
INF3580 – Semantic Technologies – Spring 2010
Lecture 6: RDFS and RDFS design patterns

Audun Stolpe

2nd March 2010

Department of
Informatics

University of
Oslo

Today’s Plan

1 Inference rules

2 RDFS basics

3 RDFS design patterns

4 Domains, ranges and open worlds

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 2 / 47

Inference rules

Outline

1 Inference rules

2 RDFS basics

3 RDFS design patterns

4 Domains, ranges and open worlds

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 3 / 47

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a model-theoretic semantics for RDF:

we specified in a mathematically precise way

when a triple is true according to a given graph,
and when one graph is entailed by another.

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

functions,
variables, and
relations.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 4 / 47

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly
is to be implemented.

Much less does it provide an algorithmic means for
computing it, that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all models would have to be considered.
But as there are always infinitely many such interpretations,
and an algorithm is a finite object
this is impossible.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 5 / 47

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, calculation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to
checking all models

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 6 / 47

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work like chopsticks:

One proves that,

I. every conclusion derivable in the calculus from a set of premises A, is
true in all models that satisfy A

II. and conversely that every statement entailed by A-models is derivable
in the calculus when the elements of A are used as premises.

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 7 / 47

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms that represent unquestioned postulates,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion (obviously).

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 8 / 47

Inference rules

Describing models

Given soundness and completeness of a calculus wrt a semantics:

the axioms are true in all models (aka valid in the class), and

P is entailed by all models satisfying P1, . . . ,Pn

In other words,

the calculus may be considered a description of the models:

P1, . . . ,Pn-models in which P is false are, for instance, disallowed.

The calculus thus fixes the basic structure of the world

as one chooses to see it

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 9 / 47

Inference rules

RDFS axiomatic triples (excerpt)

RDFS axiomatics

Only resources have types:

rdf:type rdfs:domain rdfs:Resource .

Domains apply only to properties:

rdfs:domain rdfs:domain rdf:Property .

Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .

Only properties are subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes are subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 10 / 47

Inference rules

Inference in the concrete

In a Semantic Web context, inference always means,

adding triples,

More specifically it means,

adding new triples to an RDF store (broadly construed),

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store”

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 11 / 47

Inference rules

Studying RDFS through inference rules

In this lecture we shall

study RDFS by example,

by switching from the semantic point of view,

to the RDFS inference rules given in the RDFS specification.

All these rules are sound wrt to RDFS semantics, hence

They will never produce incorrect conclusions

However, as it happens they are not complete, that is

the calculus will not give you all semantically licensed conclusions.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 12 / 47

Inference rules

RDFS incompleteness

The RDFS incompleteness is manifest in certain cases of

domain and range reasoning.

It is important to be aware of which ones and why, because

they are quite innocuous looking reasoning patterns,

that it would otherwise be natural to trust.

Nevertheless, RDFS reasoners usually do not implement them, so

one may easily end up spending hours trying to fix,

something that isn’t really broken (just badly specified).

We shall see in lecture 7 that these flaws do not carry over to OWL.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 13 / 47

RDFS basics

Outline

1 Inference rules

2 RDFS basics

3 RDFS design patterns

4 Domains, ranges and open worlds

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 14 / 47

RDFS basics

RDFS in a nutshell

RDFS has often been thought of as a schema language for RDF.

For reasons I shall come back to, this is a habit to suspend,

at least if a RDF schema is thought of in analogy to, say, a DTD,
as something that limits the set of valid documents.

RDFS is best thought of as simple system for reasoning about types,

that is, as a simple ontology language.

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The beetle is a car, and a car is a motorised vehicle, so ...”

II. Property inheritance:

“Martin lectures at Ifi, and anyone who does so is employed by Ifi, so
...”

III. Domain and range reasoning:

“Only people have birth certificates. Martin has one, therefore ...”

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 15 / 47

RDFS basics

Concepts in the RDFS datamodel

Corresponding vocabulary items

RDFS classes:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf)

RDFS properties

rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Concept inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 16 / 47

RDFS basics

Talking about sets and relations

Thus RDFS is about sets and relations:

Nodes are grouped into rdfs:Classes.
One class may be an rdfs:subClassOf another.
Edges are grouped into rdf:Properties.
Properties may be given rdfs:domains and rdfs:ranges

Figure: Domains and ranges of a relation

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 17 / 47

RDFS basics

contd.

Finally,

a property may be a rdfs:subPropertyOf another.

Stated plainly RDFS is thus

a simple language for defining class and property taxonomies,

that is, for defining simple hierarchies of concepts and relations,

with the ability to interconnect the two by domains and ranges.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 18 / 47

RDFS basics

An RDFS knowledge base

RDFS ontology layer RDF data layer

Relations Concepts

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 19 / 47

RDFS basics

Things to note

This is not an entirely accurate depiction, since

there is no clear distinction between data and ontology in RDFS.

This is due to the non-extensional semantics of RDFS:

Remember;

Properties may act both as objects and relations, and

classes may act both as objects and sets,

in effect blurring the line.

Nevertheless, this tends to be a convenient way to think about it.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 20 / 47

RDFS design patterns

Outline

1 Inference rules

2 RDFS basics

3 RDFS design patterns

4 Domains, ranges and open worlds

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 21 / 47

RDFS design patterns

First pattern: Type propagation with rdfs:subClassOf

The type propagation rules apply

to combinations of rdf:type, rdfs:subClassOf and rdfs:Class,

and trigger recursive inheritance in a class taxonomy.

Type propagation rules:

Membership abstraction:

u rdfs:subClassOf x . v rdf:type u .
rdfs9v rdf:type x .

Reflexivity of subsumption:

u rdf:type rdfs:Class .
rdfs10u rdfs:subClassOf u .

Transitivity of subsumption:

u rdfs:subClassOf v . v rdfs:subClassOf x .
rdfs11u rdfs:subClassOf x .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 22 / 47

RDFS design patterns

Example

RDFS ontology:

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:Vertebrate rdf:type rdfs:Class .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

RDF facts:

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal .

ex:Keiko rdf:type ex:Vertebrate .

and, ex:Keiko rdf:type rdfs:Resource . (from the axiomatic triples).

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 23 / 47

RDFS design patterns

A typical taxonomy

Vertebrate

Reptile

Crocodilia

Amphibian

Salamander

Mammal

Bat Whale

KillerWhale

Figure: A typical taxonomy

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 24 / 47

RDFS design patterns

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depend on certain combinations of

rdfs:subPropertyOf,
rdf:type, and
rdf:Property

Rules for property reasoning:

Transitivity:

u rdfs:subPropertyOf v . v rdfs:subPropertyOf x .
rdfs5u rdfs:subPropertyOf x .

Reflexivity:

u rdf:type rdf:Property .
rdfs6u rdfs:subPropertyOf u .

Property transfer:

p rdfs:subPropertyOf p’ . u p v .
rdfs7u p’ v .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 25 / 47

RDFS design patterns

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources

For instance:

Suppose that a legacy bibliography system S uses author, where

another system T uses writer

And suppose we wish to integrate S and T under a common scheme,

For instance Dublin Core

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 26 / 47

RDFS design patterns

Solution

RDFS Ontology:

writer rdf:type rdf:Property .

author rdf:type rdf:Property .

author rdfs:subPropertyOf dcterms:creator .

writer rdfs:subPropertyOf dcterms:creator .

Effects:

Any individual for which author or writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the RDFS engine,

instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 27 / 47

RDFS design patterns

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

profAt (professorship at),

tenAt (tenure at),

conTo (contracts to),

funBy (is funded by) ,

recSchol (receives scholarship from).

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 28 / 47

RDFS design patterns

Organising the properties

empBy

permEmp

tenAt

profAt

tempEmp

fundBy

recSchol

conTo

Figure: A hierarchy of employment relations

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 29 / 47

RDFS design patterns

Querying the inferred model

Formalising the tree:

:profAt rdf:type rdfs:Property .

:tenAt rdf:type rdfs:Property .

:profAt rdfs:subPropertyOf :tenAt

..... and so forth.

Given a data set such as:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Martin :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 30 / 47

RDFS design patterns

cont.

We may now query on different levels of abstraction :

Aggregating employment relations

SELECT ?temp ?perm ?all WHERE {
?temp :tempEmp :x .
?perm :permEmp :y .
?all :empBy :z .

}

And get different aggregates in return:

all perm temp
Arild Arild
Jenny Jenny
Martin Martin
Audun Audun
Trond Trond

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 31 / 47

RDFS design patterns

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for damain and range reasoning :

Typing first coordinates:

p rdfs:domain u . x p y .
rdfs2x rdf:type u .

Typing second coordinates:

p rdfs:range u . x p y .
rdfs2y rdf:type u .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 32 / 47

RDFS design patterns

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever is linked to anything by p,
must be an object of type C,
wherefore an application of p suffices to type that resource.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 33 / 47

RDFS design patterns

Example I: Combining domain, range and subClassOf

Suppose we have a class tree that includes:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

:OsloPhilharmonic :conductor :Saraste .

we may infer;

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type :Ensemble .

:Saraste rdf:type :Person .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 34 / 47

RDFS design patterns

Conductors and ensembles

rdfs:Resource

:Person :Ensemble

:conductor :SymphonyOrchestra

rdf
s:s

ubC
las

sOf
rdfs:subClassOf

r
d
f
s
:
s
u
b
C
l
a
s
s
O
f

rdfs:domain

r
d
f
s
:
r
a
n
g
e

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 35 / 47

RDFS design patterns

Example II: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Martin :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :contractsTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :contractsTo:

:freelancer rdf:type rdfs:Class .
:contractsTo rdfs:domain :Freelancer .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 36 / 47

RDFS design patterns

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:contractsTo rdfs:domain :Freelancer . :Martin :contractsTo :OLF .
rdfs2

:Martin rdf:type :Freelancer

and may be used as a type in SPARQL (reasoner presupposed):

Finding the freelancers

SELECT ?freelancer WHERE {
?freelancer rdf:type :Freelancer .

}

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 37 / 47

RDFS design patterns

A conspicuous non-pattern

Suppose we elaborate on our music example in the following way:

rdfs:Resource

:Person :Ensemble

:x :SymphonyOrchestra

:conductor

rdfs:domain

r
d
f
s
:
r
a
n
g
e

rdfs:subPropertyOf

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 38 / 47

RDFS design patterns

The incompleteness of RDFS

That is:

We make :conductor a subproperty of :x,

:x is a generic relation between people and orchestras,

to be used whenever we want the associated restrictions.

We would then want to be able to reason as follows (names abbreviated):

:Oslo :vis :Abadi . :vis rdfs:subProp :x .
rdfs7

:Oslo :x :Abadi . :x rdfs:domain :Person
rdfs2

:Abadi rdfs:type :Person

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 39 / 47

RDFS design patterns

Contd.

However, we cannot use rdfs2 and rdfs7 in this way,

since it requires putting a blank in predicate position,

which is not legitimate RDF.

Hence, the conclusion is not derivable.

Nevertheless,

this really is a semantically valid inference,

... you are hereby encouraged to check this for yourself,

whence the RDFS rules are incomplete wrt. RDFS semantics.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 40 / 47

RDFS design patterns

Assessing the situation

RDFS reasoners usually implement only the standardised incomplete rules,
so

they do not guarantee complete reasoning.

Better therefore;

if all you need is the three RDFS reasoning patterns,

to use OWL and OWL reasoners instead.

Unless, of course

you need to talk about properties and classes as objects,

that is, you need the meta-modelling facilities of RDFS,

but people rarely do.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 41 / 47

Domains, ranges and open worlds

Outline

1 Inference rules

2 RDFS basics

3 RDFS design patterns

4 Domains, ranges and open worlds

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 42 / 47

Domains, ranges and open worlds

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger
inconsistencies.

This is due to the open world semantics of RDFS.

Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .
:Turangalila :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:

i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

Then if the closed world assumption were adopted,

it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Turangalila :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 43 / 47

Domains, ranges and open worlds

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency, therefore

but rather just add the missing information

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 44 / 47

Domains, ranges and open worlds

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred,
It is in this respect more like a database schema,
which declares what joins are possible,
but makes no statement about the validity of the joined data.
Note though, that validation functionality beyond RDFS is often
implemented in RDFS reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Martin rdf:type ex:Smoker .,
ex:Martin rdf:type ex:NonSmoker .

are not inconsistent.
(It is not possible to in RDFS to say that ex:Smoker and
ex:nonSmoker are disjoint).

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 45 / 47

Domains, ranges and open worlds

Expressive limitations of RDFS

Hence,

RDFS cannot express inconsistencies,

so any RDFS graph is consistent.

Therefore,

RDFS supports no reasoning services that require
consistency-checking.

If consistency-checks are needed, one must turn to OWL.

More about that in the next lecture.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 46 / 47

Domains, ranges and open worlds

Supplementary reading

For RDFS design patterns:

Semantic Web for the Working Ontologist.
Allemang, Hendler.
Morgan Kaufmann 2008
Read chapter 6.

For RDFS semantics:

Read chapter 3.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March 47 / 47

	Inference rules
	RDFS basics
	RDFS design patterns
	Domains, ranges and open worlds

