INF3580 – Semantic Technologies – Spring 2010 Lecture 8: OWL, the Web Ontology Language

Martin Giese

16th March 2010

UNIVERSITY OF OSLO

Today's Plan

1 Reminder: RDFS

- 2 Description Logics
- Introduction to OWL

Outline

2 Description Logics

Introduction to OWL

• RDFS adds the concept of "classes" which are like *types* or *sets* of resources

- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes

- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes
- Defined resources:

- RDFS adds the concept of "classes" which are like *types* or *sets* of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.

- RDFS adds the concept of "classes" which are like *types* or *sets* of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.

- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdf:Property: The class of properties (from rdf)

- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdf:Property: The class of properties (from rdf)
- Defined properties:

- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdf:Property: The class of properties (from rdf)
- Defined properties:
 - rdf:type: relate resources to classes they are members of

- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdf:Property: The class of properties (from rdf)
- Defined properties:
 - rdf:type: relate resources to classes they are members of
 - rdfs:domain: The domain of a relation.

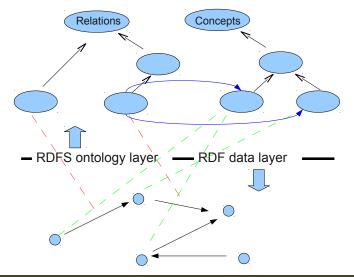
- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdf:Property: The class of properties (from rdf)
- Defined properties:
 - rdf:type: relate resources to classes they are members of
 - rdfs:domain: The domain of a relation.
 - rdfs:range: The range of a relation.

- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdf:Property: The class of properties (from rdf)
- Defined properties:
 - rdf:type: relate resources to classes they are members of
 - rdfs:domain: The domain of a relation.
 - rdfs:range: The range of a relation.
 - rdfs:subClassOf: Concept inclusion.

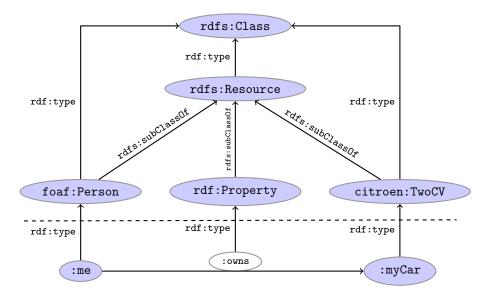
- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdf:Property: The class of properties (from rdf)
- Defined properties:
 - rdf:type: relate resources to classes they are members of
 - rdfs:domain: The domain of a relation.
 - rdfs:range: The range of a relation.
 - rdfs:subClassOf: Concept inclusion.
 - rdfs:subPropertyOf: Property inclusion.

- RDFS adds the concept of "classes" which are like types or sets of resources
- A predefined vocabulary allows statements about classes
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdf:Property: The class of properties (from rdf)
- Defined properties:
 - rdf:type: relate resources to classes they are members of
 - rdfs:domain: The domain of a relation.
 - rdfs:range: The range of a relation.
 - rdfs:subClassOf: Concept inclusion.
 - rdfs:subPropertyOf: Property inclusion.
- There are rules to reason about classes

An RDFS knowledge base



Example



• No clear ontology/data boundary

- No clear ontology/data boundary
 - Can have relations between classes and relations

- No clear ontology/data boundary
 - Can have relations between classes and relations

:myCar rdf:type citroen:TwoCV. citroen:TwoCV rdf:type cars:ModelClass.

• Remember: in RDF, properties are resources

- No clear ontology/data boundary
 - Can have relations between classes and relations

- Remember: in RDF, properties are resources
- So they can be subject or object of triples

- No clear ontology/data boundary
 - Can have relations between classes and relations

- Remember: in RDF, properties are resources
- So they can be subject or object of triples
- Well, in RDFS, classes are resources

- No clear ontology/data boundary
 - Can have relations between classes and relations

- Remember: in RDF, properties are resources
- So they can be subject or object of triples
- Well, in RDFS, classes are resources
- So they can also be subject or object of triples

- No clear ontology/data boundary
 - Can have relations between classes and relations

- Remember: in RDF, properties are resources
- So they can be subject or object of triples
- Well, in RDFS, classes are resources
- So they can also be subject or object of triples
- Incomplete reasoning

- No clear ontology/data boundary
 - Can have relations between classes and relations

- Remember: in RDF, properties are resources
- So they can be subject or object of triples
- Well, in RDFS, classes are resources
- So they can also be subject or object of triples
- Incomplete reasoning
 - E.g. can't derive all subtype statements that are semantically valid

- No clear ontology/data boundary
 - Can have relations between classes and relations

- Remember: in RDF, properties are resources
- So they can be subject or object of triples
- Well, in RDFS, classes are resources
- So they can also be subject or object of triples
- Incomplete reasoning
 - E.g. can't derive all subtype statements that are semantically valid
 - rdfs:Class not quite the same as a set

Outline

1 Reminder: RDFS

2 Description Logics

3 Introduction to OWL

• "Data level" with resources

- "Data level" with resources
- "Ontology level" with properties and "classes"

- "Data level" with resources
- "Ontology level" with properties and "classes"
- Classes and properties not part of the domain!

- "Data level" with resources
- "Ontology level" with properties and "classes"
- Classes and properties *not* part of the domain!
- Can have rdf:type relation between data objects and classes

- "Data level" with resources
- "Ontology level" with properties and "classes"
- Classes and properties *not* part of the domain!
- Can have rdf:type relation between data objects and classes
- Properties connect data objects

- "Data level" with resources
- "Ontology level" with properties and "classes"
- Classes and properties not part of the domain!
- Can have rdf:type relation between data objects and classes
- Properties connect data objects
- Allow a fixed vocabulary for relations between classes and properties

- "Data level" with resources
- "Ontology level" with properties and "classes"
- Classes and properties not part of the domain!
- Can have rdf:type relation between data objects and classes
- Properties connect data objects
- Allow a fixed vocabulary for relations between classes and properties
- Interpret:

- "Data level" with resources
- "Ontology level" with properties and "classes"
- Classes and properties not part of the domain!
- Can have rdf:type relation between data objects and classes
- Properties connect data objects
- Allow a fixed vocabulary for relations between classes and properties
- Interpret:
 - Class as set of data objects

Make it simple!

- "Data level" with resources
- "Ontology level" with properties and "classes"
- Classes and properties not part of the domain!
- Can have rdf:type relation between data objects and classes
- Properties connect data objects
- Allow a fixed vocabulary for relations between classes and properties
- Interpret:
 - Class as set of data objects
 - Property as relation between data objects

Make it simple!

- "Data level" with resources
- "Ontology level" with properties and "classes"
- Classes and properties not part of the domain!
- Can have rdf:type relation between data objects and classes
- Properties connect data objects
- Allow a fixed vocabulary for relations between classes and properties
- Interpret:
 - Class as set of data objects
 - Property as relation between data objects
- A setting well-studied as Description Logics

Example: The \mathcal{ALC} Description Logic

Vocabulary

Fix a set of atomic concepts A and of roles R

\mathcal{ALC} concept descriptions

С,

$D \rightarrow$	A	(atomic concept)
	Т	(universal concept)
	\perp	(bottom concept)
	$\neg C$	(atomic negation)
	$C \sqcap D$	(intersection)
	$C \sqcup D$	(union)
	$\forall R.C \mid$	(value restriction)
	$\exists R.C \mid$	(existential restriction)

Axioms

 $C \sqsubseteq D$ and $C \equiv D$ for concept descriptions D and C.

INF3580 :: Spring 2010

• $TwoCV \sqsubseteq Car$

\mathcal{ALC} Examples

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car
- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of 2CVs are front axles

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car
- *TwoCV* ⊑ ∀*driveAxle*.*FrontAxle*
 - All drive axles of 2CVs are front axles
- FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle

- TwoCV ⊑ Car
 - Any 2CV is a car
- *TwoCV* ⊑ ∀*driveAxle*.*FrontAxle*
 - All drive axles of 2CVs are front axles
- FrontDrivenCar ≡ Car ⊓ ∀driveAxle.FrontAxle
 - A front driven car is one where all drive axles are front axles

- TwoCV ⊑ Car
 - Any 2CV is a car
- *TwoCV* ⊑ ∀*driveAxle*.*FrontAxle*
 - All drive axles of 2CVs are front axles
- FrontDrivenCar ≡ Car ⊓ ∀driveAxle.FrontAxle
 - A front driven car is one where all drive axles are front axles
- *FrontAxle* \sqcap *RearAxle* $\sqsubseteq \bot$ (disjointness)

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car
- *TwoCV* ⊑ ∀*driveAxle*.*FrontAxle*
 - All drive axles of 2CVs are front axles
- FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle
 - A front driven car is one where all drive axles are front axles
- *FrontAxle* \sqcap *RearAxle* $\sqsubseteq \bot$ (disjointness)
 - Nothing is both a front axle and a rear axle

- TwoCV ⊑ Car
 - Any 2CV is a car
- *TwoCV* ⊑ ∀*driveAxle*.*FrontAxle*
 - All drive axles of 2CVs are front axles
- FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle
 - A front driven car is one where all drive axles are front axles
- *FrontAxle* \sqcap *RearAxle* $\sqsubseteq \bot$ (disjointness)
 - Nothing is both a front axle and a rear axle
- *FourWheelDrive* ≡ ∃*driveAxle*.*FrontAxle* ⊓ ∃*driveAxle*.*RearAxle*

- $TwoCV \sqsubseteq Car$
 - Any 2CV is a car
- *TwoCV* ⊑ ∀*driveAxle*.*FrontAxle*
 - All drive axles of 2CVs are front axles
- FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle
 - A front driven car is one where all drive axles are front axles
- *FrontAxle* \sqcap *RearAxle* $\sqsubseteq \bot$ (disjointness)
 - Nothing is both a front axle and a rear axle
- *FourWheelDrive* ≡ ∃*driveAxle*.*FrontAxle* ⊓ ∃*driveAxle*.*RearAxle*
 - A 4WD has at least one front drive axle and one rear drive axle

ALC Semantics

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta$ for each atomic concept A, and $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role R

Interpretation of concept descriptions $\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \forall b.(a,b) \in R^{\mathcal{I}} \rightarrow b \in C^{\mathcal{I}}\} \\ (\exists R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \exists b.(a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\} \end{array}$

Interpretation of Axioms

$$C \sqsubseteq D$$
 holds in \mathcal{I} ($\mathcal{I} \models C \sqsubseteq D$) if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$. $\mathcal{I} \models C \equiv D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$

INF3580 :: Spring 2010

Lecture 8 :: 16th March

• Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.
- Interpret $TwoCV^{\mathcal{I}} \subseteq \Delta$ as the set of all 2CV cars.

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.
- Interpret $TwoCV^{\mathcal{I}} \subseteq \Delta$ as the set of all 2CV cars.
- Since all 2CV are cars, $TwoCV^{\mathcal{I}} \subseteq Car^{\mathcal{I}}$

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.
- Interpret $TwoCV^{\mathcal{I}} \subseteq \Delta$ as the set of all 2CV cars.
- Since all 2CV are cars, $TwoCV^{\mathcal{I}} \subseteq Car^{\mathcal{I}}$
- Therefore, $TwoCV \sqsubseteq Car$ in this interpretation

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.
- Interpret $TwoCV^{\mathcal{I}} \subseteq \Delta$ as the set of all 2CV cars.
- Since all 2CV are cars, $TwoCV^{\mathcal{I}} \subseteq Car^{\mathcal{I}}$
- Therefore, $TwoCV \sqsubseteq Car$ in this interpretation

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.
- Interpret $TwoCV^{\mathcal{I}} \subseteq \Delta$ as the set of all 2CV cars.
- Since all 2CV are cars, $TwoCV^{\mathcal{I}} \subseteq Car^{\mathcal{I}}$
- Therefore, $TwoCV \sqsubseteq Car$ in this interpretation

But...

 \bullet Pick a domain $\Delta^{\mathcal{J}}$ containing fruit and vegetables

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.
- Interpret $TwoCV^{\mathcal{I}} \subseteq \Delta$ as the set of all 2CV cars.
- Since all 2CV are cars, $TwoCV^{\mathcal{I}} \subseteq Car^{\mathcal{I}}$
- Therefore, $TwoCV \sqsubseteq Car$ in this interpretation

- \bullet Pick a domain $\Delta^{\mathcal{J}}$ containing fruit and vegetables
- Interpret $Car^{\mathcal{J}} \subseteq \Delta$ as the set of all fruit.

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.
- Interpret $TwoCV^{\mathcal{I}} \subseteq \Delta$ as the set of all 2CV cars.
- Since all 2CV are cars, $TwoCV^{\mathcal{I}} \subseteq Car^{\mathcal{I}}$
- Therefore, $TwoCV \sqsubseteq Car$ in this interpretation

- \bullet Pick a domain $\Delta^{\mathcal{J}}$ containing fruit and vegetables
- Interpret $Car^{\mathcal{J}} \subseteq \Delta$ as the set of all fruit.
- Interpret $TwoCV^{\mathcal{J}} \subseteq \Delta$ as the set of all potatoes.

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.
- Interpret $TwoCV^{\mathcal{I}} \subseteq \Delta$ as the set of all 2CV cars.
- Since all 2CV are cars, $TwoCV^{\mathcal{I}} \subseteq Car^{\mathcal{I}}$
- Therefore, $TwoCV \sqsubseteq Car$ in this interpretation

- \bullet Pick a domain $\Delta^{\mathcal{J}}$ containing fruit and vegetables
- Interpret $Car^{\mathcal{J}} \subseteq \Delta$ as the set of all fruit.
- Interpret $TwoCV^{\mathcal{J}} \subseteq \Delta$ as the set of all potatoes.
- Since potatoes are not fruit, $TwoCV^{\mathcal{J}} \not\subseteq Car^{\mathcal{J}}$

- Pick a domain $\Delta^{\mathcal{I}}$ containing all cars, axles of cars, etc.
- Interpret $Car^{\mathcal{I}} \subseteq \Delta$ as the set of all cars.
- Interpret $TwoCV^{\mathcal{I}} \subseteq \Delta$ as the set of all 2CV cars.
- Since all 2CV are cars, $TwoCV^{\mathcal{I}} \subseteq Car^{\mathcal{I}}$
- Therefore, $TwoCV \sqsubseteq Car$ in this interpretation

- \bullet Pick a domain $\Delta^{\mathcal{J}}$ containing fruit and vegetables
- Interpret $Car^{\mathcal{J}} \subseteq \Delta$ as the set of all fruit.
- Interpret $TwoCV^{\mathcal{J}} \subseteq \Delta$ as the set of all potatoes.
- Since potatoes are not fruit, $\mathit{TwoCV^{\mathcal{J}} \not\subseteq \mathit{Car^{\mathcal{J}}}}$
- Therefore, $TwoCV \sqsubseteq Car \ does'nt$ hold in this interpretation

 \bullet Let $\Delta^{\mathcal{I}}$ be the car domain again

- Let $\Delta^{\mathcal{I}}$ be the car domain again
- Let $driveAxle^{\mathcal{I}}$ connect every car with all its drive axles.

- Let $\Delta^{\mathcal{I}}$ be the car domain again
- Let $driveAxle^{\mathcal{I}}$ connect every car with all its drive axles.
- Let $FrontAxle^{\mathcal{I}}$ be the set of all front axles.

- \bullet Let $\Delta^{\mathcal{I}}$ be the car domain again
- Let $driveAxle^{\mathcal{I}}$ connect every car with all its drive axles.
- Let $FrontAxle^{\mathcal{I}}$ be the set of all front axles.
- The interpretation of the concept description

∃driveAxle.FrontAxle

is

 $(\exists driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \exists b.(a, b) \in driveAxle^{\mathcal{I}} \land b \in FrontAxle^{\mathcal{I}}\}$

- \bullet Let $\Delta^{\mathcal{I}}$ be the car domain again
- Let $driveAxle^{\mathcal{I}}$ connect every car with all its drive axles.
- Let $FrontAxle^{\mathcal{I}}$ be the set of all front axles.
- The interpretation of the concept description

∃driveAxle.FrontAxle

is

$$(\exists driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \exists b.(a, b) \in driveAxle^{\mathcal{I}} \land b \in FrontAxle^{\mathcal{I}}\}$$

• i.e. the set of all things *a* that have a drive axle *b* which is a front axle.

 \bullet Let $\Delta^{\mathcal{I}}$ be the car domain again

- \bullet Let $\Delta^{\mathcal{I}}$ be the car domain again
- \bullet Interpret $\textit{driveAxle}^{\mathcal{I}}$ and $\textit{FrontAxle}^{\mathcal{I}}$ as before

- \bullet Let $\Delta^{\mathcal{I}}$ be the car domain again
- Interpret $driveAxle^{\mathcal{I}}$ and $FrontAxle^{\mathcal{I}}$ as before
- The interpretation of the concept description

 $\forall driveAxle.FrontAxle$

is

$$\begin{array}{l} (\forall driveAxle.FrontAxle)^{\mathcal{I}} \\ = & \{a \in \Delta^{\mathcal{I}} \mid \forall b.(a,b) \in driveAxle^{\mathcal{I}} \rightarrow b \in FrontAxle^{\mathcal{I}} \} \end{array}$$

- \bullet Let $\Delta^{\mathcal{I}}$ be the car domain again
- Interpret $driveAxle^{\mathcal{I}}$ and $FrontAxle^{\mathcal{I}}$ as before
- The interpretation of the concept description

 $\forall driveAxle.FrontAxle$

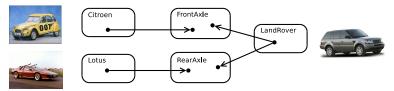
is

$$\begin{array}{l} (\forall driveAxle.FrontAxle)^{\mathcal{I}} \\ = & \{a \in \Delta^{\mathcal{I}} \mid \forall b.(a,b) \in driveAxle^{\mathcal{I}} \rightarrow b \in FrontAxle^{\mathcal{I}} \} \end{array}$$

• i.e. the set of all things *a* such that all its drive axles *b* are front axles.

Universal and Existential Restrictions cont.

- Assume:
 - All Citroen cars have one drive axle and that is the front axle
 - All Lotus cars have one drive axle and that is the rear axle
 - All LandRover cars have two drive axles, one front and one back



- In such a model:
 - *Citroen* $\sqsubseteq \forall driveAxle.FrontAxle$
 - LandRover $\sqsubseteq \exists driveAxle.FrontAxle \sqcap \exists driveAxle.RearAxle$
 - Lotus $\sqsubseteq \forall driveAxle.RearAxle$

Universal Restrictions and rdfs:range

• If the *range* of a role *R* is *C*...

- If the *range* of a role *R* is *C*...
- then anything one can reach by R is in C, or...

- If the *range* of a role *R* is *C*...
- then anything one can reach by R is in C, or...
- for any a and b, if $(a, b) \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or...

- If the *range* of a role *R* is *C*...
- then anything one can reach by R is in C, or...
- for any a and b, if $(a, b) \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or...
- any *a* is in the interpretation of $\forall R.C$, or

- If the *range* of a role *R* is *C*...
- then anything one can reach by R is in C, or...
- for any a and b, if $(a, b) \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or...
- any a is in the interpretation of $\forall R.C$, or
- The axiom $\top \sqsubseteq \forall R.C$ holds

- If the *range* of a role *R* is *C*...
- then anything one can reach by R is in C, or...
- for any a and b, if $(a, b) \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or...
- any a is in the interpretation of $\forall R.C$, or
- The axiom $\top \sqsubseteq \forall R.C$ holds
- Ranges can be expressed with universal restrictions

- If the *range* of a role *R* is *C*...
- then anything one can reach by R is in C, or...
- for any a and b, if $(a, b) \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or...
- any a is in the interpretation of $\forall R.C$, or
- The axiom $\top \sqsubseteq \forall R.C$ holds
- Ranges can be expressed with universal restrictions
- Example:

- If the *range* of a role *R* is *C*...
- then anything one can reach by R is in C, or...
- for any a and b, if $(a, b) \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or...
- any a is in the interpretation of $\forall R.C$, or
- The axiom $\top \sqsubseteq \forall R.C$ holds
- Ranges can be expressed with universal restrictions
- Example:
 - a drive axle is either a front or a rear axle

- If the *range* of a role *R* is *C*...
- then anything one can reach by R is in C, or...
- for any a and b, if $(a, b) \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or...
- any a is in the interpretation of $\forall R.C$, or
- The axiom $\top \sqsubseteq \forall R.C$ holds
- Ranges can be expressed with universal restrictions
- Example:
 - a drive axle is either a front or a rear axle
 - the range of *driveAxle* is *FrontAxle* \sqcup *RearAxle*

- If the *range* of a role *R* is *C*...
- then anything one can reach by R is in C, or...
- for any a and b, if $(a, b) \in R^{\mathcal{I}}$, then $b \in C^{\mathcal{I}}$, or...
- any a is in the interpretation of $\forall R.C$, or
- The axiom $\top \sqsubseteq \forall R.C$ holds
- Ranges can be expressed with universal restrictions
- Example:
 - a drive axle is either a front or a rear axle
 - the range of *driveAxle* is *FrontAxle* \sqcup *RearAxle*
 - Axiom: $\top \sqsubseteq \forall driveAxle.(FrontAxle \sqcup RearAxle)$

• If the *domain* of a role *R* is *C*...

- If the *domain* of a role *R* is *C*...
- then anything from which one can go by R is in C, or...

- If the *domain* of a role *R* is *C*...
- then anything from which one can go by R is in C, or...
- for any a, if there is a b with $(a, b) \in R^{\mathcal{I}}$, then $a \in C^{\mathcal{I}}$, or...

- If the *domain* of a role *R* is *C*...
- then anything from which one can go by R is in C, or...
- for any a, if there is a b with $(a, b) \in R^{\mathcal{I}}$, then $a \in C^{\mathcal{I}}$, or...
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or

- If the *domain* of a role *R* is *C*...
- then anything from which one can go by R is in C, or...
- for any a, if there is a b with $(a, b) \in R^{\mathcal{I}}$, then $a \in C^{\mathcal{I}}$, or...
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- The axiom $\exists R.\top \sqsubseteq C$ holds

- If the *domain* of a role *R* is *C*...
- then anything from which one can go by R is in C, or...
- for any a, if there is a b with $(a, b) \in R^{\mathcal{I}}$, then $a \in C^{\mathcal{I}}$, or...
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- The axiom $\exists R.\top \sqsubseteq C$ holds
- Domains can be expressed with existential restrictions

- If the *domain* of a role *R* is *C*...
- then anything from which one can go by R is in C, or...
- for any a, if there is a b with $(a,b) \in R^{\mathcal{I}}$, then $a \in C^{\mathcal{I}}$, or...
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- The axiom $\exists R.\top \sqsubseteq C$ holds
- Domains can be expressed with existential restrictions
- Example:

- If the *domain* of a role *R* is *C*...
- then anything from which one can go by R is in C, or...
- for any a, if there is a b with $(a, b) \in R^{\mathcal{I}}$, then $a \in C^{\mathcal{I}}$, or...
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- The axiom $\exists R.\top \sqsubseteq C$ holds
- Domains can be expressed with existential restrictions
- Example:
 - a drive axle is something cars have

- If the *domain* of a role *R* is *C*...
- then anything from which one can go by R is in C, or...
- for any a, if there is a b with $(a, b) \in R^{\mathcal{I}}$, then $a \in C^{\mathcal{I}}$, or...
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- The axiom $\exists R.\top \sqsubseteq C$ holds
- Domains can be expressed with existential restrictions
- Example:
 - a drive axle is something cars have
 - the range of *driveAxle* is *Car*

- If the *domain* of a role *R* is *C*...
- then anything from which one can go by R is in C, or...
- for any a, if there is a b with $(a,b) \in R^{\mathcal{I}}$, then $a \in C^{\mathcal{I}}$, or...
- any *a* in the interpretation of $\exists R.\top$ is in the interpretation of *C*, or
- The axiom $\exists R.\top \sqsubseteq C$ holds
- Domains can be expressed with existential restrictions
- Example:
 - a drive axle is something cars have
 - the range of *driveAxle* is *Car*
 - Axiom: $\exists driveAxle. \top \sqsubseteq Car$

• Historically, description logic axioms and assertions are put in boxes

- Historically, description logic axioms and assertions are put in boxes
- The TBox

- Historically, description logic axioms and assertions are put in boxes
- The TBox
 - is for terminological knowledge

- Historically, description logic axioms and assertions are put in boxes
- The TBox
 - is for terminological knowledge
 - is independent of any actual instance data

- Historically, description logic axioms and assertions are put in boxes
- The TBox
 - is for *terminological knowledge*
 - is independent of any actual instance data
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms

- Historically, description logic axioms and assertions are put in boxes
- The TBox
 - is for *terminological knowledge*
 - is independent of any actual instance data
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms
- The ABox

- Historically, description logic axioms and assertions are put in boxes
- The TBox
 - is for *terminological knowledge*
 - is independent of any actual instance data
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms
- The ABox
 - is for assertional knowledge

- Historically, description logic axioms and assertions are put in boxes
- The TBox
 - is for *terminological knowledge*
 - is independent of any actual instance data
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms
- The ABox
 - is for assertional knowledge
 - contains facts about concrete instances *a*, *b*, *c*, ...

- Historically, description logic axioms and assertions are put in boxes
- The TBox
 - is for *terminological knowledge*
 - is independent of any actual instance data
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms
- The ABox
 - is for assertional knowledge
 - contains facts about concrete instances *a*, *b*, *c*, ...
 - A set of concept membership assertions C(a)...

- Historically, description logic axioms and assertions are put in boxes
- The TBox
 - is for *terminological knowledge*
 - is independent of any actual instance data
 - for \mathcal{ALC} , it is a set of \sqsubseteq axioms
- The ABox
 - is for assertional knowledge
 - contains facts about concrete instances *a*, *b*, *c*, ...
 - A set of concept membership assertions C(a)...
 - and role assertions R(b, c)

Example TBox and ABox

TBox

 $TwoCV \sqsubseteq Car$ $Car \sqsubseteq \exists driveAxle.\top$ $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$ $FrontDrivenCar \equiv Car \sqcap \forall driveAxle.FrontAxle$ $FrontAxle \sqcap RearAxle \sqsubseteq \bot$ $FourWheelDrive \equiv \exists driveAxle.FrontAxle \sqcap \exists driveAxle.RearAxle$

ABox

TwoCV(myCar) owns(me, myCar) driveAxle(myCar, ax) (FrontAxle ⊔ RearAxle)(ax)

Model

Model

An interpretation \mathcal{I} is a *model* of a TBox \mathcal{T} , written $\mathcal{I} \models \mathcal{T}$, if it satisfies all axioms in \mathcal{T} .

• Many reasoning tasks use only the TBox:

Model

- Many reasoning tasks use only the TBox:
- Concept satisfiability: Given C, is there an interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{T}$ and $C^{\mathcal{I}} \neq \emptyset$?

Model

- Many reasoning tasks use only the TBox:
- Concept satisfiability: Given C, is there an interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{T}$ and $C^{\mathcal{I}} \neq \emptyset$?
- Concept subsumption: Given C and D, does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ hold for *every* interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{T}$?

Model

- Many reasoning tasks use only the TBox:
- Concept satisfiability: Given C, is there an interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{T}$ and $C^{\mathcal{I}} \neq \emptyset$?
- Concept subsumption: Given C and D, does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ hold for *every* interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{T}$?
- Concept equivalence: Given C and D, does $C^{\mathcal{I}} = D^{\mathcal{I}}$ hold for *every* interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{T}$?

Model

- Many reasoning tasks use only the TBox:
- Concept satisfiability: Given C, is there an interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{T}$ and $C^{\mathcal{I}} \neq \emptyset$?
- Concept subsumption: Given C and D, does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ hold for *every* interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{T}$?
- Concept equivalence: Given C and D, does C^I = D^I hold for every interpretation I with I ⊨ T?
- Concept disjointness: Given C and D, does C^I ∩ D^I = Ø hold for every interpretation I with I ⊨ T?

Model

Model

An interpretation \mathcal{I} is a *model* of a TBox and ABox $(\mathcal{T}, \mathcal{A})$, written $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$, if it satisfies all axioms in \mathcal{T} and \mathcal{A} .

• ABox consistency: Is there a model of $(\mathcal{T}, \mathcal{A})$?

Model

- ABox consistency: Is there a model of $(\mathcal{T}, \mathcal{A})$?
- Concept membership: Given C and a, does $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold for every interpretation \mathcal{I} with $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$?

Model

- ABox consistency: Is there a model of $(\mathcal{T}, \mathcal{A})$?
- Concept membership: Given C and a, does $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold for every interpretation \mathcal{I} with $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$?
- Retrieval: Given C, find all a such that a^I ∈ C^I holds for every interpretation I with I ⊨ (T, A)?

Model

- ABox consistency: Is there a model of $(\mathcal{T}, \mathcal{A})$?
- Concept membership: Given C and a, does $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold for every interpretation \mathcal{I} with $\mathcal{I} \models (\mathcal{I}, \mathcal{A})$?
- Retrieval: Given C, find all a such that a^I ∈ C^I holds for every interpretation I with I ⊨ (T, A)?
- Conjunctive Query Answering (SPARQL)

• There are description logics including

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)
 - counting role fillers (a car has at least three wheels, etc.)

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)
 - counting role fillers (a car has at least three wheels, etc.)
 - data types (numbers, strings, etc., like literals)

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)
 - counting role fillers (a car has at least three wheels, etc.)
 - data types (numbers, strings, etc., like literals)
 - etc.

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)
 - counting role fillers (a car has at least three wheels, etc.)
 - data types (numbers, strings, etc., like literals)
 - etc.
- Won't go into details

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)
 - counting role fillers (a car has at least three wheels, etc.)
 - data types (numbers, strings, etc., like literals)
 - etc.
- Won't go into details
- Will see some of these as part of OWL

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)
 - counting role fillers (a car has at least three wheels, etc.)
 - data types (numbers, strings, etc., like literals)
 - etc.
- Won't go into details
- Will see some of these as part of OWL
- Too much expressivity makes reasoning tasks

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)
 - counting role fillers (a car has at least three wheels, etc.)
 - data types (numbers, strings, etc., like literals)
 - etc.
- Won't go into details
- Will see some of these as part of OWL
- Too much expressivity makes reasoning tasks
 - first very expensive

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)
 - counting role fillers (a car has at least three wheels, etc.)
 - data types (numbers, strings, etc., like literals)
 - etc.
- Won't go into details
- Will see some of these as part of OWL
- Too much expressivity makes reasoning tasks
 - first very expensive
 - then undecidable

- There are description logics including
 - Axioms about roles (hierarchy, transitivity, etc.)
 - counting role fillers (a car has at least three wheels, etc.)
 - data types (numbers, strings, etc., like literals)
 - etc.
- Won't go into details
- Will see some of these as part of OWL
- Too much expressivity makes reasoning tasks
 - first very expensive
 - then undecidable
- Much research on how much expressivity can be added preserving complexity/decidability

Outline

1 Reminder: RDFS

2 Description Logics

OWL:

• Acronym for The Web Ontology Language.

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

OWL:

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

• a backwards compatible extension that adds new capabilities.

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

- a backwards compatible extension that adds new capabilities.
- OWL is a language to express "ontologies"

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

- a backwards compatible extension that adds new capabilities.
- OWL is a language to express "ontologies"
- i.e. express facts about a domain, like RDFS

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

- a backwards compatible extension that adds new capabilities.
- OWL is a language to express "ontologies"
- i.e. express facts about a domain, like RDFS
- Built on Description Logics, separation of data and ontology

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

- a backwards compatible extension that adds new capabilities.
- OWL is a language to express "ontologies"
- i.e. express facts about a domain, like RDFS
- Built on Description Logics, separation of data and ontology
- Combines DL expressiveness with RDF technology (URIs, namespaces, etc.)

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;

- a backwards compatible extension that adds new capabilities.
- OWL is a language to express "ontologies"
- i.e. express facts about a domain, like RDFS
- Built on Description Logics, separation of data and ontology
- Combines DL expressiveness with RDF technology (URIs, namespaces, etc.)
- Extends RDFS with boolean operations, universal/existential restrictions, etc.

• OWL has various profiles that correspond to different DLs.

- OWL has various profiles that correspond to different DLs.
- These profiles are tailored for specific ends, e.g.

- OWL has various profiles that correspond to different DLs.
- These profiles are tailored for specific ends, e.g.
 - OWL 2 QL:

- OWL has various profiles that correspond to different DLs.
- These profiles are tailored for specific ends, e.g.
 - OWL 2 QL:
 - Specifically designed for efficient database integration.

- OWL has various profiles that correspond to different DLs.
- These profiles are tailored for specific ends, e.g.
 - OWL 2 QL:
 - Specifically designed for efficient database integration.
 - OWL 2 EL:

- OWL has various profiles that correspond to different DLs.
- These profiles are tailored for specific ends, e.g.
 - OWL 2 QL:
 - Specifically designed for efficient database integration.
 - OWL 2 EL:
 - A lightweight language with polynomial time reasoning.

- OWL has various profiles that correspond to different DLs.
- These profiles are tailored for specific ends, e.g.
 - OWL 2 QL:
 - Specifically designed for efficient database integration.
 - OWL 2 EL:
 - A lightweight language with polynomial time reasoning.
 - Much used in medical informatics (e.g. the GALEN ontology).

- OWL has various profiles that correspond to different DLs.
- These profiles are tailored for specific ends, e.g.
 - OWL 2 QL:
 - Specifically designed for efficient database integration.
 - OWL 2 EL:
 - A lightweight language with polynomial time reasoning.
 - Much used in medical informatics (e.g. the GALEN ontology).
 - OWL 2 RL:

- OWL has various profiles that correspond to different DLs.
- These profiles are tailored for specific ends, e.g.
 - OWL 2 QL:
 - Specifically designed for efficient database integration.
 - OWL 2 EL:
 - A lightweight language with polynomial time reasoning.
 - Much used in medical informatics (e.g. the GALEN ontology).
 - OWL 2 RL:
 - Designed for compatibility with rule-based inference tools.

• Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances
- DL symbols $(\sqcap, \sqcup, \exists, \forall)$ hard to find on keyboard

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances
- DL symbols ($\sqcap, \sqcup, \exists, \forall$) hard to find on keyboard
- OWL/RDF: Uses RDF to express OWL ontologies

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances
- DL symbols ($\sqcap, \sqcup, \exists, \forall$) hard to find on keyboard
- OWL/RDF: Uses RDF to express OWL ontologies
 - Then use any of the RDF serializations

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances
- DL symbols ($\sqcap, \sqcup, \exists, \forall$) hard to find on keyboard
- OWL/RDF: Uses RDF to express OWL ontologies
 - Then use any of the RDF serializations
- OWL/XML: a non-RDF XML format

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances
- DL symbols $(\sqcap, \sqcup, \exists, \forall)$ hard to find on keyboard
- OWL/RDF: Uses RDF to express OWL ontologies
 - Then use any of the RDF serializations
- OWL/XML: a non-RDF XML format
- Functional OWL syntax: simple, used in definition

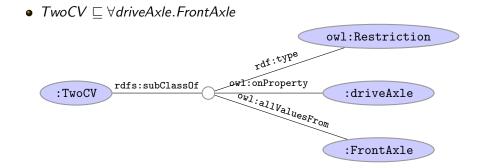
- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances
- DL symbols $(\sqcap, \sqcup, \exists, \forall)$ hard to find on keyboard
- OWL/RDF: Uses RDF to express OWL ontologies
 - Then use any of the RDF serializations
- OWL/XML: a non-RDF XML format
- Functional OWL syntax: simple, used in definition
- Manchester OWL syntax: close to DL, but text, used in some tools

Example: Universal Restrictions in OWL/RDF

• $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$

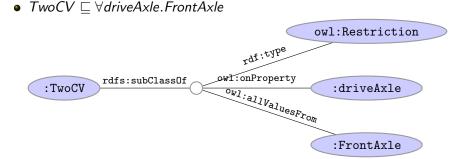
Introduction to OWL

Example: Universal Restrictions in OWL/RDF



Introduction to OWL

Example: Universal Restrictions in OWL/RDF



• In Turtle syntax:

```
:TwoCV rdfs:subClassOf [ rdf:type owl:Restriction ;
```

```
owl:onProperty :driveAxle ;
owl:allValuesFrom :FrontAxle
```

٦

Example: Universal Restrictions in Other Formats

• $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$

Example: Universal Restrictions in Other Formats

- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- In OWL/XML syntax:

```
<SubClassOf>

<Class URI="&cars;TwoCV"/>

<ObjectAllValuesFrom>

<ObjectProperty URI="&cars;driveAxle"/>

<Class URI="&cars;FrontAxle"/>

</ObjectAllValuesFrom>

</SubClassOf>
```

Example: Universal Restrictions in Other Formats

- $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- In OWL/XML syntax:

```
<SubClassOf>

<Class URI="&cars;TwoCV"/>

<ObjectAllValuesFrom>

<ObjectProperty URI="&cars;driveAxle"/>

<Class URI="&cars;FrontAxle"/>

</ObjectAllValuesFrom>

</SubClassOf>
```

• In OWL Functional syntax:

SubClassOf(CV ObjectAllValuesFrom(driveAxle FrontAxle))

• Used in Protégé for concept descriptions

- Used in Protégé for concept descriptions
- Also has a syntax for axioms, less used

- Used in Protégé for concept descriptions
- Also has a syntax for axioms, less used
- Correspondence to DL constructs:

DL	Manchester
$C \sqcap D$	C and D
$C \sqcup D$	C or D
$\neg C$	not C
$\forall R.C$	R only C
∃R.C	R some C

- Used in Protégé for concept descriptions
- Also has a syntax for axioms, less used
- Correspondence to DL constructs:

DL	Manchester
$C \sqcap D$	C and D
$C \sqcup D$	C or D
$\neg C$	not C
$\forall R.C$	R only C
$\exists R.C$	R some C

• Examples:

DL	Manchester
FrontAxle 🗆 RearAxle	FrontAxle or RearAxle
∀driveAxle.FrontAxle	driveAxle only FrontAxle
$\exists driveAxle.RearAxle$	driveAxle some RearAxle

Demo: Using Protégé

- Create a Car class
- Create an Axle class
- Create FrontAxle and RearAxle as subclasses
- Make the axle classes disjoint
- Add a driveAxle object property
- Add domain Car and range Axle
- Add 2CV, subclass of Car
- Add superclass driveAxle only FrontAxle
- Add Lotus, subclass of Car
- Add superclass driveAxle only RearAxle
- Add LandRover, subclass of Car
- Add superclass driveAxle some FrontAxle
- Add superclass driveAxle some RearAxle
- Add 4WD as subclass of Thing
- Make equivalent to driveAxle some RearAxle and driveAxle some FrontAxle
- Classify.
- Show inferred class hierarchy: Car ⊒ 4WD ⊒ LandRover
- Tell story of 2CV Sahara, which is a 2CV with two motors, one front, one back
- Add Sahara as subclass of 2CV
- Add 4WD as superclass of 2CV
- Classify.
- Show that Sahara is equivalent to bottom.
- Explain why. In particular, disjointness of front and rear axles

• Protégé presents ontologies almost like an OO modelling tool

- Protégé presents ontologies almost like an OO modelling tool
- Everything can be mapped to DL axioms!

- Protégé presents ontologies almost like an OO modelling tool
- Everything can be mapped to DL axioms!
- (will see some features that require more than ALC next time)

- Protégé presents ontologies almost like an OO modelling tool
- Everything can be mapped to DL axioms!
- \bullet (will see some features that require more than \mathcal{ALC} next time)
- We have seen how domain and range become ex./univ. restrictions

- Protégé presents ontologies almost like an OO modelling tool
- Everything can be mapped to DL axioms!
- (will see some features that require more than \mathcal{ALC} next time)
- We have seen how domain and range become ex./univ. restrictions
- *C* and *D* disjoint: $C \sqsubseteq \neg D$

- Protégé presents ontologies almost like an OO modelling tool
- Everything can be mapped to DL axioms!
- (will see some features that require more than \mathcal{ALC} next time)
- We have seen how domain and range become ex./univ. restrictions
- *C* and *D* disjoint: $C \sqsubseteq \neg D$
- Many ways of saying the same thing in OWL, more in Protégé

- Protégé presents ontologies almost like an OO modelling tool
- Everything can be mapped to DL axioms!
- (will see some features that require more than \mathcal{ALC} next time)
- We have seen how domain and range become ex./univ. restrictions
- *C* and *D* disjoint: $C \sqsubseteq \neg D$
- Many ways of saying the same thing in OWL, more in Protégé
- Reasoning (e.g. Classification) maps everything to DL first

• Can use usual Jena API to build OWL/RDF ontologies

- Can use usual Jena API to build OWL/RDF ontologies
- Cumbersome and error prone!

- Can use usual Jena API to build OWL/RDF ontologies
- Cumbersome and error prone!
- Jena class OntModel provides convenience methods to create OWL/RDF ontologies.

- Can use usual Jena API to build OWL/RDF ontologies
- Cumbersome and error prone!
- Jena class OntModel provides convenience methods to create OWL/RDF ontologies.

• e.g.

- Can use usual Jena API to build OWL/RDF ontologies
- Cumbersome and error prone!
- Jena class OntModel provides convenience methods to create OWL/RDF ontologies.

• e.g.

• Can be combined with inferencing mechanisms from previous lecture

- Can use usual Jena API to build OWL/RDF ontologies
- Cumbersome and error prone!
- Jena class OntModel provides convenience methods to create OWL/RDF ontologies.

• e.g.

- Can be combined with inferencing mechanisms from previous lecture
 - See class OntModelSpec

• OWL in Jena means OWL expressed as RDF

- OWL in Jena means OWL expressed as RDF
- \bullet Still somewhat cumbersome, tied to OWL/RDF peculiarities

- OWL in Jena means OWL expressed as RDF
- Still somewhat cumbersome, tied to OWL/RDF peculiarities
- For pure ontology programming, consider OWL API:

http://owlapi.sourceforge.net/

- OWL in Jena means OWL expressed as RDF
- Still somewhat cumbersome, tied to OWL/RDF peculiarities
- For pure ontology programming, consider OWL API:

http://owlapi.sourceforge.net/

• Works on the level of concept descriptions and axioms

- OWL in Jena means OWL expressed as RDF
- Still somewhat cumbersome, tied to OWL/RDF peculiarities
- For pure ontology programming, consider OWL API:

http://owlapi.sourceforge.net/

- Works on the level of concept descriptions and axioms
- Can parse and write all mentioned OWL formats, and then some

• More about OWL...

- More about OWL...
- Saying that things are the same or not

- More about OWL...
- Saying that things are the same or not
- More about roles/properties:

- More about OWL...
- Saying that things are the same or not
- More about roles/properties:
 - object properties and datatype properties

- More about OWL...
- Saying that things are the same or not
- More about roles/properties:
 - object properties and datatype properties
 - transitive, inverse, symmetric, functional properties