INF3580 — Semantic Technologies — Spring 2010
Lecture 3: Jena — A Java Library for RDF

Martin Giese

9th February 2010

DEPARTMENT OF

c INFORMATICS

NIVERSITY OF

Repetition: RDF

Outline

© Repetition: RDF

T
Today's Plan

© Repetition: RDF

© Jena: Basic Datastructures

© Jena: Inspecting Models

Q@ Jena: 1/0

© Example

@ Jena: ModelFactory and ModelMaker

@ Jena: Combining Models

INF3580 :: Spring 2010 Lecture 3 :: 9th February

Reminder: RDF triples

@ The W3C representation of knowledge in the Semantic Web is RDF
(Resource Description Framework)

@ In RDF, all knowledge is represented by triples
@ A triple consists of subject, predicate, and object

@ For instance:
geo:germany rdf:type geo:Country .

These gnames are abbreviations for URIs:
rdf: = http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
geo: = http://geo.example.com/#

Expanded:

<http://geo.example.com/#germany>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://geo.example.com/#Country> .

INF3580 :: Spring 2010 Lecture 3 :: 9th February

INF3580 :: Spring 2010 Lecture 3 :: 9th February

Repetition: RDF

Reminder: RDF graphs

Repetition: RDF

Reminder: RDF graphs (cont.)

Sets of RDF triples are often represented as graphs: Graph representation not always a perfect fit.

Berlin is a City in Germany, which is a country
geo:germany rdf:type geo:Country .
geo:berlin rdf:type geo:City
geo:berlin geo:containedIn geo:germany .

Berlin is contained in Germany, and containment is a property
geo:berlin geo:containedIn geo:germany
geo:containedIn rdf:type rdf:Property .

geo:germany
rdf:type

rdf:type
< geo:containedIn rdf :Property
geo:containedIn
_\ i ks @
geo:berlin geo:City

Usually speak about RDF graphs anyway

INF3580 :: Spring 2010

Lecture 3 :: 9th February

INF3580 :: Spring 2010

Lecture 3 :: 9th February

Repetition: RDF

Reminder: RDF Literals

Repetition: RDF

Reminder: RDF Blank Nodes

@ objects of triples can also be literals

Blank nodes are like resources without a URI
o l.e. nodes in an RDF graph can be resources or literals

There is a city in Germany called Berlin
e Subjects and predicates of triples can not be literals _:x rdf:type geo:City .
o Literals can be _:X geo:containedIn geo:germany
o Plain, without language tag: _:X geo:name "Berlin"
geo:berlin geo:name "Berlin" .

e Plain, with language tag:
geo:germany geo:name "Deutschland"@de .

geo:germany geo:name "Germany'"Qen .
o Typed, with a URI indicating the type:

geo:berlin geo:population "3431700"""xsd:integer .
@ Usually represented with rectangles:

geo:population
geo:berlin "3431700" " "xsd:integer

INF3580 :: Spring 2010

geo:containedIn

Tdf:type

Berlin

Lecture 3 :: 9th February

INF3580 :: Spring 2010

Lecture 3 :: 9th February

Outline

© Jena: Basic Datastructures

Lecture 3 :: 9th February

Jena: Basic Datastructures

Vital Statistics

A semantic web
@ An open source Java framework for building & framework

Semantic Web applications. 'Jena

@ Grown out of work with the HP Labs Semantic Web Programme

http://jena.sourceforge.net/

@ includes:

An RDF API

Reading and writing RDF in RDF/XML, N3 and N-Triples
An interface to reasoning services

An OWL API

In-memory and persistent storage

A SPARQL query engine

INF3580 :: Spring 2010 Lecture 3 :: 9th February

INF3580 :: Spring 2010

Information About Jena

@ Public interface of Jena has ca. 500 classes and interfaces in ca. 20
packages

@ Can do useful things knowing only a small part of them!

@ The Jena Tutorial:
http://jena.sourceforge.net/tutorial /RDF_API/index.html

@ The API Javadocs:
http://jena.sourceforge.net/javadoc/index.html

@ The Jena FAQ:
http://jena.sourceforge.net/jena-faq.html

@ In case of doubt: RTFM

Data Representations: URIs

@ Start by investigating how different RDF concepts are represented in
Jena.

@ URIs are simply represented as strings:
String germanyURI="http://geo.example.com/#germany"
@ Probably a good idea to put namespaces in separate strings:

String geoNS="http://geo.example.com/#";
String germanyURI=geoNS+"germany";
String berlinURI =geoNS+"berlin";

INF3580 :: Spring 2010 Lecture 3 :: 9th February

INF3580 :: Spring 2010

Lecture 3 :: 9th February

http://jena.sourceforge.net/
http://jena.sourceforge.net/tutorial/RDF_API/index.html
http://jena.sourceforge.net/javadoc/index.html
http://jena.sourceforge.net/jena-faq.html

Data Representation: Resources

INF3580

Data Representation: Resources, 2nd try

INF3580

Most of the basic RDF representations covered by classes in
com.hp.hpl. jena.rdf .model

Resources are represented by
Resource

Has a method
String getURI()

But wait. .. Resource is an interface. How do you create an instance?

There is a class ResourceFactory with method
static Resource createResource(String uriref)

Beware: this is not usually what you want!

:: Spring 2010 Lecture 3 :: 9th February

Given a model. ..

Model model = ModelFactory.createDefaultModel();
...and a URI. ..

String berlinURI = geoNS + "berlin";
...Wwe can use it to create a Resource:

Resource berlin = model.createResource(berlinURI);
We can ask the Resource for the Model:

berlin.getModel(). ..
For a fresh blank node:

Resource blank = model.createResource();

:: Spring 2010 Lecture 3 :: 9th February

Jena: Basic Datastructures

Data Representation: Models

A com.hp.hpl.jena.rdf .model.Model represents a set of RDF
statements (triples).

@ In Jena, Resources and Statements are linked to the Models they
are part of.

Models also have the responsibility for creating Resources, etc.
Need to create a Model first.

Also an interface! (Can this be on purpose?)

Easiest way: com.hp.hpl. jena.rdf.model.ModelFactory
Model model = ModelFactory.createDefaultModel();

Other ways: with database storage, with reasoning, etc.

Also deals with reading & writing various formats

INF3580 :: Spring 2010 Lecture 3 :: 9th February

Jena: Basic Datastructures

Data Representation: Properties

@ Reminder: predicates are simply resources
@ Jena defines a separate interface Property
@ Doesn't add anything important to Resource

@ To create a Property object:

Property name = model.createProperty(geoNS+"name") ;

INF3580 :: Spring 2010 Lecture 3 :: 9th February

Jena: Basic Datastructures Jena: Basic Datastructures

Data Representation: Literals Data Representation: Statements
@ Jena defines a Literal interface for all three kinds of literals.
.o @ To construct a Statement, you need
@ To create a plain literal: i o
e A subject, which is a Resource
Literal b = model.createLiteral("Berlin"); e A predicate, which is a Property
o To create a literal with language tag: e An object, which can be a Resource or a Literal
)) @ Again, use the methods in Model:
Literal d = model.createLiteral("Germany","en");
. Resource berlin = model.createResource(geoNS+"berlin");
@ To create a typed literal: Property name = model.createProperty(geoNS+"name");
String type = "http://www.w3.org/2001/XMLSchema#byte"; Literal b = model.createLiteral("Berlin");
Literal n = model.createTypedLiteral("42",type); Statement stmt = model.createStatement (berlin,name,b);
@ Or, with a com.hp.hpl.jena.datatypes.RDFDatatype: @ Not yet asserted in the model.
@ To add this statement to the model:

import com.hp.hpl.jena.datatypes.xsd.XSDDatatype;

RDFDatatype type = XSDDatatype.XSDbyte; model.add(stmt) ;

Literal n = model.createTypedLiteral("42",type);

INF3580 :: Spring 2010 Lecture 3 :: 9th February INF3580 :: Spring 2010 Lecture 3 :: 9th February

Overview Convenience Methods in Resource
e Can directly add statements to the model.
@ Given some properties and resources. . .
object
RDFNode Property name = model.createProperty(geoNS+"name") ;
Property cont = model.createProperty(geoNS+"containedIn");
4 Property pop = model.createProperty(geoNS+"population");
|
1 Literal Resource berlin = model.createProperty(geoNS+"berlin");
Model |1 *|Statement| subject< | Resource +lexicalForm: String Resource germany = model.createProperty(geoNS+"germany") ;
+URI: String +language: String i
+datatypeURI: String @ ...we can write:
lr berlin.addProperty(cont, germany);
predicate Property berlin.addProperty(name, "Berlin");

germany .addProperty(name, "Tyskland","no");
berlin.addLiteral (pop, 3431700);

Directly adds statements to model!

Converts Java datatypes to RDF literals.

INF3580 :: Spring 2010 Lecture 3 :: 9th February INF3580 :: Spring 2010 Lecture 3 :: 9th February

Models and Graphs, Statements and Triples Outline

In Jena, they have both triples and statements!?

There are also both graphs and models!?
Jena is a framework!
e unified view for differing implementations of data storage and
processing © Jena: Inspecting Models
High-level interface

e API: application programming interface
e Convenient to use
o Classes Resource, Statement, Model

@ Low-level interface

e SPI: service provider interface
e Easy to implement
o Classes Node, Triple, Graph

@ We will be concerned mostly with the API!

INF3580 :: Spring 2010 Lecture 3 :: 9th February INF3580 :: Spring 2010 Lecture 3 :: 9th February

Retrieving Information from a Model Retrieving Information from a Resource

@ Resource has methods to retrieve statements having the resource as
subject.

@ We've seen how to add statements to a Model ® To find all statements about berlin

e Two ways to retrieve information: Iterator<Statement> it = berlin.listProperties();
e Via Resources @ to print them all out:
o Via the Model while (it.hasNext()) {
o Navigation through resources delegates to model, but sometimes System.out.println(it.next());
more convenient }
@ to find all statements with a particular predicate:

Property name = model.createProperty(geoNS+"name") ;

Iterator<Statement> it = berlin.listProperties(name);

INF3580 :: Spring 2010 Lecture 3 :: 9th February INF3580 :: Spring 2010 Lecture 3 :: 9th February

Jena: Inspecting Models

Retrieving Information from a Resource (cont.)

@ To get some statement, without iterating:

Property pop = model.createProperty(geoNS+"population");
berlin.getProperty (pop)

@ B.t.w., to access the object of a statement as a Java type:

int n = berlin.getProperty(pop).getInt();
@ See also methods

o getRequiredProperty
e hasProperty,
e hasliteral,

INF3580 :: Spring 2010 Lecture 3 :: 9th February

Retrieving information from a Model

To get all statements from a Model:

Iterator<Statement> sit = model.listStatements();

To get all resources that are subject of some statement:

Iterator<Resource> rit =
model.listSubjects();

To get all resources with a statement for a given predicate:

Iterator<Resource> rit =
model.listResourcesWithProperty(name) ;

... with a given value for a property:

Iterator<Resource> rit =
model.listResourcesWithProperty(cont, germany) ;

INF3580 :: Spring 2010

Simple Pattern Matching

To get all statements that have
@ a given subject and object,
e a given object,
e a given predicate and subject,
e or any other combination. ..

@ ...use

Iterator<Statement> sit =
model.listStatements(subj, pred, obj);

where subj, pred, obj can be null to match any value (“wildcard")

e.g. to print everything contained in Germany:

Iterator<Statement> sit =
model.listStatements(null, cont, germany);

while (sit.hasNext()) {
System.out.println(sit.next().getSubject());

}

INF3580 :: Spring 2010

Lecture 3 :: 9th February

Complex Pattern Matching

W3C has defined the SPARQL language
SPARQL Protocol And RDF Query Language
The Semantic Web equivalent of SQL

Jena Models can process SPARQL queries

A much more powerful way of retrieving data from a Model

More about this next week!

Lecture 3 :: 9th February

INF3580 :: Spring 2010 Lecture 3 :: 9th February

Outline Reading RDF

Model contains several read(...) methods for reading RDF.

read does not create a new Model object.

o First create a model, then add statements with read.
o Can call read several times to accumulate information.

@ Auvailable formats: RDF /XML, N-triples, Turtle, N3.

e Format defaults to RDF/XML
Q Jena: 1/0 e Variants with format (lang) parameter exist

Can read from InputStream or Reader, or directly from a URL.
Some read variants take a “base URI".

e Used to interpret relative URIs in the document.
e Usually not needed: absolute URIs are a better idea.

Example: Load Martin Giese's FOAF file from the 'net:

Model model = ModelFactory.createDefaultModel();
model.read("http://heim.ifi.uio.no/martingi/foaf.rdf");

INF3580 :: Spring 2010 Lecture 3 :: 9th February INF3580 :: Spring 2010 Lecture 3 :: 9th February

Writing RDF Outline

Model contains several write(...) methods for writing RDF.
Available formats: RDF/XML, N-triples, Turtle, N3.

e Format defaults to RDF /XML
e Variants with format (lang) parameter exist

Can write to OutputStream or Writer.

Some write variants take a “base URI".
e Used to make some URIs relative in the output.
e Absolute URIs are a better idea.

Example: write model to a file: © Example

try {

model .write(new FileOutputStream("output.rdf"));
}catch (IOException e) {

// handle exception

}

INF3580 :: Spring 2010 Lecture 3 :: 9th February INF3580 :: Spring 2010 Lecture 3 :: 9th February

A Containment Example

Given an RDF /XML file with information about containment of places in
the following form:

Geographic containments

geo:berlin geo:containedIn geo:germany
geo:bergen geo:containedIn geo:hordaland
geo:hordaland geo:containedIn geo:norway

K geo:containedIn
geo:containedln eo:containedln
geo:bergen geo:norway

geo:hordaland

Lecture 3 :: 9th February

INF3580 :: Spring 2010

Example

Solution: Creating the Model, Reading the File

import java.io.*;
import java.util.*;
import com.hp.hpl.jena.rdf.model.x*;

public class Containment {
public static String GEO_NS = "http://geo.example.com/#";

public static void main(String[] args) throws IOException {
Model model = ModelFactory.createDefaultModel();
model.read(new FileInputStream("places.rdf"), null);

Property containedIn =

model . getProperty (GEO_NS+"containedIn");
Property contains =

model.getProperty (GEO_NS+"contains") ;

Lecture 3 :: 9th February

INF3580 :: Spring 2010

Example

A Containment Example (cont.)

Add inverse statements using property geo:contains:

Inverted Containment Statements
geo:germany geo:contains geo:berlin
geo:hordaland geo:contains geo:bergen
geo:norway geo:contains geo:hordaland

geo:containedIn

|
geo:contains

geo:containedIn

geo:containedIn

geo:contains geo:contains

INF3580 :: Spring 2010 Lecture 3 :: 9th February

Example

Solution: Adding Statements, Writing a File

Iterator<Statement> it =
model.listStatements((Resource)null,
containedIn,
(Resource)null);
while (it.hasNext()) {
Statement st = it.next();
model.add((Resource)st.getObject(),
contains,
st.getSubject());
}

model .write(new FileOutputStream("output.rdf"));
} // mainQ)

} // class Containment

INF3580 :: Spring 2010

Lecture 3 :: 9th February

Outline

@ Jena: ModelFactory and ModelMaker

INF3580 :: Spring 2010

Lecture 3 :: 9th February

ModelMaker

Jena likes to store models in groups, identified by names.

ModelMaker organizes collections of named models.

To create one that handles models stored in memory:
ModelMaker mm = ModelFactory.createMemModelMaker () ;

@ ...in a collection of file system files:

ModelMaker mm =
ModelFactory.createFileModelMaker (" /path/to/files");

@ ...a relational database:
IDBConnection conn =

new DBConnection(DB_URL,DB_USER,DB_PASSWD,DB_TYPE) ;

ModelMaker mm =
ModelFactory.createRDBModelMaker (conn) ;

INF3580 :: Spring 2010

See book for example of creating a DBConnection!

Lecture 3 :: 9th February

Jena: ModelFactory and ModelMaker

57 Varieties of Models

@ Until now: “default” models:

ModelFactory.createDefaultModel () ;

@ A simple collection of statements stored in memory
e Large datasets require lots of RAM
o Not persistent, need to read/write to files manually
@ Models created by ModelFactory differ in
o backing storage (Memory, files, RDB)
e inferencing

@ automatically add triples that are consequences of others
@ more on this in lecture 6 and later!

e reification style

@ resources representing statements
@ won't go into this

INF3580 :: Spring 2010 Lecture 3 :: 9th February

Jena: ModelFactory and ModelMaker

ModelMaker (cont.)

@ Given a ModelMaker object, you can. ..
e create a new model if none under that name exists:

Model model = mm.createModel("CitiesOfNorway");

open an already existing model:

Model model = mm.openModel ("CitiesOfNorway");

(also strict variants which throw an exception in the other case)
e remove an already existing model from memory:

mm.removeModel ("CitiesOfNorway") ;
e check if there is a model with a given name:

if (mm.hasModel("CitiesOfNorway")) {...};

@ All models are stored as tables in one RDB, files in one file system
directory, etc.

INF3580 :: Spring 2010

Lecture 3 :: 9th February

Outline Many Models

Jena can manage many models simultaneously.

°
@ E.g. some in memory, some in databases, etc.

o Different Model objects don't know of each other
°

It is however possible to combine models:

Model u = modell.union(model?2);
Model i = modell.intersection(model2);
Model d = modell.difference(model?2);

@ Models contain set union/intersection/difference of statements in
modell/model2.
@ These are new independent models:
e adding/removing statements in model1/model2 does not affect u/i/d
@ Jena: Combining Models e adding/removing statements in u/i/d does not affect modell/model2

Typically a fresh memory model holding all data.

INF3580 :: Spring 2010 Lecture 3 :: 9th February / INF3580 :: Spring 2010 Lecture 3 :: 9th February

Dynamic Unions The Alignment Problem

@ We built a database places.rdf with

e Information about resources like
http://geo.example.com/#oslo

@ Also possible to create dynamic unions: http://geo. example. com/#germany
Model u = ModelFactory.createUnion(modell,model?2); e Expressed in terms like
. . . http://geo.example.com/#City
@ Model u contains set union of statements in modell/model2.
) http://geo.example.com/#Country
@ u remains connected to modell and model2: http://geo.example.com/#containedIn
e adding/removing statements in model1/model2 adds/removes them in o Now we discover http://dbpedia.org/ with
v e information about resources like

e adding/removing statements in u adds/removes them in model1 http://dbpedia.org/resource/0slo

@ Union model delegates storage to other models http://dbpedia.org/resource/Germany

e Expressed in terms like
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/ontology/Country
http://dbpedia.org/property/subdivisionName

INF3580 :: Spring 2010 Lecture 3 :: 9th February / INF3580 :: Spring 2010 Lecture 3 :: 9th February

http://dbpedia.org/

The Alignment Problem (cont.) Outlook

@ We can now construct the union of both information sources
@ But the union will not be very useful :-(Lecture 4: The SPARQL Query Language
@ The data is not linked! Lecture 5: Semantics of RDF

e The same entities are identified by different URIs Lecture 6: The RDFS Vocabulary Definition Language
e The same types are identified by different URIs

L ; s . Lecture 7: OWL basics: Web Ontology Language
e Similar properties are identified by different URIs

@ Need some way to “align” the vocabularies Lecture 8: More about OWL

e Say that geo:oslo equals dbpedia:0slo.

o :) @ All this will be explained with examples
e Say that a geo:City is a kind of dbpedia-owl:PopulatedPlace.

e Say that subdivisions are contained in each other. @ There will be practical exercises
@ You will learn how to do this later in the course. .. @ But there are some theoretical concepts to grasp!
@ ...but to get it right, some theory is needed!

INF3580 :: Spring 2010 Lecture 3 :: 9th February INF3580 :: Spring 2010 Lecture 3 :: 9th February

	Repetition: RDF
	Jena: Basic Datastructures
	Jena: Inspecting Models
	Jena: I/O
	Example
	Jena: ModelFactory and ModelMaker
	Jena: Combining Models

