
INF3580 – Semantic Technologies – Spring 2010
Lecture 4: The SPARQL Query Language

Martin Giese

16th February 2010

Department of
Informatics

University of
Oslo

Today’s Plan

1 Gruppeundervisning

2 Repetition: RDF

3 Common Vocabularies

4 SPARQL By Example

5 SPARQL Systematically

6 Executing SPARQL Queries

INF3580 :: Spring 2010 Lecture 4 :: 16th February 2 / 44

Gruppeundervisning

Outline

1 Gruppeundervisning

2 Repetition: RDF

3 Common Vocabularies

4 SPARQL By Example

5 SPARQL Systematically

6 Executing SPARQL Queries

INF3580 :: Spring 2010 Lecture 4 :: 16. februar 3 / 44

Gruppeundervisning

Gruppeundervisning

Tirsdager 12:15–14:00: 12–14 studenter

Fredager 10:15–12:00: 1–2 studenter

Vi er blitt bedt å gjennomg̊a oppgavene p̊a gruppetimene

Termstuene mangler prosjektor

Forslag:

gruppetimer med gjennomgang p̊a tirsdager
flytte tirsdager til rom 107 i VB hus, som har lerret
Beholde timene p̊a termstuer fredager.

INF3580 :: Spring 2010 Lecture 4 :: 16. februar 4 / 44

Repetition: RDF

Outline

1 Gruppeundervisning

2 Repetition: RDF

3 Common Vocabularies

4 SPARQL By Example

5 SPARQL Systematically

6 Executing SPARQL Queries

INF3580 :: Spring 2010 Lecture 4 :: 16th February 5 / 44

Repetition: RDF

Reminder: RDF triples

The W3C representation of knowledge in the Semantic Web is RDF
(Resource Description Framework)

RDF talks about resources identified by URIs.

In RDF, all knowledge is represented by triples

A triple consists of subject, predicate, and object

The subject maybe a resource or a blank node

The predicate must be a resource

The object can be a resource, a blank node, or a literal

INF3580 :: Spring 2010 Lecture 4 :: 16th February 6 / 44

Repetition: RDF

Reminder: RDF Literals

objects of triples can also be literals

I.e. nodes in an RDF graph can be resources or literals
Subjects and predicates of triples can not be literals

Literals can be

Plain, without language tag:
geo:berlin geo:name "Berlin" .

Plain, with language tag:
geo:germany geo:name "Deutschland"@de .
geo:germany geo:name "Germany"@en .

Typed, with a URI indicating the type:
geo:berlin geo:population "3431700"^^xsd:integer .

INF3580 :: Spring 2010 Lecture 4 :: 16th February 7 / 44

Repetition: RDF

Reminder: RDF Blank Nodes

Blank nodes are like resources without a URI

There is a city in Germany called Berlin

_:x rdf:type geo:City .
_:x geo:containedIn geo:germany .
_:x geo:name "Berlin" .

geo:germany geo:City

Berlin

geo:containedIn rdf:type

geo:name

INF3580 :: Spring 2010 Lecture 4 :: 16th February 8 / 44

Repetition: RDF

Reminder: Jena

Jena is a semantic web programming framework

API has interfaces Resource, Property, Literal, Statement,
Model

Need to create a Model first, using ModelFactory or ModelMaker.

Different kinds of models have different backing storage (memory,
files, RDB)

Statements and Resources point back to the model they belong to

Retrieval of information via methods in Model and Resource

Simple pattern matching with null as wildcard possible

INF3580 :: Spring 2010 Lecture 4 :: 16th February 9 / 44

Repetition: RDF

Reminder: Jena

INF3580 :: Spring 2010 Lecture 4 :: 16th February 10 / 44

Common Vocabularies

Outline

1 Gruppeundervisning

2 Repetition: RDF

3 Common Vocabularies

4 SPARQL By Example

5 SPARQL Systematically

6 Executing SPARQL Queries

INF3580 :: Spring 2010 Lecture 4 :: 16th February 11 / 44

Common Vocabularies

The RDF Vocabulary

Prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

(needs to be declared like all others!)

Important elements:

type links a resource to a type
Resource type of all resources
Property type of all properties

Examples:

geo:berlin rdf:type rdf:Resource .
geo:containedIn rdf:type rdf:Property .
rdf:type rdf:type rdf:Property .

INF3580 :: Spring 2010 Lecture 4 :: 16th February 12 / 44

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Common Vocabularies

Friend Of A Friend

People, personal information, friends, see
http://www.foaf-project.org/

Prefix foaf:<http://xmlns.com/foaf/0.1/>

Important elements:

Person a person, alive, dead, real, imaginary
name name of a person (also firstName, familyName)
mbox mailbox URL of a person

knows a person knows another

Examples:

<http://heim.ifi.uio.no/martingi/foaf.rdf#me>
rdf:type foaf:Person ;
foaf:name "Martin Giese" ;
foaf:mbox <mailto:martingi@ifi.uio.no> ;
foaf:knows <http://.../martige/foaf.rdf#me> .

INF3580 :: Spring 2010 Lecture 4 :: 16th February 13 / 44

Common Vocabularies

Dublin Core

Metadata for documents, see http://dublincore.org/.

Prefix dcterms:<http://purl.org/dc/terms/>

(Legacy dc: for smaller namespace)

Important elements in dcterms:

creator a document’s main author
created the creation date

description a natural language description
replaces another document superseded by this

Examples:

<http://heim.ifi.uio.no/martingi/>
dcterms:creator <http://.../foaf.rdf#me> ;
dcterms:created "2007-08-01" ;
dcterms:description "Martin Giese’s homepage"@en ;
dcterms:replaces <http://my.old.homepage/> .

INF3580 :: Spring 2010 Lecture 4 :: 16th February 14 / 44

SPARQL By Example

Outline

1 Gruppeundervisning

2 Repetition: RDF

3 Common Vocabularies

4 SPARQL By Example

5 SPARQL Systematically

6 Executing SPARQL Queries

INF3580 :: Spring 2010 Lecture 4 :: 16th February 15 / 44

SPARQL By Example

SPARQL

SPARQL Protocol And RDF Query Language

Documentation:

Queries http://www.w3.org/TR/rdf-sparql-query/
Language for submitting “graph pattern” queries

Protocol http://www.w3.org/TR/rdf-sparql-protocol/
Protocol to submit queries to a server (“endpoint”)

Results http://www.w3.org/TR/rdf-sparql-XMLres/
XML format in which results are returned

Try it out:

DBLP http://dblp.l3s.de/d2r/snorql/
DBpedia http://dbpedia.org/sparql
DBtunes http://dbtune.org/musicbrainz/

INF3580 :: Spring 2010 Lecture 4 :: 16th February 16 / 44

http://www.foaf-project.org/
foaf: <http://xmlns.com/foaf/0.1/>
http://dublincore.org/
dcterms: <http://purl.org/dc/terms/>
dc:
dcterms
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://dblp.l3s.de/d2r/snorql/
http://dbpedia.org/sparql
http://dbtune.org/musicbrainz/

SPARQL By Example

Simple Examples

DBLP contains computer science publications

vocabulary of RDF version:

author of a document: dc:creator
title of a document: dc:title
name of a person: foaf:name

People called “Martin Giese”

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?mg WHERE {

?mg foaf:name "Martin Giese" .
}

Answer:

?mg
<http://dblp.l3s.de/d2r/resource/authors/Martin_Giese>

INF3580 :: Spring 2010 Lecture 4 :: 16th February 17 / 44

SPARQL By Example

Simple Examples (cont.)

Publications by people called “Martin Giese”

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?pub WHERE {

?mg foaf:name "Martin Giese" .
?pub dc:creator ?mg .

}

Answer:

?pub
<http://dblp.l3s.de/d2r/resource/publications/conf/cade/Giese01>

<http://dblp.l3s.de/d2r/resource/publications/conf/cade/BeckertGHKRSS07>

<http://dblp.l3s.de/d2r/resource/publications/conf/fase/AhrendtBBGHHMMS02>

<http://dblp.l3s.de/d2r/resource/publications/conf/jelia/AhrendtBBGHHMS00>

<http://dblp.l3s.de/d2r/resource/publications/conf/lpar/Giese06>

. . .

INF3580 :: Spring 2010 Lecture 4 :: 16th February 18 / 44

SPARQL By Example

Simple Examples (cont.)

Titles of publications by people called “Martin Giese”

SELECT ?title WHERE {
?mg foaf:name "Martin Giese" .
?pub dc:creator ?mg .
?pub dc:title ?title .

}

Answer:

?title
"Incremental Closure of Free Variable Tableaux."^^xsd:string

"The KeY system 1.0 (Deduction Component)."^^xsd:string

"The KeY System: Integrating Object-Oriented Design and Formal Methods."^^xsd:string

"The KeY Approach: Integrating Object Oriented Design and Formal Verification."^^xsd:string

"Saturation Up to Redundancy for Tableau and Sequent Calculi."^^xsd:string

. . .

INF3580 :: Spring 2010 Lecture 4 :: 16th February 19 / 44

SPARQL By Example

Simple Examples (cont.)

Names of people who have published with “Martin Giese”

SELECT DISTINCT ?name WHERE {
?mg foaf:name "Martin Giese" .
?pub dc:creator ?mg .
?pub dc:creator ?other .
?other foaf:name ?name.

}

Answer:

?name
"Martin Giese"

"Bernhard Beckert"
"Reiner Hähnle"

"Vladimir Klebanov"
"Philipp Rümmer"

. . .

INF3580 :: Spring 2010 Lecture 4 :: 16th February 20 / 44

SPARQL By Example

Graph Patterns

The previous SPARQL query as a graph:

?mg "Martin Giese"

?pub

?other ?name

foaf:name

foaf:name

dc:
cre

ato
r

dc:creator

Assign values to variables to make this a sub-graph of the RDF graph!

INF3580 :: Spring 2010 Lecture 4 :: 16th February 21 / 44

SPARQL By Example

Graph with blank nodes

Variables not SELECTed can equivalently be blank:

"Martin Giese"

?name

foaf:name

foaf:name

dc:
cre

ato
r

dc:creator

Assign values to variables and blank nodes to make this a sub-graph of the
RDF graph!

INF3580 :: Spring 2010 Lecture 4 :: 16th February 22 / 44

SPARQL By Example

SPARQL Query with blank nodes

Names of people who have published with “Martin Giese”

SELECT DISTINCT ?name WHERE {
_:mg foaf:name "Martin Giese" .
_:pub dc:creator _:mg .
_:pub dc:creator _:other .
_:other foaf:name ?name.

}

The same with blank node syntax

SELECT DISTINCT ?name WHERE {
[dc:creator [foaf:name "Martin Giese"] ,

[foaf:name ?name]
]

}

INF3580 :: Spring 2010 Lecture 4 :: 16th February 23 / 44

SPARQL Systematically

Outline

1 Gruppeundervisning

2 Repetition: RDF

3 Common Vocabularies

4 SPARQL By Example

5 SPARQL Systematically

6 Executing SPARQL Queries

INF3580 :: Spring 2010 Lecture 4 :: 16th February 24 / 44

SPARQL Systematically

Basic Graph Patterns

A Basic Graph Pattern is a set of triple patterns.

e.g.
?mg foaf:name "Martin Giese" .
_:pub dc:creator ?mg .
_:pub dc:creator ?other .

Scope of blank node labels is the basic graph pattern

Matching is defined via entailment, see next lecture

Basically: A match is a function that maps

every variable and every blank node in the pattern
to a resource, a blank node, or a literal in the RDF graph (an “RDF
term”)

INF3580 :: Spring 2010 Lecture 4 :: 16th February 25 / 44

SPARQL Systematically

Group Graph Patterns

Group several patterns with { and }.

A group containing one basic graph pattern:
{

_:pub dc:creator ?mg .
_:pub dc:creator ?other .

}

A group containing two groups:
{

{ _:pub dc:creator ?mg . }
{ _:pub dc:creator ?other . }

}

Note: two different blank nodes _:pub!

Match is a function from variables to RDF terms

Need to match all the patterns in the group.

INF3580 :: Spring 2010 Lecture 4 :: 16th February 26 / 44

SPARQL Systematically

Filters

Groups may include constraints or filters

E.g.
{

?x a dbpedia-owl:Place ;
dbpprop:population ?pop .

FILTER (?pop > 1000000)
}

E.g.
{

?x a dbpedia-owl:Place ;
dbpprop:abstract ?abs .

FILTER (lang(?abs) = "no")
}

Numerical functions, string operations, reg. exp. matching, etc.

Reduces matches of surrounding group to those where filter applies

INF3580 :: Spring 2010 Lecture 4 :: 16th February 27 / 44

SPARQL Systematically

Optional Patters

A match can leave some variables unbound

A partial function from variables to RDF terms

Groups may include optional parts

E.g.
{

?x a dbpedia-owl:Place ;
dbpprop:population ?pop .

OPTIONAL {
?x dbpprop:abstract ?abs .
FILTER (lang(?abs) = "no")

}
}

?x and ?pop bound in every match, ?abs bound if there is a
Norwegian abstract

Groups can contain several optional parts, evaluated separately

INF3580 :: Spring 2010 Lecture 4 :: 16th February 28 / 44

SPARQL Systematically

Matching Alternatives

A UNION pattern matches if any of some alternatives matches

E.g.
{

{ ?book dc:creator ?author ;
dc:created ?date . }

UNION
{ ?book foaf:maker ?author . }
UNION
{ ?author foaf:made ?book . }

}

Variables in matches union of variables in sub-patterns

Match of one pattern leaves rest of variables unbound

INF3580 :: Spring 2010 Lecture 4 :: 16th February 29 / 44

SPARQL Systematically

RDF Datasets

SPARQL contains a mechanism for named RDF graphs

Collections of named graphs are called “RDF datasets”

Syntax for declaring named graphs in SPARQL

Syntax for matching graph patterns in a given graph

Beyond the scope of this course. Read the docs!

INF3580 :: Spring 2010 Lecture 4 :: 16th February 30 / 44

SPARQL Systematically

Four Types of Queries

SELECT Compute table of bindings for variables
SELECT ?a ?b WHERE {

[dc:creator ?a ;
dc:creator ?b]

}

CONSTRUCT Use bindings to construct a new RDF graph
CONSTRUCT {

?a foaf:knows ?b .
} WHERE {

[dc:creator ?a ;
dc:creator ?b]

}

ASK Answer (yes/no) whether there is ≥ 1 match

DESCRIBE Answer available information about matching resources

INF3580 :: Spring 2010 Lecture 4 :: 16th February 31 / 44

SPARQL Systematically

Solution Modifiers

Patterns generate an unordered collection of solutions

Each solution is a partial function from variables to RDF terms

SELECT treats solutions as a sequence (solution sequence)

Sequence modifiers can modify the solution sequence:

Order
Projection
Distinct
Reduce
Offset
Limit

Applied in this order.

INF3580 :: Spring 2010 Lecture 4 :: 16th February 32 / 44

SPARQL Systematically

ORDER BY

Used to sort the solution sequence in a given way:

SELECT ... WHERE ... ORDER BY ...

E.g.
SELECT ?country ?city ?pop WHERE {

?city geo:containedIn ?country ;
geo:population ?pop .

} ORDER BY ?country DESC(?pop)

standard defines sorting conventions for literals, URIs, etc.

INF3580 :: Spring 2010 Lecture 4 :: 16th February 33 / 44

SPARQL Systematically

Projection, DISTINCT, REDUCED

Projection means that only some variables are part of the solution

Done with SELECT ?x ?y WHERE {?x ?y ?z...}

DISTINCT eliminates duplicate solutions:

Done with SELECT DISTINCT ?x ?y WHERE {?x ?y ?z...}
A solution is duplicate if it assigns the same RDF terms to all variables
as another solution.

REDUCE allows to remove some or all duplicate solutions

Done with SELECT REDUCED ?x ?y WHERE {?x ?y ?z...}
Can be expensive to find and remove all duplicates
Leaves amount of removal to implementation

INF3580 :: Spring 2010 Lecture 4 :: 16th February 34 / 44

SPARQL Systematically

OFFSET and LIMIT

Useful for paging through a large set of solutions

Can compute solutions number 51 to 60

Done with
SELECT ... WHERE {...} ORDER BY ...
LIMIT 10 OFFSET 50

LIMIT and OFFSET can be used separately

OFFSET not meaningful without ORDER BY.

INF3580 :: Spring 2010 Lecture 4 :: 16th February 35 / 44

SPARQL Systematically

Missing in SPARQL

SPARQL does not include (amongst others):

aggregate functions (count, sum, average,. . .)

difficult with “open world assumption”
i.e. statements may be true even if they are not asserted in a model

negation, set difference, i.e. something is not in a graph

also not compatible with open world assumption
can use FILTER to check that variables are not bound

updates (add delete triples)

Some of this is probably coming. . .

http://www.w3.org/TR/2009/WD-sparql-features-20090702/

INF3580 :: Spring 2010 Lecture 4 :: 16th February 36 / 44

http://www.w3.org/TR/2009/WD-sparql-features-20090702/

Executing SPARQL Queries

Outline

1 Gruppeundervisning

2 Repetition: RDF

3 Common Vocabularies

4 SPARQL By Example

5 SPARQL Systematically

6 Executing SPARQL Queries

INF3580 :: Spring 2010 Lecture 4 :: 16th February 37 / 44

Executing SPARQL Queries

SPARQL in Jena

SPARQL functionality bundled with Jena has separate Javadocs:

http://openjena.org/ARQ/javadoc/index.html

Main classes in package com.hp.hpl.jena.query
Query a SPARQL query
QueryFactory for creating queries in various ways
QueryExecution for the execution state of a query
QueryExecutionFactory for creating query executions
ResultSet for results of a SELECT

CONSTRUCT and DESCRIBE return Models, ASK a Java boolean.

INF3580 :: Spring 2010 Lecture 4 :: 16th February 38 / 44

Executing SPARQL Queries

Constructing a Query and a QueryExecution

Query objects are usually constructed by parsing:
String qStr =

"PREFIX foaf: <" + foafNS + ">"
+ "SELECT ?a ?b WHERE {"
+ " ?a foaf:knows ?b ."
+ "} ORDER BY ?a ?b";

Query q = QueryFactory.create(qStr);

Programming interface deprecated and badly documented

A Query can be used several times, on multiple models

For each execution, a new QueryExecution is needed

To produce a QueryExecution for a given Query and Model:
QueryExecution qe =

QueryExecutionFactory.create(query,model);

INF3580 :: Spring 2010 Lecture 4 :: 16th February 39 / 44

Executing SPARQL Queries

Executing a Query

QueryExecution contains methods to execute different kinds of
queries (SELECT, CONSTRUCT, etc.)

E.g. for a SELECT query:
ResultSet res = qe.execSelect();

ResultSet is a sub-interface of Iterator<QuerySolution>

Also has methods to get list of variables

Query has methods to get list of variables, value of single variables,
etc.

Important to call close() on query executions when no longer
needed.

INF3580 :: Spring 2010 Lecture 4 :: 16th February 40 / 44

http://openjena.org/ARQ/javadoc/index.html

Executing SPARQL Queries

Example: SPARQL in Jena

String qStr = "SELECT ?a ?b ...";
Query q = QueryFactory.create(qStr);

QueryExecution qe =
QueryExecutionFactory.create(query,model);

try {
res = qe.execSelect();
while(res.hasNext()) {

QuerySolution sol = response.next();
RDFNode a = soln.get("?a");
RDFNode b = soln.get("?b");
System.out.println(""+a+" knows "+b);

}
} finally {

qe.close();
}

INF3580 :: Spring 2010 Lecture 4 :: 16th February 41 / 44

Executing SPARQL Queries

SPARQL on the ’Net

Many sites (DBLP, dbpedia, dbtunes,. . .) publish SPARQL endpoints

I.e. SPARQL queries can be submitted to a database server that
sends back the results

Uses HTTP to submit URL-encoded queries to server
GET /sparql/?query=... HTTP/1.1

Actually defined via W3C Web Services, see

http://www.w3.org/TR/rdf-sparql-protocol/

Server responds with XML file encoding result set, see

http://www.w3.org/TR/rdf-sparql-XMLres/

Nothing you would want to do manually!

INF3580 :: Spring 2010 Lecture 4 :: 16th February 42 / 44

Executing SPARQL Queries

Remote SPARQL with Jena

Jena can send SPARQL queries to a remote endpoint!

Use one of the sparqlService in QueryExecutionFactory

E.g.
String endpoint = "http://dblp.l3s.de/d2r/sparql";
String qStr = "SELECT ?a ?b ...";
Query q = QueryFactory.create(qStr);

QueryExecution qe =
QueryExecutionFactory.sparqlService(endpoint,query);

try {
res = qe.execSelect();
...

} finally {
qe.close();

}

INF3580 :: Spring 2010 Lecture 4 :: 16th February 43 / 44

Executing SPARQL Queries

Summary

SPARQL is a W3C-standardised query language for RDF graphs

It is built about “graph patterns”

Only queries compatible with “open world assumption”

Comes with a protocol to communicate with “endpoints”

Can be conveniently used with Jena

INF3580 :: Spring 2010 Lecture 4 :: 16th February 44 / 44

http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-XMLres/

	Gruppeundervisning
	Repetition: RDF
	Common Vocabularies
	SPARQL By Example
	SPARQL Systematically
	Executing SPARQL Queries

