
INF3580 – Semantic Technologies – Spring 2010
Lecture 3: Jena – A Java Library for RDF

Martin Giese

9th February 2010

Department of
Informatics

University of
Oslo

Today’s Plan

1 Repetition: RDF

2 Jena: Basic Datastructures

3 Jena: Inspecting Models

4 Jena: I/O

5 Example

6 Jena: ModelFactory and ModelMaker

7 Jena: Combining Models

INF3580 :: Spring 2010 Lecture 3 :: 9th February 2 / 46

Repetition: RDF

Outline

1 Repetition: RDF

2 Jena: Basic Datastructures

3 Jena: Inspecting Models

4 Jena: I/O

5 Example

6 Jena: ModelFactory and ModelMaker

7 Jena: Combining Models

INF3580 :: Spring 2010 Lecture 3 :: 9th February 3 / 46

Repetition: RDF

Reminder: RDF triples

The W3C representation of knowledge in the Semantic Web is RDF
(Resource Description Framework)

In RDF, all knowledge is represented by triples

A triple consists of subject, predicate, and object

For instance:
geo:germany rdf:type geo:Country .

These qnames are abbreviations for URIs:
rdf: ≡ http://www.w3.org/1999/02/22-rdf-syntax-ns#
geo: ≡ http://geo.example.com/#

Expanded:
<http://geo.example.com/#germany>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://geo.example.com/#Country> .

INF3580 :: Spring 2010 Lecture 3 :: 9th February 4 / 46

Repetition: RDF

Reminder: RDF graphs

Sets of RDF triples are often represented as graphs:

Berlin is a City in Germany, which is a country

geo:germany rdf:type geo:Country .
geo:berlin rdf:type geo:City .
geo:berlin geo:containedIn geo:germany .

geo:germany geo:Country

geo:berlin geo:City

rdf:type

rdf:type

geo:containedIn

INF3580 :: Spring 2010 Lecture 3 :: 9th February 5 / 46

Repetition: RDF

Reminder: RDF graphs (cont.)

Graph representation not always a perfect fit.

Berlin is contained in Germany, and containment is a property

geo:berlin geo:containedIn geo:germany .
geo:containedIn rdf:type rdf:Property .

geo:germany

rdf:Property

geo:berlin

geo:containedIn

rdf:type

Usually speak about RDF graphs anyway

INF3580 :: Spring 2010 Lecture 3 :: 9th February 6 / 46

Repetition: RDF

Reminder: RDF Literals

objects of triples can also be literals

I.e. nodes in an RDF graph can be resources or literals
Subjects and predicates of triples can not be literals

Literals can be

Plain, without language tag:
geo:berlin geo:name "Berlin" .

Plain, with language tag:
geo:germany geo:name "Deutschland"@de .
geo:germany geo:name "Germany"@en .

Typed, with a URI indicating the type:
geo:berlin geo:population "3431700"^^xsd:integer .

Usually represented with rectangles:

geo:berlin "3431700"^^xsd:integer
geo:population

INF3580 :: Spring 2010 Lecture 3 :: 9th February 7 / 46

Repetition: RDF

Reminder: RDF Blank Nodes

Blank nodes are like resources without a URI

There is a city in Germany called Berlin

_:x rdf:type geo:City .
_:x geo:containedIn geo:germany .
_:x geo:name "Berlin" .

geo:germany geo:City

Berlin

geo:containedIn rdf:type

geo:name

INF3580 :: Spring 2010 Lecture 3 :: 9th February 8 / 46

Jena: Basic Datastructures

Outline

1 Repetition: RDF

2 Jena: Basic Datastructures

3 Jena: Inspecting Models

4 Jena: I/O

5 Example

6 Jena: ModelFactory and ModelMaker

7 Jena: Combining Models

INF3580 :: Spring 2010 Lecture 3 :: 9th February 9 / 46

Jena: Basic Datastructures

Vital Statistics

An open source Java framework for building
Semantic Web applications.

http://jena.sourceforge.net/

Grown out of work with the HP Labs Semantic Web Programme

includes:

An RDF API
Reading and writing RDF in RDF/XML, N3 and N-Triples
An interface to reasoning services
An OWL API
In-memory and persistent storage
A SPARQL query engine

INF3580 :: Spring 2010 Lecture 3 :: 9th February 10 / 46

Jena: Basic Datastructures

Information About Jena

Public interface of Jena has ca. 500 classes and interfaces in ca. 20
packages

Can do useful things knowing only a small part of them!

The Jena Tutorial:
http://jena.sourceforge.net/tutorial/RDF_API/index.html

The API Javadocs:

http://jena.sourceforge.net/javadoc/index.html

The Jena FAQ:

http://jena.sourceforge.net/jena-faq.html

In case of doubt: RTFM

INF3580 :: Spring 2010 Lecture 3 :: 9th February 11 / 46

Jena: Basic Datastructures

Data Representations: URIs

Start by investigating how different RDF concepts are represented in
Jena.

URIs are simply represented as strings:

String germanyURI="http://geo.example.com/#germany"

Probably a good idea to put namespaces in separate strings:

String geoNS="http://geo.example.com/#";
String germanyURI=geoNS+"germany";
String berlinURI =geoNS+"berlin";

INF3580 :: Spring 2010 Lecture 3 :: 9th February 12 / 46

http://jena.sourceforge.net/
http://jena.sourceforge.net/tutorial/RDF_API/index.html
http://jena.sourceforge.net/javadoc/index.html
http://jena.sourceforge.net/jena-faq.html

Jena: Basic Datastructures

Data Representation: Resources

Most of the basic RDF representations covered by classes in

com.hp.hpl.jena.rdf.model

Resources are represented by

Resource

Has a method

String getURI()

But wait. . . Resource is an interface. How do you create an instance?

There is a class ResourceFactory with method

static Resource createResource(String uriref)

Beware: this is not usually what you want!

INF3580 :: Spring 2010 Lecture 3 :: 9th February 13 / 46

Jena: Basic Datastructures

Data Representation: Models

A com.hp.hpl.jena.rdf.model.Model represents a set of RDF
statements (triples).

In Jena, Resources and Statements are linked to the Models they
are part of.

Models also have the responsibility for creating Resources, etc.

Need to create a Model first.

Also an interface! (Can this be on purpose?)

Easiest way: com.hp.hpl.jena.rdf.model.ModelFactory

Model model = ModelFactory.createDefaultModel();

Other ways: with database storage, with reasoning, etc.

Also deals with reading & writing various formats

INF3580 :: Spring 2010 Lecture 3 :: 9th February 14 / 46

Jena: Basic Datastructures

Data Representation: Resources, 2nd try

Given a model. . .

Model model = ModelFactory.createDefaultModel();

. . . and a URI. . .

String berlinURI = geoNS + "berlin";

. . . we can use it to create a Resource:

Resource berlin = model.createResource(berlinURI);

We can ask the Resource for the Model:

berlin.getModel()...

For a fresh blank node:

Resource blank = model.createResource();

INF3580 :: Spring 2010 Lecture 3 :: 9th February 15 / 46

Jena: Basic Datastructures

Data Representation: Properties

Reminder: predicates are simply resources

Jena defines a separate interface Property

Doesn’t add anything important to Resource

To create a Property object:

Property name = model.createProperty(geoNS+"name");

INF3580 :: Spring 2010 Lecture 3 :: 9th February 16 / 46

Jena: Basic Datastructures

Data Representation: Literals

Jena defines a Literal interface for all three kinds of literals.

To create a plain literal:

Literal b = model.createLiteral("Berlin");

To create a literal with language tag:

Literal d = model.createLiteral("Germany","en");

To create a typed literal:

String type = "http://www.w3.org/2001/XMLSchema#byte";
Literal n = model.createTypedLiteral("42",type);

Or, with a com.hp.hpl.jena.datatypes.RDFDatatype:

import com.hp.hpl.jena.datatypes.xsd.XSDDatatype;

RDFDatatype type = XSDDatatype.XSDbyte;
Literal n = model.createTypedLiteral("42",type);

INF3580 :: Spring 2010 Lecture 3 :: 9th February 17 / 46

Jena: Basic Datastructures

Data Representation: Statements

To construct a Statement, you need

A subject, which is a Resource
A predicate, which is a Property
An object, which can be a Resource or a Literal

Again, use the methods in Model:

Resource berlin = model.createResource(geoNS+"berlin");
Property name = model.createProperty(geoNS+"name");
Literal b = model.createLiteral("Berlin");
Statement stmt = model.createStatement(berlin,name,b);

Not yet asserted in the model.

To add this statement to the model:

model.add(stmt);

INF3580 :: Spring 2010 Lecture 3 :: 9th February 18 / 46

Jena: Basic Datastructures

Overview

INF3580 :: Spring 2010 Lecture 3 :: 9th February 19 / 46

Jena: Basic Datastructures

Convenience Methods in Resource

Can directly add statements to the model.

Given some properties and resources. . .

Property name = model.createProperty(geoNS+"name");
Property cont = model.createProperty(geoNS+"containedIn");
Property pop = model.createProperty(geoNS+"population");

Resource berlin = model.createProperty(geoNS+"berlin");
Resource germany = model.createProperty(geoNS+"germany");

. . . we can write:

berlin.addProperty(cont, germany);
berlin.addProperty(name, "Berlin");
germany.addProperty(name, "Tyskland","no");
berlin.addLiteral(pop, 3431700);

Directly adds statements to model!

Converts Java datatypes to RDF literals.

INF3580 :: Spring 2010 Lecture 3 :: 9th February 20 / 46

Jena: Basic Datastructures

Models and Graphs, Statements and Triples

In Jena, they have both triples and statements!?

There are also both graphs and models!?

Jena is a framework!

unified view for differing implementations of data storage and
processing

High-level interface

API: application programming interface
Convenient to use
Classes Resource, Statement, Model

Low-level interface

SPI: service provider interface
Easy to implement
Classes Node, Triple, Graph

We will be concerned mostly with the API!

INF3580 :: Spring 2010 Lecture 3 :: 9th February 21 / 46

Jena: Inspecting Models

Outline

1 Repetition: RDF

2 Jena: Basic Datastructures

3 Jena: Inspecting Models

4 Jena: I/O

5 Example

6 Jena: ModelFactory and ModelMaker

7 Jena: Combining Models

INF3580 :: Spring 2010 Lecture 3 :: 9th February 22 / 46

Jena: Inspecting Models

Retrieving Information from a Model

We’ve seen how to add statements to a Model

Two ways to retrieve information:

Via Resources
Via the Model

Navigation through resources delegates to model, but sometimes
more convenient

INF3580 :: Spring 2010 Lecture 3 :: 9th February 23 / 46

Jena: Inspecting Models

Retrieving Information from a Resource

Resource has methods to retrieve statements having the resource as
subject.

To find all statements about berlin

Iterator<Statement> it = berlin.listProperties();

to print them all out:

while (it.hasNext()) {
System.out.println(it.next());

}

to find all statements with a particular predicate:

Property name = model.createProperty(geoNS+"name");

Iterator<Statement> it = berlin.listProperties(name);

INF3580 :: Spring 2010 Lecture 3 :: 9th February 24 / 46

Jena: Inspecting Models

Retrieving Information from a Resource (cont.)

To get some statement, without iterating:

Property pop = model.createProperty(geoNS+"population");
berlin.getProperty(pop)

B.t.w., to access the object of a statement as a Java type:

int n = berlin.getProperty(pop).getInt();

See also methods

getRequiredProperty
hasProperty,
hasLiteral,

INF3580 :: Spring 2010 Lecture 3 :: 9th February 25 / 46

Jena: Inspecting Models

Retrieving information from a Model

To get all statements from a Model:

Iterator<Statement> sit = model.listStatements();

To get all resources that are subject of some statement:

Iterator<Resource> rit =
model.listSubjects();

To get all resources with a statement for a given predicate:

Iterator<Resource> rit =
model.listResourcesWithProperty(name);

. . . with a given value for a property:

Iterator<Resource> rit =
model.listResourcesWithProperty(cont, germany);

INF3580 :: Spring 2010 Lecture 3 :: 9th February 26 / 46

Jena: Inspecting Models

Simple Pattern Matching

To get all statements that have

a given subject and object,
a given object,
a given predicate and subject,
or any other combination. . .

. . . use

Iterator<Statement> sit =
model.listStatements(subj, pred, obj);

where subj, pred, obj can be null to match any value (“wildcard”)

e.g. to print everything contained in Germany:

Iterator<Statement> sit =
model.listStatements(null, cont, germany);

while (sit.hasNext()) {
System.out.println(sit.next().getSubject());

}

INF3580 :: Spring 2010 Lecture 3 :: 9th February 27 / 46

Jena: Inspecting Models

Complex Pattern Matching

W3C has defined the SPARQL language

SPARQL Protocol And RDF Query Language

The Semantic Web equivalent of SQL

Jena Models can process SPARQL queries

A much more powerful way of retrieving data from a Model

More about this next week!

INF3580 :: Spring 2010 Lecture 3 :: 9th February 28 / 46

Jena: I/O

Outline

1 Repetition: RDF

2 Jena: Basic Datastructures

3 Jena: Inspecting Models

4 Jena: I/O

5 Example

6 Jena: ModelFactory and ModelMaker

7 Jena: Combining Models

INF3580 :: Spring 2010 Lecture 3 :: 9th February 29 / 46

Jena: I/O

Reading RDF

Model contains several read(...) methods for reading RDF.

read does not create a new Model object.

First create a model, then add statements with read.
Can call read several times to accumulate information.

Available formats: RDF/XML, N-triples, Turtle, N3.

Format defaults to RDF/XML
Variants with format (lang) parameter exist

Can read from InputStream or Reader, or directly from a URL.

Some read variants take a “base URI”.

Used to interpret relative URIs in the document.
Usually not needed: absolute URIs are a better idea.

Example: Load Martin Giese’s FOAF file from the ’net:

Model model = ModelFactory.createDefaultModel();
model.read("http://heim.ifi.uio.no/martingi/foaf.rdf");

INF3580 :: Spring 2010 Lecture 3 :: 9th February 30 / 46

Jena: I/O

Writing RDF

Model contains several write(...) methods for writing RDF.

Available formats: RDF/XML, N-triples, Turtle, N3.

Format defaults to RDF/XML
Variants with format (lang) parameter exist

Can write to OutputStream or Writer.

Some write variants take a “base URI”.

Used to make some URIs relative in the output.
Absolute URIs are a better idea.

Example: write model to a file:

try {
model.write(new FileOutputStream("output.rdf"));

}catch (IOException e) {
// handle exception

}

INF3580 :: Spring 2010 Lecture 3 :: 9th February 31 / 46

Example

Outline

1 Repetition: RDF

2 Jena: Basic Datastructures

3 Jena: Inspecting Models

4 Jena: I/O

5 Example

6 Jena: ModelFactory and ModelMaker

7 Jena: Combining Models

INF3580 :: Spring 2010 Lecture 3 :: 9th February 32 / 46

Example

A Containment Example

Given an RDF/XML file with information about containment of places in
the following form:

Geographic containments

geo:berlin geo:containedIn geo:germany .
geo:bergen geo:containedIn geo:hordaland .
geo:hordaland geo:containedIn geo:norway .
...

geo:berlin geo:germany
geo:containedIn

geo:bergen geo:hordaland geo:norway
geo:containedIn geo:containedIn

INF3580 :: Spring 2010 Lecture 3 :: 9th February 33 / 46

Example

A Containment Example (cont.)

Add inverse statements using property geo:contains:

Inverted Containment Statements

geo:germany geo:contains geo:berlin .
geo:hordaland geo:contains geo:bergen .
geo:norway geo:contains geo:hordaland .
...

geo:berlin geo:germany

geo:containedIn

geo:contains

geo:bergen geo:hordaland geo:norway

geo:containedIn geo:containedIn

geo:contains geo:contains

INF3580 :: Spring 2010 Lecture 3 :: 9th February 34 / 46

Example

Solution: Creating the Model, Reading the File

import java.io.*;
import java.util.*;
import com.hp.hpl.jena.rdf.model.*;

public class Containment {

public static String GEO_NS = "http://geo.example.com/#";

public static void main(String[] args) throws IOException {
Model model = ModelFactory.createDefaultModel();
model.read(new FileInputStream("places.rdf"), null);

Property containedIn =
model.getProperty(GEO_NS+"containedIn");

Property contains =
model.getProperty(GEO_NS+"contains");

INF3580 :: Spring 2010 Lecture 3 :: 9th February 35 / 46

Example

Solution: Adding Statements, Writing a File

Iterator<Statement> it =
model.listStatements((Resource)null,

containedIn,
(Resource)null);

while (it.hasNext()) {
Statement st = it.next();
model.add((Resource)st.getObject(),

contains,
st.getSubject());

}

model.write(new FileOutputStream("output.rdf"));
} // main()

} // class Containment

INF3580 :: Spring 2010 Lecture 3 :: 9th February 36 / 46

Jena: ModelFactory and ModelMaker

Outline

1 Repetition: RDF

2 Jena: Basic Datastructures

3 Jena: Inspecting Models

4 Jena: I/O

5 Example

6 Jena: ModelFactory and ModelMaker

7 Jena: Combining Models

INF3580 :: Spring 2010 Lecture 3 :: 9th February 37 / 46

Jena: ModelFactory and ModelMaker

57 Varieties of Models

Until now: “default” models:

ModelFactory.createDefaultModel();

A simple collection of statements stored in memory

Large datasets require lots of RAM
Not persistent, need to read/write to files manually

Models created by ModelFactory differ in

backing storage (Memory, files, RDB)
inferencing

automatically add triples that are consequences of others
more on this in lecture 6 and later!

reification style

resources representing statements
won’t go into this

INF3580 :: Spring 2010 Lecture 3 :: 9th February 38 / 46

Jena: ModelFactory and ModelMaker

ModelMaker

Jena likes to store models in groups, identified by names.

ModelMaker organizes collections of named models.

To create one that handles models stored in memory:
ModelMaker mm = ModelFactory.createMemModelMaker();

. . . in a collection of file system files:

ModelMaker mm =
ModelFactory.createFileModelMaker("/path/to/files");

. . . a relational database:

IDBConnection conn =
new DBConnection(DB URL,DB USER,DB PASSWD,DB TYPE);

ModelMaker mm =
ModelFactory.createRDBModelMaker(conn);

See book for example of creating a DBConnection!

INF3580 :: Spring 2010 Lecture 3 :: 9th February 39 / 46

Jena: ModelFactory and ModelMaker

ModelMaker (cont.)

Given a ModelMaker object, you can. . .

create a new model if none under that name exists:

Model model = mm.createModel("CitiesOfNorway");

open an already existing model:

Model model = mm.openModel("CitiesOfNorway");

(also strict variants which throw an exception in the other case)
remove an already existing model from memory:

mm.removeModel("CitiesOfNorway");

check if there is a model with a given name:

if (mm.hasModel("CitiesOfNorway")) {...};

All models are stored as tables in one RDB, files in one file system
directory, etc.

INF3580 :: Spring 2010 Lecture 3 :: 9th February 40 / 46

Jena: Combining Models

Outline

1 Repetition: RDF

2 Jena: Basic Datastructures

3 Jena: Inspecting Models

4 Jena: I/O

5 Example

6 Jena: ModelFactory and ModelMaker

7 Jena: Combining Models

INF3580 :: Spring 2010 Lecture 3 :: 9th February 41 / 46

Jena: Combining Models

Many Models

Jena can manage many models simultaneously.

E.g. some in memory, some in databases, etc.

Different Model objects don’t know of each other

It is however possible to combine models:

Model u = model1.union(model2);
Model i = model1.intersection(model2);
Model d = model1.difference(model2);

Models contain set union/intersection/difference of statements in
model1/model2.

These are new independent models:

adding/removing statements in model1/model2 does not affect u/i/d
adding/removing statements in u/i/d does not affect model1/model2

Typically a fresh memory model holding all data.

INF3580 :: Spring 2010 Lecture 3 :: 9th February 42 / 46

Jena: Combining Models

Dynamic Unions

Also possible to create dynamic unions:

Model u = ModelFactory.createUnion(model1,model2);

Model u contains set union of statements in model1/model2.

u remains connected to model1 and model2:

adding/removing statements in model1/model2 adds/removes them in
u
adding/removing statements in u adds/removes them in model1

Union model delegates storage to other models

INF3580 :: Spring 2010 Lecture 3 :: 9th February 43 / 46

Jena: Combining Models

The Alignment Problem

We built a database places.rdf with

Information about resources like
http://geo.example.com/#oslo
http://geo.example.com/#germany

Expressed in terms like
http://geo.example.com/#City
http://geo.example.com/#Country
http://geo.example.com/#containedIn

Now we discover http://dbpedia.org/ with

information about resources like
http://dbpedia.org/resource/Oslo
http://dbpedia.org/resource/Germany

Expressed in terms like
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/ontology/Country
http://dbpedia.org/property/subdivisionName

INF3580 :: Spring 2010 Lecture 3 :: 9th February 44 / 46

http://dbpedia.org/

Jena: Combining Models

The Alignment Problem (cont.)

We can now construct the union of both information sources

But the union will not be very useful :-(

The data is not linked!

The same entities are identified by different URIs
The same types are identified by different URIs
Similar properties are identified by different URIs

Need some way to “align” the vocabularies

Say that geo:oslo equals dbpedia:Oslo.
Say that a geo:City is a kind of dbpedia-owl:PopulatedPlace.
Say that subdivisions are contained in each other.

You will learn how to do this later in the course. . .

. . . but to get it right, some theory is needed!

INF3580 :: Spring 2010 Lecture 3 :: 9th February 45 / 46

Jena: Combining Models

Outlook

Lecture 4: The SPARQL Query Language

Lecture 5: Semantics of RDF

Lecture 6: The RDFS Vocabulary Definition Language

Lecture 7: OWL basics: Web Ontology Language

Lecture 8: More about OWL

All this will be explained with examples

There will be practical exercises

But there are some theoretical concepts to grasp!

INF3580 :: Spring 2010 Lecture 3 :: 9th February 46 / 46

	Repetition: RDF
	Jena: Basic Datastructures
	Jena: Inspecting Models
	Jena: I/O
	Example
	Jena: ModelFactory and ModelMaker
	Jena: Combining Models

