - Lillian Røstad (spring)
- UNIK4220: Introduction to Cryptography
 - Leif Nilsen (autumn, taught at IFI)
- UNIK4250: Security in Distributed Systems
 - Nils Nordbotten (spring)
- UNIK4270: Security in OS and Software
 - Audun Jøsang (Autumn, taught at IFI)
- UNIK4740: InfoSec in Industrial Sensor and Mobile Systems
 - Judith Rossebø (autumn)
- INF5150 Unassailable IT-systems
 - Ketil Stølen (autumn)
- ITLED4230 Ledelse av informasjonssikkerhet
 - Audun Jøsang (autumn) (for professionals, fee NOK 25K)

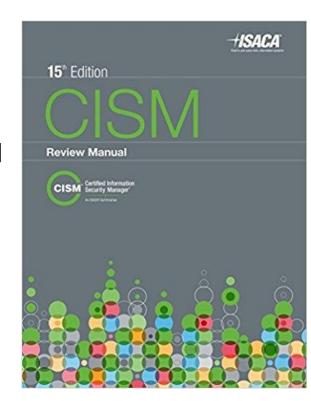
Why study information security?

- Being an IT expert requires knowledge about IT security
 - Analogy: Building architects must have knowledge about fire safety
- Developing IT systems without considering security will lead to vulnerable IT systems
- IT experts without security skills are part of the problem
- Learn about IT security to become part of the solution!
- Security by Design is a prerequisite for privacy by design which is a legal requirement for processing personal data
- Information security is a political issue
 - Often seen as a cost, but saves costs in the long term
 - Often given low priority in IT industry and IT education

Certifications for IS Professionals

- Many different types of certifications available
 - vendor neutral or vendor specific
 - from non-profit organisations or commercial for-profit organisations
- Certification gives assurance of knowledge and skills,
 - needed in job functions
 - gives credibility for consultants, applying for jobs, for promotion
- Sometimes required
 - US Government IT Security jobs
- Knowledge domains reflect current topics in IT Security
 - Generally kept up-to-date

ISACA Certifications


(Information Systems Audit and Control Association)

- ISACA provides certification for IT professionals
 - CISM Certified Information Security Manager
 - CISA Certified Information System Auditor
 - CGIT Certified in the Governance of Enterprise IT
 - CRSIC Certified in Risk and Information Systems Control
- CISM is the most popular ISACA security certification
- IT auditors and consultants commonly have ISACA certifications
- ISACA promotes IT governance framework COBIT (Control Objectives for Information and Related Technologies)

CISM: Certified Information Security Manager

- Focuses on 4 domains of IS management
 - 1. Information Security Governance
 - 2. Information Risk Management
 - 3. Information Security Program Development and Management
 - 4. Information Security Incident Management
- Official prep manual published by ISACA
 - https://www.isaca.org/bookstore/

Price: US \$115 (\$85 for ISACA members)

CISM Exam

- Exams normally twice per year worldwide
- Next exam in Oslo (and worldwide): June 2018
 - Deadline for registering: April 2018
 - Register for exam at www.isaca.org
 - Exam fee approx. US \$500
 - Multiple choice exam
 - Requires 5 years professional experience
 - Yearly CISM maintenance fee approx. US \$100
 - Requires 120 hours "practice time" per 3 years

(ISC)² Certifications

International Information Systems Security Certification Consortium

- (ISC)² provides certification for information security professionals
 - CISSP Certified Information Systems Security Professional
 - ISSAP Information Systems Security Architecture Professional
 - ISSMP Information Systems Security Management Professional
 - ISSEP Information Systems Security Engineering Professional
 - CAP Certification and Accreditation Professional
 - SSCP Systems Security Certified Practitioner
 - CSSLP Certified Secure Software Lifecycle Professional
- CISSP is the most common IT security certification
 - Most IT Security Consultants are CISSP

CISSP Exam:

Certified Information System Security Professional

- Many different books to prepare for CISSP exam
- e.g. text book used for INF3510 course

CISSP All-in-One Exam Guide 7th Edition, 2016 Author: Shon Harris and Fernando Maymí

- € 560 fee to sit CISSP exam.
- Exam through http://www.pearsonvue.com/isc2/
- Test Centre in Oslo: http://www.glasspaper.no/
 Brynsveien 12, Bryn, Oslo
- Most of the of the material presented in the INF3510 course is taken from the syllabus of the CISSP CBK (Common Body of Knowledge).

CISSP CBK (Common Body of Knowledge) 8 domains

- Security and Risk
 Management (Security, Risk,
 Compliance, Law, Regulations,
 and Business Continuity)
- Asset Security (Protecting Security of Assets)
- Security Engineering
 (Engineering and Management of Security)
- 4. Communication and Network Security (Designing and Protecting Network Security)

- 5. Identity and Access Management (Controlling Access and Managing Identity)
- 6. Security Assessment and Testing (Designing, Performing, and Analyzing Security Testing)
- 7. Security Operations (Foundational Concepts, Investigations, Incident Management, and Disaster Recovery)
- 8. Software Development Security (Understanding, Applying, and Enforcing Software Security)

Security Surveys

Useful for knowing the trend and current state of information security threats and attacks

- Verizon Data Breach Report: http://www.verizonenterprise.com/DBIR/
- PWC security survey:

http://www.pwc.com/gx/en/issues/cyber-security/information-security-survey.html

- Mnemonic Security Report https://www.mnemonic.no/security-report/
- Mørketallsundersøkelsen;

http://www.nsr-org.no/moerketall/

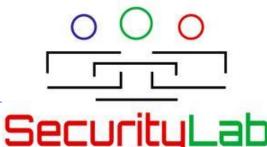
New report in December every 2 years (even years).

+ many others

Security Advisories

- Useful for managing threats and vulnerabilities
 - NorCERT: For government sector: https://www.nsm.stat.no/
 - NorSIS: For private sector: http://www.norsis.no/
 - FinansCERT: http://www.finanscert.no/
 - KraftCERT: https://www.kraftcert.no/
 - HelseCERT:

https://www.nhn.no/tema/sikkerhet/HelseCERT/Sider/default.aspx


- UNINETT-CERT: https://www.uninett.no/cert
- UiO-CERT: http://www.uio.no/english/services/it/security/cert/
- US CERT: http://www.cert.org/
- Australia AusCERT: http://www.auscert.org.au/
- + many others

Academic Forum on Security

- Monthly seminar on information security
- https://wiki.uio.no/mn/ifi/AFSecurity/
- Guest expert speakers
- Next AFSecurity seminar:
 - Topic: History of Cryptology in Norway
 - Speaker: Sondre Rønjom, NSM
 - Time: January 2018
 - Place: Kristen Nygaards sal, 5th floor, OJD
- All interested are welcome!
- Organised by SecurityLab

Information Security Basic Concepts

Good and bad translation

English


Norwegian

- Security
- Safety ———
- Certainty

- Sikkerhet
- Trygghet
- Visshet

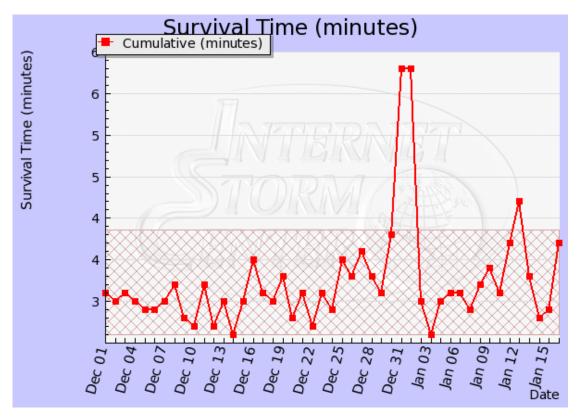
- Security
- Safety
- Certainty

What is security in general

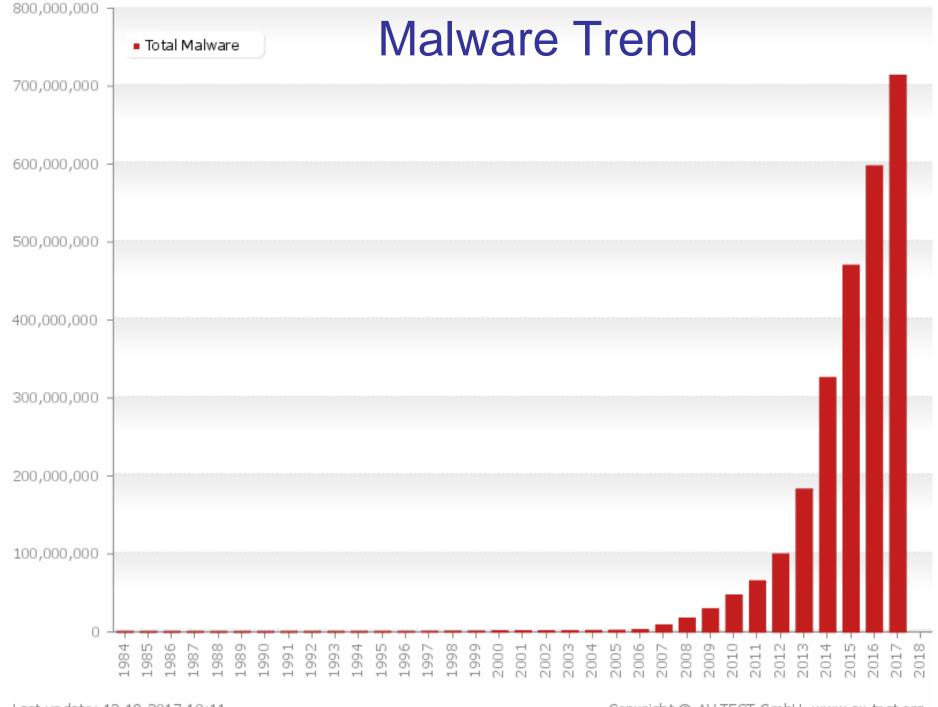
- Security is about protecting assets from damage or harm
- Focuses on all types of assets
 - Example: your body, possessions, the environment, the nation
- Security and related concepts
 - National security (political stability)
 - Safety (health)
 - Environmental security (clean environment)
 - Information security
 - etc.

What is *Information* Security

- Information Security focuses on protecting information assets from damage or harm
- What are the assets to be protected?
 - Example: data files, software, IT equipment and infrastructure
- Covers both intentional and accidental events
 - Threat agents can be people or acts of nature
 - People can cause harm by accident or by intent
- Information Security defined:
 - The preservation of confidentiality, integrity and availability of information; in addition, other properties such as authenticity, accountability, non-repudiation and reliability can also be involved. (ISO27000 Information Security Management Systems
 - Overview and Vocabulary)


Scope of information security

- IS management has as goal to avoid damage and to control risk of damage to information assets
- IS management focuses on:
 - Understanding threats and vulnerabilities
 - Managing threats by reducing vulnerabilities or threat exposures
 - Detection of attacks and recovery from attacks
 - Investigate and collect evidence about incidents (forensics)


The Need for Information Security

- Why not simply solve all security problems once for all?
- Reasons why that's impossible:
 - Rapid innovation constantly generates new technology with new vulnerabilities
 - More activities go online
 - Crime follows the money
 - Information security is a second thought when developing IT
 - New and changing threats
 - More effective and efficient attack technique and tools are being developed
- Conclusion: Information security doesn't have a final goal, it's a continuing process

Internet Storm Survival Time Measure

The survival time is calculated as the average time between attacks against average target IP address. http://isc.sans.org/survivaltime.html

Last update: 12-18-2017 10:11

Copyright @ AV-TEST GmbH, www.av-test.org

Security control categories

Physical controls

- Facility protection
- Security guards
- Locks
- Monitoring
- Environmental controls
- Intrusion detection

Technical controls

- Logical access control
- Cryptographic controls
- Security devices
- User authentication
- Intrusion detection
- Forensics

Administrative controls

- Policies & standards
- Procedures & practice
- Personnel screening
- Awareness training
- Secure System Dev.
- Incident Response

Security control functional types

- Preventive controls:
 - prevent attempts to exploit vulnerabilities
 - Example: encryption of files
- Detective controls:
 - warn of attempts to exploit vulnerabilities
 - Example: Intrusion detection systems (IDS)
- Corrective controls:
 - correct errors or irregularities that have been detected.
 - Example: Restoring all applications from the last known good image to bring a corrupted system back online
- Use a combination of controls to help ensure that the organisational processes, people, and technology operate within prescribed bounds.

Controls by Information States

- Information security involves protecting information assets from harm or damage.
- Information is considered in one of three possible states:
 - During storage
 - Information storage containers
 - Electronic, physical, human

- During transmission
 - Physical or electronic

- During processing (use)
 - Physical or electronic

Security controls for all information states are needed

Security Services and Properties

- A security service provides a high level security property
- The traditional definition of information security is to preserve the three CIA properties for data and services:
 - Confidentiality:
 - Integrity
 - Availability:

- CIA are the three main security properties/services
- Data privacy is an additional property which assumes CIA

Data Privacy

Security services and controls

- Security services (aka. goals or properties)
 - implementation independent
 - supported by specific controls
- Security controls (aka. mechanisms)
 - Practical mechanisms, actions, tools or procedures that are used to provide security services

Security services:

e.g. Confidentiality - Integrity - Availability

Security controls:

e.g. Encryption – Firewalls – Awareness

Confidentiality

- The property that information is not made available or disclosed to unauthorized individuals, entities, or processes. (ISO 27000)
- Can be divided into:
 - Secrecy: Protecting business data
 - Privacy: Protecting personal data
 - Anonymity: Hide who is engaging in what actions
- Main threat: Information theft, unintentional disclosure
- Controls: Encryption, Access Control, Perimeter defence As general controls, also include:

Secure Systems Development, Incident Response

Integrity

 Data Integrity: The property that data has not been altered or destroyed in an unauthorized manner.

(X.800: Security Architecture for OSI)

• System Integrity: The property of accuracy and completeness (ISO 27000).

Can include the accountability of actions.

- Threats: Data and system corruption, loss of accountability
- Controls:
 - Hashing, cryptographic integrity check and encryption
 - Authentication, access control and logging
 - Software digital signing
 - Configuration management and change control (system integrity)

As general controls, also include:

Secure System Development, Incident Response

Availability

- The property of being accessible and usable upon demand by an authorized entity. (ISO 27000)
- Main threat: Denial of Service (DoS)
 - The prevention of authorized access to resources or the delaying of time critical operations
- Controls:
 - Redundancy of resources,
 - Load balancing,
 - Software and data backups

As general controls, also include:

Secure System Development and Incident Response

Data Privacy

To protect specific aspects of information that may be related to natural persons (personal information).

- Prevent unauthorized collection and storage of personal information
- Prevent unauthorized use of collected personal information
- Make sure your personal information is correct
- Ensure transparency and access for data subjects
- Provide adequate information security (CIA) around personal information
- Define clear responsibilities around personal information
- GDPR becomes EU law on 25 May 2018 (General Data Protection Regulation)

10101

Authenticity (Security Service)

The CIA properties are quite general security services.

Other security services are often mentioned.

Authentication is very important, with various types:

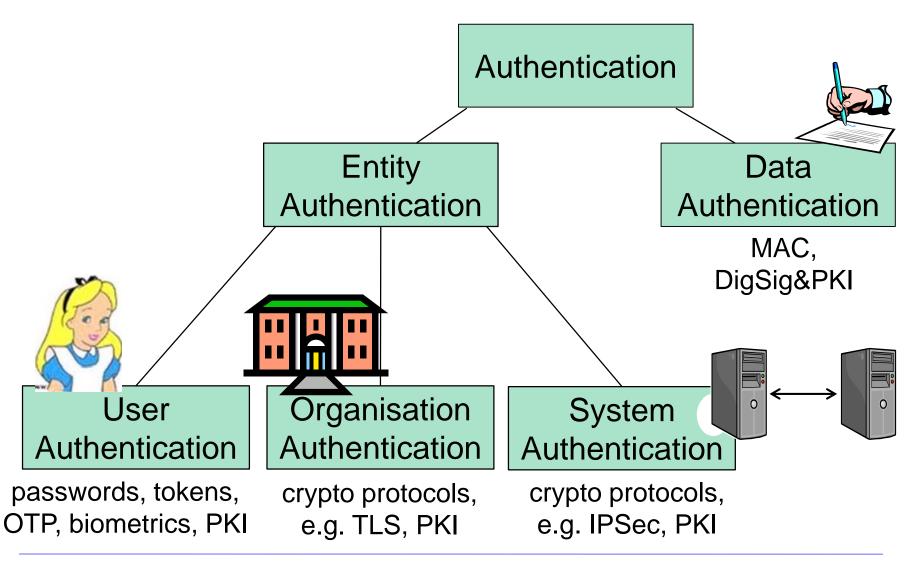
User authentication:

 The process of verifying a claimed identity of a (legal) user when accessing a system or an application.

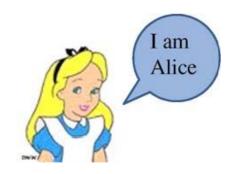
Organisation authentication:

The process of verifying a claimed identity of a (legal) organisation in an online interaction/session

System authentication (peer entity authentication):


 The corroboration (verification) that a peer entity (system) in an association (connection, session) is the one claimed (X.800).

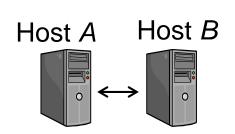
Data origin authentication (message authentication):


 The corroboration (verification) that the source of data received is as claimed (X.800).

Taxonomy of Authentication

User Identification and Authentication

- Identification
 - Who you claim to be
 - Method: (user)name, biometrics
- User authentication
 - Prove that you are the one you claim to be
- Main threat: Unauthorized access
- Controls:
 - Passwords,
 - Personal cryptographic tokens,
 - OTP generators, etc.
 - Biometrics
 - Id cards
 - Cryptographic security/authentication protocols



Authentication token

Organisation/System Authentication

- Goal
 - Establish the correct identity of organisations/remote hosts
- Main threat:
 - Network intrusion
 - Masquerading attacks,
 - Replay attacks
 - (D)DOS attacks
- Controls:
 - Cryptographic authentication protocols based on hashing and encryption algorithms
 - Examples: TLS, VPN, IPSEC

Data Origin Authentication (Message authentication)

- Goal: Recipient of a message (i.e. data) can verify the correctness of claimed sender identity
 - But 3rd party may not be able to verify it
- Main threats:
 - False transactions
 - False messages and data
- Controls:
 - Encryption with shared secret key
 - MAC (Message Authentication Code)
 - Security protocols
 - Digital signature with private key
 - Electronic signature,
 - i.e. any digital evidence

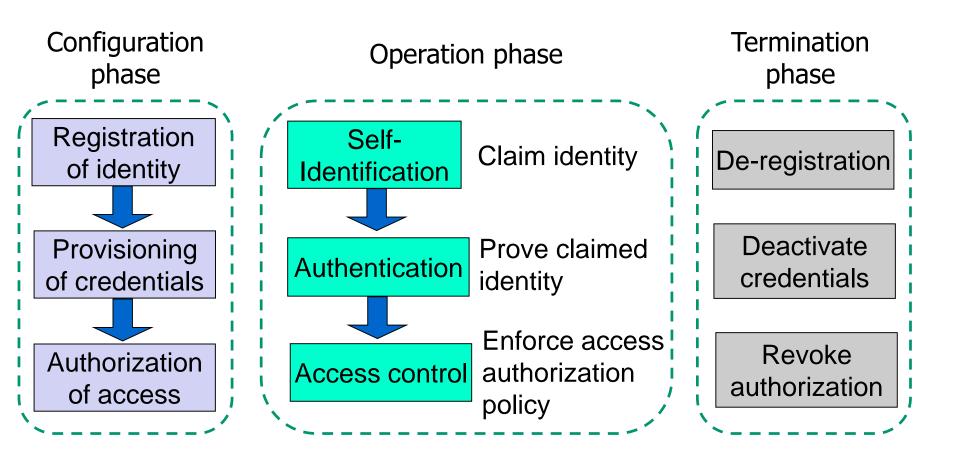
Non-Repudiation

(Strong form of Data Authentication)

- Goal: Making sending and receiving messages undeniable through unforgible evidence.
 - Non-repudiation of origin: proof that data was sent.
 - Non-repudiation of delivery: proof that data was received.
 - NB: imprecise interpretation: Has a message been received and read just because it has been delivered to your mailbox?
- Main threats:
 - Sender falsely denying having sent message
 - Recipient falsely denying having received message
- Control: digital signature
 - Cryptographic evidence that can be confirmed by a third party
- Data origin authentication and non-repudiation are similar
 - Data origin authentication only provides proof to recipient party
 - Non-repudiation also provides proof to third parties

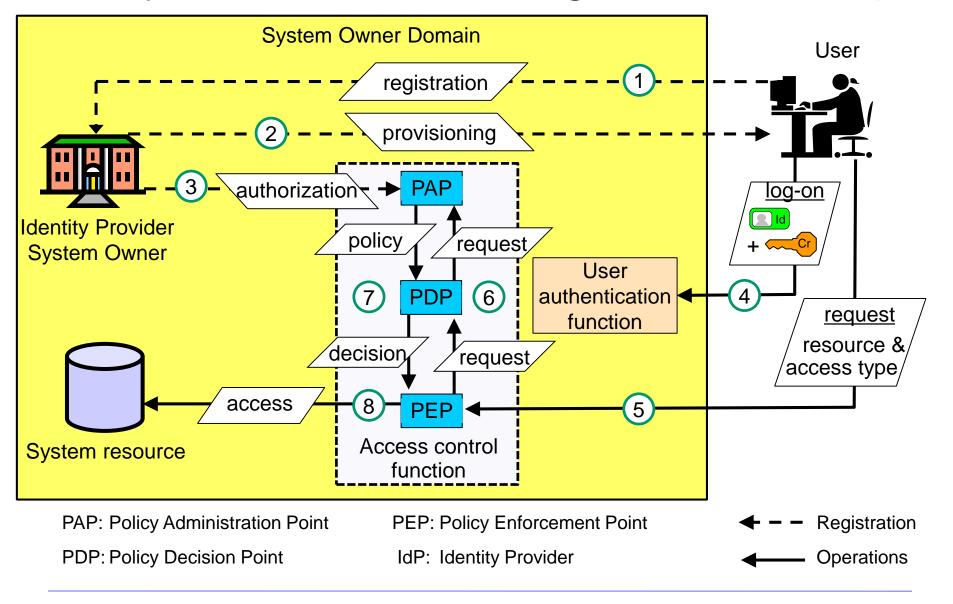
Accountability

(Can be considered as a part of System integrity)


- Goal: Trace action to a specific user and hold them responsible
 - Audit information must be selectively kept and protected so that actions affecting security can be traced to the responsible party (TCSEC/Orange Book)
- Main threats:
 - Inability to identify source of incident
 - Inability to make attacker responsible
- · Controls:
 - Identify and authenticate users
 - Log all system events (audit)
 - Electronic signature
 - Non-repudiation based on digital signature
 - Forensics

Authorization

- Authorization is to specify access and usage permissions for entities, roles or processes
 - Authorization policy normally defined by humans
 - Issued by an authority within the domain/organisation
- Authorities authorize, systems don't
- Authority can be delegated
 - Management → Sys.Admin
 - Implemented in IT systems as configuration/policy


Identity and Access Management (IAM) Phases

Confusion about Authorization

- The term "authorization" is often wrongly used in the sense of "access control"
 - e.g. misleading figure on p.725 in Harris 7th ed.
 - Common in text books and technical specifications (RFC 2196 ...)
 - Cisco AAA Server (Authentication, Authorization and Accounting)
- Wrong usage of "authorization" leads to absurd scenario:
 - 1. You get somebody's password, and uses it to access account.
 - 2. Login screen gives warning: "Only authorized users may access this system".
 - 3. You get caught and taken to the police
 - 4. You argue: "Text books in security state that a system authorizes the user when typing the right password, hence I was authorized because I typed the right password".
 - 5. Case dismissed, you go free.

Identity and Access Management Concepts

End of lecture