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1 Why we need semantics
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Learning goals:

1 To understand the basic concepts of model-theoretic semantics.

2 To understand the RDF meta-modeling architecture

3 To get acquainted with the idiosyncracies of Semantic Web reasoning
vs. e.g. SQL, as well as

the open/closed world distinction, and
the non-unique names assumption

We shall be less concerned with:

1 all the nitty-gritty detail of RDF semantics,

2 characterisation results such as soundness and completeness.
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Why we need semantics

Outline
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Why we need semantics

Semantics—why do we need it?

A formal semantics for RDFS became necessary because

1 the previous informal specification

2 left plenty of room for interpretation of conclusions, whence

3 triple stores sometimes answered queries differently, thereby

4 obstructing interoperability and interchangeability.

5 The information content of data once more came to depend on
applications

But RDF was supposed to be the data liberation movement!
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Why we need semantics

Another look at the Semantic Web cake

Identifiers: URI Chr. set: UNICODE

Syntax: XML

Data interchange: RDF

Querying:

SPARQL Taxonomies: RDFS

Ontologies: OWL Rules: SWRL

Unifying logic

Proof

Trust

User interface and applications

C
ry

p
to

gr
ap

h
y

Figure: Semantic Web Stack
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Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning,
e. g.:

type propagation/inheritance,

”Tweety is a penguin and a penguin is a bird, so ...”

domain and range restrictions,

”Martin has a birthdate, and only people have birthdates, so ...”

existential restrictions.

”all persons have parents, and Martin is a person, so ....”

.... to which we shall return in lecture 6 and onwards

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

that specifies how the different node types should be interpreted

and in particular what entailment should be taken to mean.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 7 / 45



Why we need semantics

Example: What is the meaning of blank nodes?

Example from previous lecture:

SELECT DISTINCT ?name WHERE {
_:pub dc:creator [foaf:name "Martin Giese"] .
_:pub dc:creator _:other .
_:other foaf:name ?name.

}

SPARQL must

match the query to graph patterns
which involves assigning values to variables and blank nodes

But,

but which values are to count?
the problem becomes more acute under e.g. type propagation.
Should a value for foaf:familyname match a query for foaf:name?
Are blanks in SPARQL the same as blanks in RDF?

Complete answers in the course of later lectures. Foundations now.
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Model-theoretic semantics from a birds-eye perspective

Formal semantics

The study of how to model the meaning of a logical calculus.

A logical calculus consists of:

A finite set of symbols,
a grammar, which specifies the formulae,
a set of axioms and inference rules from which we construct proofs.

A logical calculus can be defined apart from any interpretation.

A calculus that has not been furnished with a formal semantics,

is a ’blind’ machine, a mere symbol manipulator,
the only criterion of correctness is provability.
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Model-theoretic semantics from a birds-eye perspective

Derivations

A proof typically looks something like this:

P ` Q,P Q,P ` Q

P → Q,P ` Q

R ` Q,P Q,R ` Q

P → Q,R ` Q

P → Q,P ∨ R ` Q

P → Q ` (P ∨ R)→ Q

Where each line represents an application of an inference rule.

How do we know that the inference rules are well-chosen?

Which manipulations are intuitively meaningful?

When is a proof intuitively acceptable?
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Model-theoretic semantics from a birds-eye perspective

Model-theoretic semantics

Basic idea: Asserting a sentence makes a claim about the world:

A formula therefore limits the set of worlds that are possible.

We can therefore encode meaning/logical content

by describing models of these worlds.
thus making certain aspects of meaning mathematically tractable

The exact makeup of models typically varies, but they all

express a view on what kinds of things there are,
and the basic relations between these things

By selecting a class of models one selects the basic features of the
world

as one chooses to see it.

Whatever these models all share can be said to be entailed by those
features.
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Recalling classical consequence

Outline

1 Why we need semantics
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Recalling classical consequence

The language of classical logic

Sentence variables

The non-logical symbols consists of a countable set of sentence variables

P1,P2,P3, . . . (we drop the subscripts when they do not matter)

Logical connectives

The logical symbols consists of

∧ aka. logical conjunction,

∨ aka. logical disjunction,

→ aka. material implication, and

¬ aka. logical negation

or some functionally equivalent set
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Recalling classical consequence

Atomic sentences

Sentence variables are place-holders for atomic sentences.

Atomic sentences are complete sentences that

are either true or false,
contain none of the logical connectives.

Examples;

“Kilimanjaro is the tallest mountain in Africa”
“Popocatepetl is in Canada”
“The number of planets exceeds 7”
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Recalling classical consequence

Complex sentences

Complex formulae correspond to combinations of atomic sentences;

“Popocatepetl is in Canada and the number of planets exceeds 7”

“If Popocatepetl is in Canada then it lies north of Argentina”
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Recalling classical consequence

Things to note

The internal structure of atomic sentences remains unanalyzed.

The unit of analysis is a complete, true or false sentence.

A sentence mirrors a complete state of affairs,

that so-and-so happens to be the case, not
how or in virtue of what so-and-so happens to be the case.

Sets of formulae represent possible configurations of facts, that is

possible states of the world,
corresponding to possible assignments of truth-values to sentences

Hence, an interpretation of a formula is simply

an interpretation of its atomic sentences in terms of truth and falsity,
that determines the truth-value of the formula as a whole
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Recalling classical consequence

Propositional semantics

Truth tables

Truth-tables give the meaning of the logical constants:

P1 P2 P1 ∧ P2 P1 ∨ P2 ¬P1

F F F F T
F T F T T
T T T T F
T F F T F

Valuations/interpretations/models

A propositional model/interpretation, usually called a valuation, is a
function v

on the set of all formulae,

into the set {T ,F},
that assigns values corresponding to one row in the truth-table
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Recalling classical consequence

Satisfaction/truth in a model

Satisfiability

A valuation v satisifes a formula P if v(P) = T .

A formula P is satisfiable if v(P) = T for some
model/valuation/interpretation v .

Intuitively P is satisfiable if it describes a possible configuration.

Example

The formula P1 ∨ P2 is satisfiable:

It is satisfied by all valuations v such that v(P1) = T , and

by all valuations v ′ (possibly the same) such that v ′(P2) = T
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Recalling classical consequence

Validity and entailment

Validity and entailment quantify over the set of all valuations:

Validity of a formula

A formula P is valid iff v(P) = T for all v .

More generally: A formula P is valid in a class of models M iff
v(P) = T for all v ∈M

Validity of an inference/entailment

A set of sentences A entails a formula P, written A � P, iff there is
no valuation v such that v(P) = T for all P ∈ A and v(P) = F .
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Recalling classical consequence

Entailment/validity illustrated

Models 
of P
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Recalling classical consequence

More things to note

Models differ in their particular makeup from logic to logic, but

satisfaction,
validity, and
entailment,

are largely invariant.

The concept of satisfaction, i.e. of truth, is the fundamental one.

we shall thus have to define the truth of a triple

Classical semantics is open world in the sense that

one model does not in general suffices to draw conclusions,
i. e. one model, or set of facts, cannot be assumed to contain
complete knowledge
we shall come back to this
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RDF semantics—main features
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RDF semantics—main features

Taking the structure of triples into account

Unlike propositions triples have parts, namely:

subject

predicates, and

objects

Less abstractly, these may be:

URI references

literal values, and

blank nodes

Triples are true or false on the basis of what each part refers to.
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RDF semantics—main features

On what there is: Resources

The RDF data model consists of three object types; resources, properties
and literals values:

Resources: All things described by RDF are called resources. A resource
may be:

an entire Web page,
a part of a Web page,
a whole collection of pages (a Web site), or
an object that is not directly accessible via the Web,
e.g. a printed book.
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RDF semantics—main features

Resource contd.

Resources are always named by URIs. Examples:

http://purl.org/dc/terms/created
names the concept of a creation date.

http://www.wikipedia.org

names Wikipedia, the Web site.

http://dblp.l3s.de/d2r/resource/authors/Martin Giese

names Martin Giese, the person.
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RDF semantics—main features

Properties

Properties A property is a specific aspect, characteristic, attribute or
relation used to describe a resource.

Properties are always named by URIs. Examples.

http://xmlns.com/foaf/0.1/knows

names the relationship of knowing people,

http://dbpedia.org/property/parent
names the relationship of being a parent,

http://www.w3.org/2006/vcard/ns#locality
names the relationship of being the locality of something.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 27 / 45



RDF semantics—main features

Properties

Properties A property is a specific aspect, characteristic, attribute or
relation used to describe a resource.

Properties are always named by URIs. Examples.

http://xmlns.com/foaf/0.1/knows

names the relationship of knowing people,

http://dbpedia.org/property/parent
names the relationship of being a parent,

http://www.w3.org/2006/vcard/ns#locality
names the relationship of being the locality of something.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 27 / 45



RDF semantics—main features

Properties

Properties A property is a specific aspect, characteristic, attribute or
relation used to describe a resource.

Properties are always named by URIs. Examples.

http://xmlns.com/foaf/0.1/knows

names the relationship of knowing people,

http://dbpedia.org/property/parent
names the relationship of being a parent,

http://www.w3.org/2006/vcard/ns#locality
names the relationship of being the locality of something.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 27 / 45



RDF semantics—main features

Properties

Properties A property is a specific aspect, characteristic, attribute or
relation used to describe a resource.

Properties are always named by URIs. Examples.

http://xmlns.com/foaf/0.1/knows

names the relationship of knowing people,

http://dbpedia.org/property/parent
names the relationship of being a parent,

http://www.w3.org/2006/vcard/ns#locality
names the relationship of being the locality of something.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 27 / 45



RDF semantics—main features

Properties

Properties A property is a specific aspect, characteristic, attribute or
relation used to describe a resource.

Properties are always named by URIs. Examples.

http://xmlns.com/foaf/0.1/knows

names the relationship of knowing people,

http://dbpedia.org/property/parent
names the relationship of being a parent,

http://www.w3.org/2006/vcard/ns#locality
names the relationship of being the locality of something.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 27 / 45



RDF semantics—main features

Properties

Properties A property is a specific aspect, characteristic, attribute or
relation used to describe a resource.

Properties are always named by URIs. Examples.

http://xmlns.com/foaf/0.1/knows

names the relationship of knowing people,

http://dbpedia.org/property/parent
names the relationship of being a parent,

http://www.w3.org/2006/vcard/ns#locality
names the relationship of being the locality of something.

INF3580 :: Spring 2010 Lecture 5 :: 23rd February 27 / 45



RDF semantics—main features

Literal values

Literal values A literal value is a concrete data item, such as an integer or
a string.

Plain literals name themselves, i. e.

“Julius Ceasar” names the string “Julius Ceasar”

“42” names the string “42”

The semantics of typed and tagged literals is considerably more complex.
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RDF semantics—main features

RDF interpretations in outline

RDF interpretations

An RDF interpretation I of a vocabulary V is defined (in part) by

What there is:

A non-empty set IR of resources, called the domain of I

A subset IP ⊆ IR, called the set of properties of I

A set LV ⊆ IR of plain literals

The reference or meaning of words in the vocabulary, given by:

A function IS from URIs in V into IR

A function IEXT from IP to IR × IR

Untyped literal values refer to themselves.
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RDF semantics—main features

Interpretations

RDF Vocabulary

Literals   URIs

      IR       LV       IP 

      IS  

       IEXT     
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RDF semantics—main features

Satisfaction

Truth of a triple in an interpretation

An RDF interpretation I satisfies a ground triple s p o if

〈IS(s), IS(o)〉 ∈ IEXT (IS(p))

 IR  IP 

IEXT(IS(p)) 

  IS(s)     IS(o)   

  IS(p)   

 s      p     o
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RDF semantics—main features

Satisfaction: A somewhat more concrete example

    @Prefix folk: <http://folk.uio.no/>

folk:audus    foaf:knows    folk:martingi

IEXT(IS(foaf:knows)) 

IS(foaf:knows)   Audun Martin 

IP

IR 

IS
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RDF semantics—main features

Interpretation of blank nodes

Interpretation of triples containing blank nodes

Let E be any RDF-triple. An interpretation I satisfies E if there is some
substitution σ from the blank nodes in E into IR − IP, such that

The ground triple σ(E ) is satisfied by I

    _:x      p      o 

 IR  IP 
  IS(O) 

  IS(p) 

IEXT(IS(p)) 
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RDF semantics—main features

Hang on !?

For those well-versed in FOL all this looks pretty standard:

names or constants are interpreted as objects from the domain,

properties are interpreted as relations over the domain, and

satisfaction is those object’s being in the relation as a pair.

But there is a very important twist:

Properties are interpreted twice.

A property name p is first mapped to a resource IS(p) in IP

and then it is mapped to a relation IEXT ( IS(p) ) over IP ∪ IR.

So properties act as both objects and relations !?
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RDF semantics—main features

Another look at satisfaction

 IR  IP 

IEXT(IS(p)) 

  IS(s)     IS(o)   

  IS(p)   

 s      p     o

Figure: The double interpretation of properties
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RDF semantics—main features

The RDF meta-modelling architecture

The double interpretation of properties enables

the RDF language to talk about itself,

properties may participate in their own extensions,

i.e. they may be used to restrict their own use

It is therefore possible to define higher-level languages in RDF itself.

Some RDFS axioms

rdfs:domain rdfs:domain rdf:Property

rdfs:subPropertyOf rdfs:domain rdf:Property

rdf:type rdfs:range rdfs:Class
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RDF semantics—main features

Enabling effects of the meta-modelling architecture

Both RDFS and OWL are RDF vocabularies, i. e.

they are defined in RDF and can be treated as plain RDF.

No divide between higher and lower levels in the Semantic Web stack:

OWL and RDFS can be queried as plain RDF with SPARQL,
OWL and RDFS can use RDF parsers,
ontologies can be persisted in triple stores,
plain RDF graphs can be treated as data for OWL ontologies
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RDF semantics—main features

Limitative results of the meta-modelling architecture

RDFS (the RDF schema language) does not have a classical extensional
semantics:

Two rdfs properties may have the same extension and not be
equal,

Two rdfs classes may be subsets of one another and not be equal,

OWL, as we shall see, adopts an extensional semantics, so

An owl:Class is not the same as an rdf:Class,

RDFS inference engines cannot in general do OWL reasoning,

nor vice versa

although, they will usually not crash, just ignore information

RDF entailment is undecidable in general. OWL-full, for instance

combines OWL-expressivity with RDFS metamodeling,

and is for that reason undecidable
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RDF semantics—main features

Open and closed world reasoning

RDF semantics is open-world: Validity is defined in terms of all models:

RDF-entailment

An RDF graph G entails a graph E if every interpretation I that satisfies
G also satisfies E .

Just as with propositional semantics, therefore:

one model does not in general suffice to decide entailment,

one model cannot in general be assumed to represent complete
knowledge,
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RDF semantics—main features

Why open world semantics?

Remember the AAA rule:

Anyone can say Anything about Anything

Anyone can write a page saying what they please,

information may be discovered at any time,

data may be produced at any time

conclusions in general are drawn from distributed data

Hence, we will rarely be able to conclude e. g.

that Radiohead does not have an album called “Dark Continent”,

because althogh we cannot find information about such an album,

or we may find a similarly named album by another band,

we may yet discover new information as we go.
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RDF semantics—main features

Ramifications of the closed world assumption

Open world semantics becomes an issue for negative information.

Imagine a relational database for an airline’s flights:

If a direct flight between Kautokeino and Jakutsk cannot be found,
the RDBMS will assume that no such flight exists.

This makes sense, because:

A database for an airline is usually complete wrt their flights

This kind of reasoning is known as negation as failure:

what cannot be be proved to be true is assumed false,

Negation as failure characterises;

Negation in logic programming, e.g. Prolog.
negation in relational database management systems,
default reasoning in general.
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RDF semantics—main features

Sensitivity to the absence of information

A closed world system is sensitive to the absence of information:

If it is not in the data, then conclude that it does not hold.

If “Dark Continent” by Radiohead cannot be found, there isn’t one.

If I can find the names of all planets but Jupiter, then there are 8
planets.

You do not want this behaviour from SPARQL:

If you merge information from more sources, Jupiter may show up.

Perhaps Radiohead releases “Dark Continent” tomorrow.

Therefore SPARQL is based on classical semantics, whence

it is not sensitive to absence, whence

it makes little sense to provide for negative queries,

because you’ll never get an answer anyway.
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because you’ll never get an answer anyway.
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RDF semantics—main features

The non-unique names assumption

Closely related to the AAA rule and the OWA is the ACAA rule:

The ACAA rule

Anyone can Call Anything Anything,

Identifiers cannot be assumed to be unique,

Different names do not necessarily mean different objects

For instance;

Even though five names may be registered with the same adress,

we cannot conclude that the houshold has at least 5 members.

In order to make such inference we must;

explicitly state which names denote different objects,

with owl:differentFrom,

more about this later in lecture 7.
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RDF semantics—main features

Take aways

1 Model-theoretic semantics yields an unambigous notion of entailment,

2 which is necessary in order to liberate data from applications.
3 RDF semantics has two important characteristics:

1 Open world semantics, and
2 the double interpretation of properties

4 The double interpretation of properties
1 makes RDFS and OWL definable in RDF, but
2 makes RDF entailment undecidable in the general case.

5 Open world semantics

is required by the open nature of the Web,
but makes classical negation of little use in queries.
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RDF semantics—main features

Supplementary reading

RDF semantics:

http://www.w3.org/TR/rdf-mt/

The metamodelling architecture of Web Ontology Languages:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.22.7263

On closed world reasoning in SPARQL:

http://clarkparsia.com/pellet/icv
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