T
Today's Plan

INF3580 — Semantic Technologies — Spring 2010

Lecture 7: The Jena Inference system. OWL introduction

Audun Stolpe

9th February 2010

UNIVERSITY OF
OsLo

DEPARTMENT OF

c INFORMATICS

INF3580 :: Spring 2010 Lecture 7 :: 9th February

Jena inference support

Jena inference support

Outline The Jena inference system

semantic web

@ Designed for plug-and-play compatibility with * P
different reasoners. Yjena
@ Different reasoners implement different
axioms and rules, e.g.

e Simple taxonomic reasoning,

o RDFS,

o OWL,

o Rule languages (SWRL, Jena rules. Covered in a later lecture).

@ Three different types of reasoners:

e Built-in reasoners,

o External reasoners (Pellet, Fact++, a. 0.)

o DIG reasoners,
o XML standard for access to description logic processing via HTTP.
o (not covered here)

INF3580 :: Spring 2010 Lecture 7 :: 9th February INF3580 :: Spring 2010 Lecture 7 :: 9th February

Jena inference support Jena inference support

Reasoner factories and the reasoner registry Contd.
@ There is a ReasonerFactory class for each type of reasoner. One can also construct an InfModel in one go
@ It is used to create instances of the associated reasoner. e by using convenience methods on the ModelFactory class
@ Built-in factories are stored in a global ReasonerRegistry class. e e.g. ModelFactory.createRDFSModel (model).
@ Three principal ways to obtain a stand-alone reasoner: e This is typically very simple,

I. Import and use a known factory class,

. : @ but makes it more difficult to configure the reasoner
@ works for built-in and external reasoners alike

II. use a convenience method on the registry ModelFactory also has convience methods that return an OntModel

[1l. retrieve a reasoner from the registry using the reasoners URI index the OntModel class is a subclass of InfModel

@ suitable for built-in reasoners has a richer API

The reasoner can then be applied to a model,
e to produce an InfModel,
e by applying the reasoner to a plain Model,
e using ModelFactory.createInfModel (reasoner, model)

°
@ and can be configured with an OntModelSpec parameter
°

by calling ModelFactory.createOntologyModel (param, model).

INF3580 :: Spring 2010 Lecture 7 :: 9th February INF3580 :: Spring 2010 Lecture 7 :: 9th February

Outline Built-in reasoners

Included in the Jena distribution are a number of predefined reasoners:

Transitive reasoner: Provides support for simple taxonomy traversal.

@ Implements only the reflexivity and transitivity of

e rdfs:subProperty0f, and
e rdfs:subClassOf.

RDFS rule reasoner: Supports most of the axioms and inference rules
specific to RDFS.

OWL, OWL mini/micro reasoners: Implementations of different subsets
of OWL (Lite).

Generic rule reasoner: A rule-based reasoner that supports user defined
rules.

INF3580 :: Spring 2010 Lecture 7 :: 9th February / INF3580 :: Spring 2010 Lecture 7 :: 9th February

Using the built-in reasoners Using the built-in reasoners

Using convenience methods on ModelFactory Building an InfModel in two steps

The convenience methods on the previous slide builds an InfModel in one
go.
@ We may also build it in the following manner:
I. Obtain a reasoner first,
[I. Construct a Model object (that is, an RDF graph)

[Il. pass the reasoner and the model (possibly more than one) to
ModelFactory.createInfModel

Creating a simple RDFSModel

Model sche = FileManager.get () .LoadModel (aURI) ;
Model dat = FileManager.get () .LoadModel (bURI) ;

InfModel inferredModel = ModelFactory.createRDFSModel (sche, dat);

o createRDFSModel () returns an InfModel. Reasoners are returned by static convenience methods on the registry:

@ An InfModel supports access to basic inference capability, such as; ReasonerRegistry.getOWLMicroReasoner (),

getDeductionsModel () which returns the inferred triples,
getRawModel () which returns the base triples,
getReasoner () which returns the RDFS reasoner,

°
@ ReasonerRegistry.getOWLMiniReasoner(),
°
getDerivation(stmt) which returns the derivation of stmt. ® ReasonerRegistry.getRDFSReasoner (),
°
°

ReasonerRegistry.getOWLReasoner (),

ReasonerRegistry.getRDFSSimpleReasoner (),

ReasonerRegistry.getTransitiveReasoner ()

INF3580 :: Spring 2010 Lecture 7 :: 9th February INF3580 :: Spring 2010 Lecture 7 :: 9th February

contd. Accessing all built-in reasoners

@ There are other built-in reasoners than those

using ModelFactory.createInfModel that are accessible through
Model sche = FileManager.get () .LoadModel (aURI) ; e the convenience methods on ModelFactory,
Model dat = FileManager.get () .LoadModel (bURI) ; e and on ReasonerRegistry,

e for instance the GenericRuleReasoner.
Reasoner reas = ReasonerRegistry.getOWLReasoner();

All reasoners can be looked up in the registry.
InfModel inf = ModelFactory.createInfModel (reas, sche, dat); P SIstry

The ReasonerRegistry stores factory instances indexed by URIs.

This abstract two-step procedure will be the default, since; Reasoners can be retrieved using these indexes

@ we retain a reference to the reasoner, by registry.create(reasonerURI, param)

where param is a configuration parameter,
of type Resource,

but it doesn't do much,

and is usually replaced with null.

@ that can be used for configuration.

@ And since it is suitable for built-in and external reasoners alike

INF3580 :: Spring 2010 Lecture 7 :: 9th February / INF3580 :: Spring 2010 Lecture 7 :: 9th February

Using the built-in reasoners

Inspecting the registry

Obtaining an inventory

Get the single global instance of the registry:
ReasonerRegistry reg = ReasonerRegistry.theRegistry();
Return a description of all reasoners in the form of an RDF graph:

Model m = reg.getAllDescriptions();

Querying the inventory

PREFIX jr: <http://jena.hpl.hp.com/2003/JenaReasoner#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT 7reasoner ?7desc WHERE {

?reasoner rdf:type jr:ReasonerClass

?reasoner jr:description 7desc

INF3580 :: Spring 2010 Lecture 7 :: 9th February

Using the built-in reasoners

Richer models with OntModel

@ InfModels do not enhace the Model API as such,

@ they only provide basic functionality associated with the reasoner.

An OntModel on the other hand

@ |t supplies methods such as

o createCardinalityRestriction,
e createSymmetricProperty,
o createRestriction

@ Correspond to language constructs in OWL.

@ Required for manipulation of ontologies.

INF3580 :: Spring 2010 Lecture 7 :: 9th February

@ Provides a better view of a Model known to contain ontology data.

Using the built-in reasoners

InfModels by lookup

Reasoners and descriptions

reasoner desc

jr:DIGReasoner " Adapter for external (i.e. non-Jena) DIG reasoner”
jr:GenericRuleReasoner " Generic rule reasoner, configurable”
jr:0WLFBRuleReasoner " Experimental OWL reasoner. Can separate tbox ..."
jr:0WLMiniFBRuleReasoner " Experimental mini OWL reasoner. Can separate tbox .."”
jr:0WLMicroFBRuleReasoner " Experimental mini OWL reasoner. Can separate .."
jr:TransitiveReasoner " Provides reflexive-transitive closure of subClassOf ..."
jr:RDFSExptRuleReasoner " Complete RDFS implementation supporting ..."
jr:DAMLMicroReasonerFactory | "RDFS rule set with small extensions to support DAML"

Retrieveing a reasoner by URI

ReasonerRegistry reg = ReasonerRegistry.theRegistry();
Reasoner r = reg.create("jr:0WLFBRuleReasoner", null);

InfModel inf = ModelFactory.createInfModel(r, sche, dat);

INF3580 :: Spring 2010 Lecture 7 :: 9th February

Using the built-in reasoners

contd.

An OntModel does not by itself compute a deductive extension

It is just an APIL.

However, it may obviously be hooked up with a reasoner.
Again we pass a message to ModelFactory,

only this time we do not supply a reasoner as an argument,
rather we supply a model specification,

which is an OntModelSpec object,

that encapsulates a description of OntModel components;

e the storage scheme,
e language profile,
e and the reasoner

@ It is thus quite flexible and extensible.

INF3580 :: Spring 2010 Lecture 7 :: 9th February

Using the built-in reasoners Using the built-in reasoners

Some specs from OntModelSpec Creating OntModels with ModelFactory

The class OntModelSpec contains static descriptive fields:

OWL _DL_MEM RDFS_INF: A specification for OWL DL models that are

stored in memory and use the RDFS inferencer for additional
entailments.

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_DL_MEM) ;
OntModel model = ModelFactory.createOntologyModel (spec, model) ;

Note:
OWL_LITE_MEM: A specification for OWL Lite models that are stored in

. " . @ Jena currently lags behind a bit, as there is no spec. for OWL 2.
memory and do no entailment additional reasoning. o or any of its profiles

@ Does not mean that one cannot use OWL 2 ontologies with Jena.
If the reasoner handles OWL 2 (as e.g. Pellet does),

then Jena can reason with it (that is, with OWL 2 ontologies),

but there may not be support in the API for all language constructs,

]
(]
e parts of the ontology may not be directly accessible from the code.
o Likely to change with new releases of Jena.

OWL _MEM MICRO RULE_INF: A specification for OWL models that are
stored in memory and use the micro OWL rules inference
engine for additional entailments

OWL_DL_MEM: A specification for OWL DL models that are stored in
memory and do no additional entailment reasoning

INF3580 :: Spring 2010 Lecture 7 :: 9th February

INF3580 :: Spring 2010 Lecture 7 :: 9th February

Using an external reasoner

Outline

Using an external reasoner

Using an external reasoner

External reasoners are are best manipulated directly, that is

@ One goes directly to the FactoryClass,

@ calls the static theInstance() to get
the factory instance,

@ calls the instance's create () method,

@ and gets the associated reasoner in return.

External reasoners can be combined with InfModels and OntModels alike.

INF3580 :: Spring 2010 Lecture 7 :: 9th February

INF3580 :: Spring 2010 Lecture 7 :: 9th February

Using an external reasoner Simple reasoner configuration

contd. Outline

In the former case, things are very simple:

Using Pellet with an InfModel

Reasoner reas = PelletReasonerFactory.theInstance().create();
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

The latter case requires a little more tweaking:

Using Pellet with an OntModel
Reasoner r = PelletReasonerFactory.theInstance().create();
InfModel mod = ModelFactory.createInfModel(r, s, d);
OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_DL_MEM) ;
OntModel ont = ModelFactory.createOntologyModel (spec, mod) ;

INF3580 :: Spring 2010 Lecture 7 :: 9th February

INF3580 :: Spring 2010 Lecture 7 :: 9th February

Simple reasoner configuration Simple reasoner configuration

Configuration in general Specializing the reasoner

Reasoners can be configured in many ways: The simplest way to configure a reasoner is to specialize it:

@ Some can be configured to reason in different directions, that is

e from conclusions to premises (so-called backwards chaining),
e from premises to conclusion (so-called forwards chaining),

e or a mix (so-called hybrid reasoning) @ you want to apply the same schema to several data sets,
@ or to turn transitivity off for properties such as subClassO0f, e without redoing too many intermediate deductions
@ or to log derivations.

@ that is, to bind it to a particular ontology.

This is suitable for situations where,

Binding Pellet to schema
In every case you will need a reference to the reasoner, whence

Reasoner r = PelletReasonerFactory.theInstance().create();
@ it is no longer convenient to use the convenience methods in Reasoner custom = r.bindSchema(schema);

ModelFactory. InfModel inf = ModelFactory.createInfModel (custom, data);

INF3580 :: Spring 2010 Lecture 7 :: 9th February

INF3580 :: Spring 2010 Lecture 7 :: 9th February

A very simple taxonomy Logging derivations

Consider again the RDFS ontology given by: Telling the reasoner to log derivations

ex:KillerWhale a rdfs:Class . Reasoner r = ReasonerRegistry.getRDFSReasoner() ;
ex:Mammal a rdfs:Class . r.setDerivationLogging(true) ;

ex:Vertebrate a rdfs:Class
Printing derivations

PrintWriter out = new PrintWriter(System.out);
StmtIterator it inf.listStatements();

ex:KillerWhale rdfs:subClass0f ex:Mammal

ex:Mammal rdfs:subClass0f ex:Vertebrate

while(it.hasNext()){

And suppose we assert: Statement stat = (Statement) it.next();

for(Iterator id = inf.getDerivation(stat);id.hasNext();){
Derivation deriv = (Derivation) id.next();

Tracing the derivations could be useful for deriv.printTrace(out, true);

}
}

@ automatic explanation.)

ex:Keiko a ex:KillerWhale

@ debugging,

INF3580 :: Spring 2010 Lecture 7 :: 9th February INF3580 :: Spring 2010 Lecture 7 :: 9th February

A sample trace Outline

Rule rdfs9-alt concluded (ex:Keiko rdf:type ex:Vertebrate) <-
Fact (ex:KillerWhale rdfs:subClassOf ex:Vertebrate)
Rule rdfs9-alt concluded (ex:Keiko rdf:type ex:KillerWhale) <-
Fact (ex:KillerWhale rdfs:subClassOf ex:KillerWhale)
Known (ex:Keiko rdf:type ex:KillerWhale) - already shown

INF3580 :: Spring 2010 Lecture 7 :: 9th February / INF3580 :: Spring 2010 Lecture 7 :: 9th February

Quick facts Glimpse ahead: OWL profiles

OWL:
@ Acronym for The Web Ontology Language.

@ OWL has various profiles that correspond to different DLs.
@ These profiles are tailored for specific ends, e.g.

@ Became a W3C reccomendation in 2004. e OWL 2 QL:
@ Enables boolean reasoning over classes and relationships. @ Specifically designed for efficient database integration.
@ Superseded by OWL 2; o OWL 2 EL:

o A lightweight language with polynomial time reasoning.
@ Much used in mediacl informatics (e.g. the GALEN ontology).
The OWL family of languages are based on Description Logics. e OWL 2 RL:

e a backwards compatible extension that adds new capabilities.

DLs have well-understood and attractive computational properties. o Designed for compatibility with rule-based inference tools.

INF3580 :: Spring 2010 Lecture 7 :: 9th February INF3580 :: Spring 2010 Lecture 7 :: 9th February

The ALEC fragment of OWL Semantics
ALEC in DL-notation
7 _ T
ALEC In DL-notation II ; @A
C,D— A | (atomic concept) (-C)F = AT\ (T
T | (universal concept) (cnb)yY = cTnD?
L | (bottom concept) (VR.C)Y = {acAT|Vb(a,b)e RT — be CT}
-C | (atomic negation) (3R.CYY = {ae AT|3b(a,b) e RTAbe CT}
cnbD | (intersection) ‘
VR.C | (va!ue re.strlctlorT)) OWL ontologies in DL-notation
JRr.C | (existential restriction)
‘ Cystic_Fibrosis = Fibrosis M 3locatedIn.Pancreas
Genetic_Fibrosis T Genetic_Disorder
Fibrosis M JlocatedIn.Pancreas T Genetic_Fibrosis

INF3580 :: Spring 2010 Lecture 7 :: 9th February / INF3580 :: Spring 2010 Lecture 7 :: 9th February

Introduction to OWL Introduction to OWL

Some differences from RDFS Existential restrictions

@ Allow us to describe classes in terms of each other.
@ Complex classes can be expressed:

} Cystic_Fibrosis = Fibrosis I dlocatedIn.Pancreas
e C M D corresponds to logical conjunction,

e CU D to logical disjunction, and @ or, more mundanely
e —C to logical negation ProudMother = Woman M 3hasChild . Lawyer

@ Unlike RDFS, OWL is therefore a boolean language. @ hasChild.Lawyer = the set of things that have at least one lawyer
e That is, it has a propositional logic as a fragment. child.

© Full propositional negation facilitates consistency checking. o If a thing has a lawyer child,

e and that thing is a woman,
e then that thing is a proud mother

INF3580 :: Spring 2010 Lecture 7 :: 9th February INF3580 :: Spring 2010

Lecture 7 :: 9th February

Existential restrictions in Turtle syntax Existential restrictions illustrated
concept existential on filler
name quantifier property class
Lawyer children ; ¥ ¢ ¢
o MalePerson & 3 hasGender. MaleGender
[a owl:Restriction; [- e .
owl:onProperty :hasChild: N

Anonymous restriction class

h
P asG@”der
MalePerson %

hasGender

owl:somValuesFrom :Lawyer]

owl:Restriction signals a class description,

MaleGender
owl:somValuesFrom; an existential restriction on a property,

owl:onProperty gives the property

The description is a blank node, since it has no name.

Figure: Existential restrictions

INF3580 :: Spring 2010 Lecture 7 :: 9th February / INF3580 :: Spring 2010

Lecture 7 :: 9th February

Introduction to OWL Introduction to OWL

Horisontal relations between classes Returning to an example
Thing Suppose we assert:
Person Gender 1. :0sloPhilharmonic :conductor :Saraste
/ / \ And we say that
MalePerson FemaleGender MaleGender 2. Orchestra = Jconductor.T N JhasInstrument. T

Then from [1.] we may infer that

3. :0sloPhilharmonic a :0rchestra

hasGender

4. :0sloPhilharmonic :hasInstrument _:x

Figure: Existential restrictions relate classes

INF3580 :: Spring 2010 Lecture 7 :: 9th February INF3580 :: Spring 2010 Lecture 7 :: 9th February

Introduction to OWL Introduction to OWL

A comparison with rdfs:domain Existential restrictions in OntModels

@ Recall that ex:conductor rdfs:domain ex:0Orchestra says that
only orchestras have conductors.

@ We can express this with existential restrictions: .
Implementing the example

Jconductor. T = Orchestra
OntModel m = ModelFactory.createOntologyModel (OntModelSpec.OWL _DL_MEM) ;

@ But we can also express a number finer relationships: OntClass c = m.createClass("ex:Cantor") ;
Choir C dJconductor.T OntClass e = m.createClass("ex:ChurchEnsemble");
Jconductor.Cantor ChurchEnsemble ObjectProperty cond = m.createObjectProperty("ex:conductor");
° h ti lati _| t h oth // null denotes the URI in an anonymous restriction
€ac Ime we are relating classes to €ach other, SomeValuesFromRestriction r = m.createSomeValuesFromRestriction(null, cond, c);
Y Weaving together a fabric of formalized knowledge, Statement stmt = model.createStatement (r,0WL.subClass0f, e);
@ which stores inferences like a battery stores energy. model.add(stut);)
o If we add that More about this later
:MusicaAntiqua :conductor :Savall . (not actually the case)
:Savall a :Cantor (nor is this)
@ then we know that

e :MusicaAntiqua a :ChurchEnsemble . (nope)

INF3580 :: Spring 2010 Lecture 7 :: 9th February / INF3580 :: Spring 2010 Lecture 7 :: 9th February

Supplementary reading

@ The Jena ontology API:
@ Jena Inference Engine user manual:

@ Using a DIG Description Logic reasoner with Jena:

All available from the Jena website.

INF3580 :: Spring 2010 Lecture 7 :: 9th February

	Jena inference support
	Using the built-in reasoners
	Using an external reasoner
	Simple reasoner configuration
	Introduction to OWL

