INF3580 — Semantic Technologies — Spring 2010
Lecture 6: RDFS and RDFS design patterns

Audun Stolpe

2nd March 2010

DEPARTMENT OF NIVERSITY OF

c INFORMATICS

Inference rules

Outline

@ Inference rules

T
Today's Plan

© Inference rules
© RDFS basics
© RDFS design patterns

@ Domains, ranges and open worlds

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a model-theoretic semantics for RDF:
@ we specified in a mathematically precise way

o when a triple is true according to a given graph,
o and when one graph is entailed by another.

Model-theoretic semantics is well-suited for
@ studying the behaviour of a logic, since

@ it is specified in terms of familiar mathematical objects, such as

e functions,
e variables, and
e relations.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

INF3580 :: Spring 2010 Lecture 6 :: 2nd March



Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,
@ But it isn't easy to read off from it what exactly
is to be implemented.

@ Much less does it provide an algorithmic means for
computing it, that is

e for actually doing the reasoning,

@ In order to directly use the model-theoretic semantics,

in principle all models would have to be considered.

But as there are always infinitely many such interpretations,
and an algorithm is a finite object

this is impossible.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is
@ on its concrete grammatical structure,
@ without recurring to interpretations,

@ syntactic reasoning is, in other words, calculation.
Interpretations still figure as the theoretical backdrop, as one typically

@ strives to define syntactical methods that are provably equivalent to
checking all models

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work like chopsticks:

@ One proves that,

|. every conclusion derivable in the calculus from a set of premises A, is
true in all models that satisfy A
[I. and conversely that every statement entailed by A-models is derivable
in the calculus when the elements of A are used as premises.

We say that the calculus is

@ sound wrt the semantics, if (1) holds, and

@ complete wrt the semantics, if (II) holds.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Inference rules

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms that represent unquestioned postulates,

@ and a set of inference rules for generating new statements.

The general form of an inference rule is:

@ the P; are premises

@ and P is the conclusion.

An inference rule may have,
@ any number of premises (typically one or two),

@ but only one conclusion (obviously).

INF3580 :: Spring 2010

Lecture 6 :: 2nd March




Inference rules

Describing models

Given soundness and completeness of a calculus wrt a semantics:
@ the axioms are true in all models (aka valid in the class), and
@ P is entailed by all models satisfying Py, ..., P,

In other words,

@ the calculus may be considered a description of the models:

@ The calculus thus fixes the basic structure of the world
e as one chooses to see it

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Inference rules

Inference in the concrete

In a Semantic Web context, inference always means,
@ adding triples,
More specifically it means,

@ adding new triples to an RDF store (broadly construed),

@ on the basis of the triples already in it.

From this point of view a rule

may be read as an instruction;

@ "If Pi,..., P, are all in the store, add P to the store”

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

@ Py,...,P,-models in which P is false are, for instance, disallowed.

Inference rules

RDFS axiomatic triples (excerpt)

RDFS axiomatics
@ Only resources have types:
rdf:type rdfs:domain rdfs:Resource .
@ Domains apply only to properties:

rdfs:domain rdfs:domain rdf:Property .

@ Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .
@ Only properties are subproperties:

rdfs:subProperty0f rdfs:domain rdf:Property .
@ Only classes are subclasses:

rdfs:subClass0f rdfs:domain rdfs:Class .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Inference rules

Studying RDFS through inference rules

In this lecture we shall

@ study RDFS by example,
@ by switching from the semantic point of view,

o to the RDFS inference rules given in the RDFS specification.
All these rules are sound wrt to RDFS semantics, hence

@ They will never produce incorrect conclusions
However, as it happens they are not complete, that is

@ the calculus will not give you all semantically licensed conclusions.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March




Inference rules

RDFS incompleteness

The RDFS incompleteness is manifest in certain cases of
@ domain and range reasoning.
It is important to be aware of which ones and why, because

@ they are quite innocuous looking reasoning patterns,

@ that it would otherwise be natural to trust.
Nevertheless, RDFS reasoners usually do not implement them, so

@ one may easily end up spending hours trying to fix,

@ something that isn't really broken (just badly specified).

We shall see in lecture 7 that these flaws do not carry over to OWL.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

RDFS basics

RDFS in a nutshell

RDFS has often been thought of as a schema language for RDF.
@ For reasons | shall come back to, this is a habit to suspend,
e at least if a RDF schema is thought of in analogy to, say, a DTD,
e as something that limits the set of valid documents.
@ RDFS is best thought of as simple system for reasoning about types,
@ that is, as a simple ontology language.
RDFS supports three principal kinds of reasoning pattern:
I. Type propagation:
o "“The beetle is a car, and a car is a motorised vehicle, so ..."
[I. Property inheritance:

e “Martin lectures at Ifi, and anyone who does so is employed by Ifi, so

[1l. Domain and range reasoning:
e "“Only people have birth certificates. Martin has one, therefore ..."

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

RDFS basics

Outline

© RDFS basics

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

RDFS basics

Concepts in the RDFS datamodel

Corresponding vocabulary items
@ RDFS classes:

e rdfs:Resource: The class of resources, everything.
e rdfs:Class: The class of classes.
e rdf:Property: The class of properties (from rdf)

@ RDFS properties

rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClass0f: Concept inclusion.
rdfs:subProperty0f: Property inclusion.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March




Talking about sets and relations

Thus RDFS is about sets and relations:

@ Nodes are grouped into rdfs:Classes.

@ One class may be an rdfs:subClassOf another.

@ Edges are grouped into rdf :Properties.

@ Properties may be given rdfs:domains and rdfs:ranges

INF3580 :: Spring 2010

Lecture 6 :: 2nd March

contd.

Finally,
@ a property may be a rdfs:subProperty0f another.
Stated plainly RDFS is thus

@ a simple language for defining class and property taxonomies,
@ that is, for defining simple hierarchies of concepts and relations,

@ with the ability to interconnect the two by domains and ranges.

RDFS basics

An RDFS knowledge base

P AN
S e e

®
\ ﬁ

\
— RDFS ontology layer. === RDF data layer

Lecture 6 :: 2nd March

INF3580 :: Spring 2010

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Things to note

This is not an entirely accurate depiction, since

@ there is no clear distinction between data and ontology in RDFS.

@ This is due to the non-extensional semantics of RDFS:

Remember;
@ Properties may act both as objects and relations, and
@ classes may act both as objects and sets,
@ in effect blurring the line.

Nevertheless, this tends to be a convenient way to think about it.

Lecture 6 :: 2nd March

INF3580 :: Spring 2010




Outline

© RDFS design patterns

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

First pattern: Type propagation with rdfs:subClass0f

The type propagation rules apply

@ to combinations of rdf:type, rdfs:subClass0f and rdfs:Class,
@ and trigger recursive inheritance in a class taxonomy.

Type propagation rules:
@ Membership abstraction:

u rdfs:subClass0f x . v rdf:type u .
v rdf:type x .

rdfs9

@ Reflexivity of subsumption:

u rdf:type rdfs:Class
u rdfs:subClassOf u .

rdfs10
@ Transitivity of subsumption:

u rdfs:subClassO0f v . v rdfs:subClass0f x .
u rdfs:subClassOf x .

rdfsll

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Example

RDFS ontology:

ex:KillerWhale rdf:type rdfs:Class .
ex:Mammal rdf:type rdfs:Class .
ex:Vertebrate rdf:type rdfs:Class .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Mammal rdfs:subClass0f ex:Vertebrate .

RDF facts:
ex:Keiko rdf:type ex:KillerWhale .
Inferred triples:
ex:Keiko rdf:type ex:Mammal .
ex:Keiko rdf:type ex:Vertebrate .

and, ex:Keiko rdf:type rdfs:Resource . (from the axiomatic triples).

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

A typical taxonomy

Vertebrate
Reptile Amphibian Mammal
Crocodilia Salamander Bat Whale

KillerWhale

Figure: A typical taxonomy

INF3580 :: Spring 2010 Lecture 6 :: 2nd March




Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depend on certain combinations of
@ rdfs:subProperty0f,
@ rdf:type, and
@ rdf:Property

Rules for property reasoning:

@ Transitivity:

u rdfs:subProperty0f v . v rdfs:subProperty0f x .

u rdfs:subProperty0f x .

rdfsb

@ Reflexivity:

u rdf:type rdf:Property .
u rdfs:subProperty0f u .

rdfs6

@ Property transfer:

p rdfs:subProperty0f p’ . upv .

rdfs7

up’v.

INF3580 :: Spring 2010

Lecture 6 :: 2nd March

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:
@ Harmonisation of the data under a common vocabulary.
The aim is to

@ make similar data answer to the same standardised queries,

@ thus making queries independent of the terminology of the sources
For instance:

@ Suppose that a legacy bibliography system S uses author, where

@ another system T uses writer

And suppose we wish to integrate S and T under a common scheme,

@ For instance Dublin Core

Solution

RDFS Ontology:

writer rdf:type rdf:Property .
author rdf:type rdf:Property .
author rdfs:subProperty0f dcterms:creator .

writer rdfs:subProperty0f dcterms:creator .
Effects:

Any individual for which author or writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the RDFS engine,
instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

INF3580 :: Spring 2010

Lecture 6 :: 2nd March

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

e for tenured positions (professors, assisting professors, lecturers),
e for research associates (Post Docs),
@ for PhD students,

e for subcontracting.
Employer/employee information can be read off from properties such as:

@ profAt (professorship at),
tenAt (tenure at),

funBy (is funded by) ,

°
e conTo (contracts to),

°

@ recSchol (receives scholarship from).

INF3580 :: Spring 2010 Lecture 6 :: 2nd March




RDFS design patterns

Organising the properties

empBy
permEmp tempEmp
tenAt fundBy conTo
profAt recSchol

Figure: A hierarchy of employment relations

Lecture 6 :: 2nd March

INF3580 :: Spring 2010

RDFS design patterns

cont.

We may now query on different levels of abstraction :

Aggregating employment relations
SELECT ?temp 7perm 7all WHERE {
7temp :tempEmp _:x .
?perm :permEmp _:y
7all :empBy _:z
3

And get different aggregates in return:

all perm | temp
Arild Arild

Jenny | Jenny
Martin Martin
Audun Audun
Trond Trond

Lecture 6 :: 2nd March

INF3580 :: Spring 2010

RDFS design patterns

Querying the inferred model

Formalising the tree:
:profAt rdf:type rdfs:Property
:tenAt rdf:type rdfs:Property .

:profAt rdfs:subProperty0f :tenAt
and so forth.

Given a data set such as:
:Arild :profAt :UiO .
:Audun :fundBy :UiO .
:Martin :conTo :0LF .
:Trond :recSchol :BI .
:Jenny :tenAt :SSB .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

RDFS design patterns

Third pattern: Typing data based on their use

Triggered by combinations of
@ rdfs:range
@ rdfs:domain

@ rdf:type
Rules for damain and range reasoning :

@ Typing first coordinates:

p rdfs:domain u . XPy -
- rdfs2
x rdf:type u .

@ Typing second coordinates:

p rdfs:range u . Xpy .
y rdf:type u . rdfs2

Lecture 6 :: 2nd March

INF3580 :: Spring 2010




RDFS design patterns

Domain and range contd.

@ rdfs:domain and rdfs:range tell us how a property is used.

@ rdfs:domain types the possible possible subjects of these triples,
@ whereas rdfs:range types the possible objects,

@ When we assert that property p has domain C, we are saying

RDFS design patterns

Example |: Combining domain, range and subClass0f

Suppose we have a class tree that includes:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

e that whatever is linked to anything by p,
e must be an object of type C,
e wherefore an application of p suffices to type that resource.

:0sloPhilharmonic :conductor :Saraste
we may infer;

:0sloPhilharmonic rdf:type :SymphonyOrchestra .
:0sloPhilharmonic rdf:type :Ensemble .

:Saraste rdf:type :Person .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March / INF3580 :: Spring 2010

Lecture 6 :: 2nd March

RDFS design patterns RDFS design patterns

Conductors and ensembles Example |I: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Martin :conTo :0LF .

:Person :Ensemble
:Trond :recSchol :BI .

“
o

& a :Jenny :tenAt :SSB .

8 S

H Q . .

a E and suppose we wish to filter out everyone but the freelancers:

o @

~ 0 . .
b= @ State that only freelancers : contractsTo an organisation,
N~

_\ rdfs:domain @ i.e. introduce a class :Freelancer,
:conductor :SymphonyOrchestra

@ and declare it to be the domain of :contractsTo:

:freelancer rdf:type rdfs:Class .
:contractsTo rdfs:domain :Freelancer .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March INF3580 :: Spring 2010

Lecture 6 :: 2nd March



RDFS design patterns

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:contractsTo rdfs:domain :Freelancer . :Martin :contractsTo :OLF . rdfs2
:Martin rdf:type :Freelancer

and may be used as a type in SPARQL (reasoner presupposed):

Finding the freelancers

SELECT ?freelancer WHERE {
7?freelancer rdf:type :Freelancer

}

Lecture 6 :: 2nd March

INF3580 :: Spring 2010

RDFS design patterns

A conspicuous non-pattern

Suppose we elaborate on our music example in the following way:

rdfs:Resource

:Ensemble

:Person

rdfs:range

rdfs:domain

:SymphonyOrchestra

L
drs o
ubpr°Perty0f

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

RDFS design patterns

The incompleteness of RDFS

That is:
@ We make :conductor a subproperty of _:x,
@ _:x is a generic relation between people and orchestras,
@ to be used whenever we want the associated restrictions.

We would then want to be able to reason as follows (names abbreviated):

:0slo :vis :Abadi . :vis rdfs:subProp _:x .
:0slo _:x :Abadi . rdfs7 _:x rdfs:domain :Person

rdfs2 :Abadi rdfs:type :Person

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

RDFS design patterns

Contd.

@ However, we cannot use rdfs2 and rdfs7 in this way,
@ since it requires putting a blank in predicate position,
@ which is not legitimate RDF.

@ Hence, the conclusion is not derivable.

Nevertheless,

@ this really is a semantically valid inference,
@ ... you are hereby encouraged to check this for yourself,
@ whence the RDFS rules are incomplete wrt. RDFS semantics.

Lecture 6 :: 2nd March

INF3580 :: Spring 2010




RDFS design patterns

Assessing the situation

RDFS reasoners usually implement only the standardised incomplete rules,
so

@ they do not guarantee complete reasoning.
Better therefore;

@ if all you need is the three RDFS reasoning patterns,
@ to use OWL and OWL reasoners instead.
Unless, of course
@ you need to talk about properties and classes as objects,
@ that is, you need the meta-modelling facilities of RDFS,

@ but people rarely do.

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Domains, ranges and open worlds

Gentle RDFS

@ However, the statements in an RDFS ontology never trigger
inconsistencies.

@ This is due to the open world semantics of RDFS.
@ Example: Say we have the following triples;

:isRecordedBy rdfs:range :0Orchestra .
:Turangalila :isRecordedBy :Boston .

@ Suppose now that Boston is not defined to be an Orchestra:

@ Then if the closed world assumption were adopted,
@ it would follow that :Boston is not an :0rchestra,

@ which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Turangalila :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :0Orchestra .

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Recall that RDF Schema was conceived of as a schema language for RDF.

@ i.e, there is no triple :Boston rdf:type :0rchestra . in the data.

Domains, ranges and open worlds

Outline

@ Domains, ranges and open worlds

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Domains, ranges and open worlds

Contd.

Instead;
@ RDFS infers a new triple.
@ More specifically it adds :Boston rdf:type :0rchestra .
@ which is precisely what rdfs7 is designed to do.
This is open world reasoning in action:
Instead of saying “l know that :Boston is not an :0Orchestra”,
RDFS says “:Boston is an :0rchestra, | just didn't know it."

RDFS will not signal an inconsistency, therefore

but rather just add the missing information

INF3580 :: Spring 2010 Lecture 6 :: 2nd March




Ramifications

This fact has two important consequences:
@ RDFS is useless for validation,
@ ... understood as sorting conformant from non-conformant documents,
@ since it never signals an inconsistency in the data,
e it just goes along with anything,
e and adds triples whenever they are inferred,
e It is in this respect more like a database schema,
e which declares what joins are possible,
e but makes no statement about the validity of the joined data.
e Note though, that validation functionality beyond RDFS is often
implemented in RDFS reasoners.
@ RDFS has no notion of negation at all
e For instance, the two triples
ex:Martin rdf:type ex:Smoker .,
ex:Martin rdf:type ex:NonSmoker .
are not inconsistent.

o (It is not possible to in RDFS to say that ex:Smoker and
ex:nonSmoker are disjoint).

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

Expressive limitations of RDFS

Hence,
@ RDFS cannot express inconsistencies,
@ so any RDFS graph is consistent.

Therefore,

@ RDFS supports no reasoning services that require
consistency-checking.
@ If consistency-checks are needed, one must turn to OWL.

@ More about that in the next lecture.

Supplementary reading

@ For RDFS design patterns:

Semantic Web for the Working Ontologist.
Allemang, Hendler.
Morgan Kaufmann 2008 oca g
Read chapter 6.

@ For RDFS semantics: Foundations of
Semantic

Read chapter 3. Web *

Technologies

INF3580 :: Spring 2010 Lecture 6 :: 2nd March

INF3580 :: Spring 2010 Lecture 6 :: 2nd March




	Inference rules
	RDFS basics
	RDFS design patterns
	Domains, ranges and open worlds

