
EXERCISES INF3580 SPRING 2010 WEEK 4

Martin G. Skjæveland

08 March 2010

Figure 1: A bird.

This document contains exercises made for INF3580. Please send any comments, errors, bug
or improvement reports to this exercise set to martige@ifi.uio.no1 . Feedback is most welcome!
Alphabetically thanks to Audun Stolpe, Espen H. Lian, Martin Giese and Rune Dahl for feedback.

The main curriculum for INF3580 spring 2010 is Semantic Web Programming by John Hebeler et al.,
Wiley Publishing, 2009. They have a website with additional articles and all source code used in the
book at http://semwebprogramming.org/ . Auxiliary curriculum is the book Foundations of Semantic
Web Technologies by Hitzler, Krützsch, Rudolph, CRC Press 2009.

Keep all the work you do for these exercises in a safe place. Setting up a version control system like
cvs, svn or git for the work you do is smart. You can create a svn repository on IfI’s svn server2

, see their help section3 for more information. There is also a walk-through4 from old INF3120
on how to set up a svn repository and connect it to Eclipse, but news is that you’ll need the plug-in
subclipse5 to make it work. Please contact me if you have any smart tips to share.

1mailto:martige@ifi.uio.no
2https://wwws.ifi.uio.no/system/svn/
3https://wwws.ifi.uio.no/system/svn/help.cgi
4http://www.uio.no/studier/emner/matnat/ifi/INF3120/h06/studentarbeider/Prosjektoppgave/SVN_i_

Eclipse.pdf
5http://subclipse.tigris.org/

mailto:martige@ifi.uio.no
http://semwebprogramming.org/
https://wwws.ifi.uio.no/system/svn/
https://wwws.ifi.uio.no/system/svn/help.cgi
http://www.uio.no/studier/emner/matnat/ifi/INF3120/h06/studentarbeider/Prosjektoppgave/SVN_i_Eclipse.pdf
http://subclipse.tigris.org/
mailto:martige@ifi.uio.no
https://wwws.ifi.uio.no/system/svn/
https://wwws.ifi.uio.no/system/svn/help.cgi
http://www.uio.no/studier/emner/matnat/ifi/INF3120/h06/studentarbeider/Prosjektoppgave/SVN_i_Eclipse.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF3120/h06/studentarbeider/Prosjektoppgave/SVN_i_Eclipse.pdf
http://subclipse.tigris.org/

4 SPARQL

Read

• Semantic Web Programming: chapter 6.

• Foundations of Semantic Web Technologies: chapter 7.

4.1 Query engine

In this exercise you are asked to make a SPARQL query engine.

4.1.1 Exercise

Write a java program which reads an RDF graph and a SPARQL query from file, queries the graph
and outputs the query results as a table. Your program should accept SELECT queries, CONSTRUCT
queries and ASK queries. A messages should be given if the query is of a different type.

Tip If I query the Simpsons RDF graph (simpsons.rdf) we wrote in a previous exercise with my
SPARQL query engine and the SELECT query

1: PREFIX sim: <http://www.ifi.uio.no/INF3580/v10/ex/simpsons.rdf#>
2: PREFIX fam: <http://www.ifi.uio.no/INF3580/v10/ex/family.n3#>
3: PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
4: SELECT ?s ?p ?o
5: WHERE{ ?s ?p ?o }
6: LIMIT 1

I get6 To get the nicely formatted output I use the class ResultSetFormatter.

--
| s | p | o |
==
| sim:Bart | fam:hasFather | sim:Homer |
--

Executing with the ASK query

1: ASK{ ?s ?o ?p }

gives me

true

Executing with the CONSTRUCT query

1: PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2: PREFIX fam: <http://www.ifi.uio.no/INF3580/v10/ex/family.n3#>
3: PREFIX sim: <http://www.ifi.uio.no/INF3580/v10/ex/simpsons.rdf#>
4: CONSTRUCT{ sim:Bart rdfs:label ?name }
5: WHERE{ sim:Bart fam:hasName ?name }

6Note that your results may be different according to how your Simpsons RDF file looks like.

2/6

gives me

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix sim: <http://www.ifi.uio.no/INF3580/v10/ex/simpsons.rdf#> .
@prefix fam: <http://www.ifi.uio.no/INF3580/v10/ex/family.n3#> .

sim:Bart
rdfs:label "Bart Simpson"^^xsd:string .

4.2 Query The Simpsons

In these exercises we will query the Simpsons RDF file we wrote in a previous exercise.

For each for the exercises below write the correct SPARQL query and execute it on the Simpsons
RDF graph produced in the RDF exercise using your java SPARQL query engine. Explain the results.
Are they what you expected? Pay special attention to blank nodes in the query outputs.

See W3C’s SPARQL Query Language for RDF7 for definitions and examples. The SPARQLer
Validator8 might also come in handy.

4.2.1 Exercise

Query: Find all Persons and order them by identifier.

Tip This is a simple query, where you will need to use SELECT, WHERE and ORDER BY. It is also
important to set namespaces correctly in order for the query to work.

If you do not get any results, try the query

SELECT ?s ?o ?p
WHERE {?s ?o ?p}

and see if your get the expected results and namespaces. This query lists all triples in the graph.

4.2.2 Exercise

Query: Find all persons with a name and age. Output name and age. Order by name.

4.2.3 Exercise

Query: Find everyone which has a sibling and list both the person and the siblings. Order by person
and sibling.

7http://www.w3.org/TR/rdf-sparql-query/
8http://www.sparql.org/validator.html

3/6

http://www.w3.org/TR/rdf-sparql-query/
http://www.sparql.org/validator.html
http://www.sparql.org/validator.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.sparql.org/validator.html

4.2.4 Exercise

Query: Find everyone that has a mother. List also their father and other parents, if there is
information about this. Order results by person identifier.

4.2.5 Exercise

Query: Find everyone with a name with ‘M’ as first letter.

4.2.6 Exercise

Query: Find all of Maggie’s grandmothers.

4.2.7 Exercise

Query: Find everyone older than 10. Order by age, oldest first. Output name and age.

4.2.8 Exercise

Query: Is Herb the brother of Homer?

Tip Use ASK.

4.3 DBpedia

DBpedia is, according to DBpedia,

a community effort to extract structured information from Wikipedia and to make this
information available on the Web. DBpedia allows you to ask sophisticated queries against
Wikipedia, and to link other data sets on the Web to Wikipedia data.

We will use their SPARQL endpoint, http://dbpedia.org/sparql , to extract some information.

There is also a more fancy GUI available, if you can get anything out of it: http://dbpedia.org/isparql/
.

Links:

• http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSSparqlProtocol

Note that DBpedia can be slow to respond.

4/6

http://dbpedia.org/sparql
http://dbpedia.org/isparql/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSSparqlProtocol

4.3.1 Exercise

Extend your query engine so that it can query a SPARQL endpoint and not just a file.

A simple solution to differentiate between if the source to query is a file or a SPARQL endpoint is to
let the program read three arguments, where the first argument specifies the source, e.g., running

java_program file simpsons.rdf sparql_query.rq

results in running the query sparql_query.rq on the file simpsons.rdf, just like the query engine
you have already written in a previous exercise, while running

java_program endpoint http://some.sparql/endpoint/ sparql_query.rq

returns the result of querying the endpoint http://some.sparql/endpoint/ with the query sparql_query.rq.

4.3.2 Exercise

Find all Simpsons characters in DBpedia and list their name, gender and relatives. Let gender and
relatives be optional and list only names in English. Assume all characters have a skos:subject
relation to Category:The_Simpsons_characters9 , i.e.,

?character skos:subject
<http://dbpedia.org/resource/Category:The_Simpsons_characters> .

Browse DBpedia to find the correct resource and property identifiers to use in your query.

4.3.3 Exercise

Make a CONSTRUCT query which creates a graph based on the SELECT query you made above. Type a
character as fam:Person and use the properties

• dbpfam:hasName

• dbpfam:hasGenderResource

• dbpfam:hasGenderLiteral

• dbpfam:hasRelative

• rdfs:label

to relate the person to its name, gender and relatives. Use hasGenderLiteral if the value of
gender is a literal, and hasGenderResource if the value is a resource10. The object values for
fam:hasRelationshipTo must be resources and not literals. This means that you should ignore
values of relatives given as literals. rdfs:label shall hold the name of the character.

9http://dbpedia.org/resource/Category:The_Simpsons_characters
10We create this odd construction because we are going to re-use this ontology later, and in OWL DL object properties

and datatype properties are disjoint.

5/6

http://dbpedia.org/resource/Category:The_Simpsons_characters
http://dbpedia.org/resource/Category:The_Simpsons_characters

Tip Assume the table

Person Name Gender Relative
dbp:Marge_Simpson “Marge Simpson” “Female” dbp:Maggie_Simpson
dbp:Lisa_Simpson “Lisa Simpson” dbp:Female “Father: Homer”

is the result of running your SELECT query. Then your CONSTRUCT query should produce the following
RDF graph

dbp:Marge_Simpson a fam:Person ;
fam:hasName "Marge Simpson" ;
fam:hasGenderLiteral "Female" ;
fam:hasRelative dbp:Maggie_Simpson ;
rdfs:label "Marge Simpson" .

dbp:Lisa_Simpson a fam:Person ;
fam:hasName "Lisa Simpson" ;
fam:hasGenderResource dbp:Female ;
rdfs:label "Lisa Simpson" .

4.3.4 Exercise

Explain what a DESCRIBE SPARQL query is. Make an example using the DBpedia SPARQL endpoint.

6/6

	SPARQL
	Query engine
	Exercise

	Query The Simpsons
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	DBpedia
	Exercise
	Exercise
	Exercise
	Exercise

