
INF3580 – Semantic Technologies – Spring 2010
Lecture 8: OWL, the Web Ontology Language

Martin Giese

16th March 2010

Department of
Informatics

University of
Oslo



Today’s Plan

1 Reminder: RDFS

2 Description Logics

3 Introduction to OWL

INF3580 :: Spring 2010 Lecture 8 :: 16th March 2 / 35



Reminder: RDFS

Outline

1 Reminder: RDFS

2 Description Logics

3 Introduction to OWL

INF3580 :: Spring 2010 Lecture 8 :: 16th March 3 / 35



Reminder: RDFS

The RDFS vocabulary

RDFS adds the concept of “classes” which are like types or sets of
resources

A predefined vocabulary allows statements about classes

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf)

Defined properties:

rdf:type: relate resources to classes they are members of
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Concept inclusion.
rdfs:subPropertyOf: Property inclusion.

There are rules to reason about classes
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Reminder: RDFS

An RDFS knowledge base

RDFS ontology layer RDF data layer

Relations Concepts
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Reminder: RDFS

Example

rdfs:Class

rdfs:Resource

foaf:Person rdf:Property citroen:TwoCV

:owns
:me :myCar

rdf:type rdf:type rdf:type

rd
fs
:s
ub
Cl
as
sO
f
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rdf:type rdf:type
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Reminder: RDFS

It’s complicated

No clear ontology/data boundary

Can have relations between classes and relations

:myCar rdf:type citroen:TwoCV.
citroen:TwoCV rdf:type cars:ModelClass.

Remember: in RDF, properties are resources
So they can be subject or object of triples
Well, in RDFS, classes are resources
So they can also be subject or object of triples

Incomplete reasoning

E.g. can’t derive all subtype statements that are semantically valid
rdfs:Class not quite the same as a set
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Description Logics

Make it simple!

“Data level” with resources

“Ontology level” with properties and “classes”

Classes and properties not part of the domain!

Can have rdf:type relation between data objects and classes

Properties connect data objects

Allow a fixed vocabulary for relations between classes and properties

Interpret:

Class as set of data objects
Property as relation between data objects

A setting well-studied as Description Logics
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Description Logics

Example: The ALC Description Logic

Vocabulary

Fix a set of atomic concepts A and of roles R

ALC concept descriptions

C , D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (atomic negation)
C u D | (intersection)
C t D | (union)
∀R.C | (value restriction)
∃R.C | (existential restriction)

Axioms

C v D and C ≡ D for concept descriptions D and C .
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Description Logics

ALC Examples

TwoCV v Car

Any 2CV is a car

TwoCV v ∀driveAxle.FrontAxle

All drive axles of 2CVs are front axles

FrontDrivenCar ≡ Car u ∀driveAxle.FrontAxle

A front driven car is one where all drive axles are front axles

FrontAxle u RearAxle v ⊥ (disjointness)

Nothing is both a front axle and a rear axle

FourWheelDrive ≡ ∃driveAxle.FrontAxle u ∃driveAxle.RearAxle

A 4WD has at least one front drive axle and one rear drive axle
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Description Logics

ALC Semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, AI ⊆ ∆ for each atomic
concept A, and RI ⊆ ∆×∆ for each role R

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C )I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C )I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.C )I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

Interpretation of Axioms

C v D holds in I (I |= C v D) if CI ⊆ DI . I |= C ≡ D if CI = DI
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Description Logics

Example: Semantics

Pick a domain ∆I containing all cars, axles of cars, etc.

Interpret CarI ⊆ ∆ as the set of all cars.

Interpret TwoCV I ⊆ ∆ as the set of all 2CV cars.

Since all 2CV are cars, TwoCV I ⊆ CarI

Therefore, TwoCV v Car in this interpretation

But. . .

Pick a domain ∆J containing fruit and vegetables

Interpret CarJ ⊆ ∆ as the set of all fruit.

Interpret TwoCV J ⊆ ∆ as the set of all potatoes.

Since potatoes are not fruit, TwoCV J 6⊆ CarJ

Therefore, TwoCV v Car does’nt hold in this interpretation
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Description Logics

Existential restrictions

Let ∆I be the car domain again

Let driveAxleI connect every car with all its drive axles.

Let FrontAxleI be the set of all front axles.

The interpretation of the concept description

∃driveAxle.FrontAxle

is

(∃driveAxle.FrontAxle)I

= {a ∈ ∆I | ∃b.(a, b) ∈ driveAxleI ∧ b ∈ FrontAxleI}

i.e. the set of all things a that have a drive axle b which is a front axle.
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Description Logics

Universal restrictions

Let ∆I be the car domain again

Interpret driveAxleI and FrontAxleI as before

The interpretation of the concept description

∀driveAxle.FrontAxle

is

(∀driveAxle.FrontAxle)I

= {a ∈ ∆I | ∀b.(a, b) ∈ driveAxleI → b ∈ FrontAxleI}

i.e. the set of all things a such that all its drive axles b are front axles.
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Description Logics

Universal and Existential Restrictions cont.

Assume:

All Citroen cars have one drive axle and that is the front axle
All Lotus cars have one drive axle and that is the rear axle
All LandRover cars have two drive axles, one front and one back

In such a model:

Citroen v ∀driveAxle.FrontAxle
LandRover v ∃driveAxle.FrontAxle u ∃driveAxle.RearAxle
Lotus v ∀driveAxle.RearAxle
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Description Logics

Universal Restrictions and rdfs:range

If the range of a role R is C . . .

then anything one can reach by R is in C , or. . .

for any a and b, if (a, b) ∈ RI , then b ∈ CI , or. . .

any a is in the interpretation of ∀R.C , or

The axiom > v ∀R.C holds

Ranges can be expressed with universal restrictions

Example:

a drive axle is either a front or a rear axle
the range of driveAxle is FrontAxle t RearAxle
Axiom: > v ∀driveAxle.(FrontAxle t RearAxle)
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Description Logics

Existential Restrictions and rdfs:domain

If the domain of a role R is C . . .

then anything from which one can go by R is in C , or. . .

for any a, if there is a b with (a, b) ∈ RI , then a ∈ CI , or. . .

any a in the interpretation of ∃R.> is in the interpretation of C , or

The axiom ∃R.> v C holds

Domains can be expressed with existential restrictions

Example:

a drive axle is something cars have
the range of driveAxle is Car
Axiom: ∃driveAxle.> v Car
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Description Logics

Little Boxes

Historically, description logic axioms and assertions are put in boxes

The TBox

is for terminological knowledge
is independent of any actual instance data
for ALC, it is a set of v axioms

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept membership assertions C (a). . .
and role assertions R(b, c)
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Description Logics

Example TBox and ABox

TBox

TwoCV v Car
Car v ∃driveAxle.>
TwoCV v ∀driveAxle.FrontAxle
FrontDrivenCar ≡ Car u ∀driveAxle.FrontAxle
FrontAxle u RearAxle v ⊥
FourWheelDrive ≡ ∃driveAxle.FrontAxle u ∃driveAxle.RearAxle

ABox

TwoCV (myCar)
owns(me, myCar)
driveAxle(myCar , ax)
(FrontAxle t RearAxle)(ax)

INF3580 :: Spring 2010 Lecture 8 :: 16th March 20 / 35



Description Logics

TBox Reasoning

Model

An interpretation I is a model of a TBox T , written I |= T , if it satisfies
all axioms in T .

Many reasoning tasks use only the TBox:

Concept satisfiability: Given C , is there an interpretation I with
I |= T and CI 6= ∅?
Concept subsumption: Given C and D, does CI ⊆ DI hold for every
interpretation I with I |= T ?

Concept equivalence: Given C and D, does CI = DI hold for every
interpretation I with I |= T ?

Concept disjointness: Given C and D, does CI ∩ DI = ∅ hold for
every interpretation I with I |= T ?
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Description Logics

ABox reasoning

Model

An interpretation I is a model of a TBox and ABox (T ,A), written
I |= (T ,A), if it satisfies all axioms in T and A.

ABox consistency:Is there a model of (T ,A)?

Concept membership: Given C and a, does aI ∈ CI hold for every
interpretation I with I |= (T ,A)?

Retrieval: Given C , find all a such that aI ∈ CI holds for every
interpretation I with I |= (T ,A)?

Conjunctive Query Answering (SPARQL)
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Description Logics

More Expressive Description Logics

There are description logics including

Axioms about roles (hierarchy, transitivity, etc.)
counting role fillers (a car has at least three wheels, etc.)
data types (numbers, strings, etc., like literals)
etc.

Won’t go into details

Will see some of these as part of OWL

Too much expressivity makes reasoning tasks

first very expensive
then undecidable

Much research on how much expressivity can be added preserving
complexity/decidability
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Introduction to OWL

Outline

1 Reminder: RDFS

2 Description Logics

3 Introduction to OWL
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Introduction to OWL

Quick facts

OWL:

Acronym for The Web Ontology Language.

Became a W3C recommendation in 2004.

The undisputed standard ontology language.

Superseded by OWL 2;

a backwards compatible extension that adds new capabilities.

OWL is a language to express “ontologies”

i.e. express facts about a domain, like RDFS

Built on Description Logics, separation of data and ontology

Combines DL expressiveness with RDF technology (URIs,
namespaces, etc.)

Extends RDFS with boolean operations, universal/existential
restrictions, etc.
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Introduction to OWL

Glimpse ahead: OWL profiles

OWL has various profiles that correspond to different DLs.

These profiles are tailored for specific ends, e.g.

OWL 2 QL:

Specifically designed for efficient database integration.

OWL 2 EL:

A lightweight language with polynomial time reasoning.
Much used in medical informatics (e.g. the GALEN ontology).

OWL 2 RL:

Designed for compatibility with rule-based inference tools.
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Introduction to OWL

OWL Syntaxes

Reminder: RDF is an abstract construction, several concrete syntaxes:
RDF/XML, Turtle,. . .

Same for OWL:

Defined as set of things that can be said about classes, properties,
instances

DL symbols (u,t,∃, ∀) hard to find on keyboard

OWL/RDF: Uses RDF to express OWL ontologies

Then use any of the RDF serializations

OWL/XML: a non-RDF XML format

Functional OWL syntax: simple, used in definition

Manchester OWL syntax: close to DL, but text, used in some tools
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Introduction to OWL

Example: Universal Restrictions in OWL/RDF

TwoCV v ∀driveAxle.FrontAxle

:TwoCV

owl:Restriction

rdf
:ty

pe

:driveAxle
owl:onProperty

:FrontAxle

owl:allValuesFrom

rdfs:subClassOf

In Turtle syntax:
:TwoCV rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty :driveAxle ;
owl:allValuesFrom :FrontAxle

] .
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Introduction to OWL

Example: Universal Restrictions in Other Formats

TwoCV v ∀driveAxle.FrontAxle

In OWL/XML syntax:

<SubClassOf>
<Class URI="&cars;TwoCV"/>
<ObjectAllValuesFrom>

<ObjectProperty URI="&cars;driveAxle"/>
<Class URI="&cars;FrontAxle"/>

</ObjectAllValuesFrom>
</SubClassOf>

In OWL Functional syntax:

SubClassOf(CV ObjectAllValuesFrom(driveAxle FrontAxle))
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Introduction to OWL

Manchester OWL Syntax

Used in Protégé for concept descriptions

Also has a syntax for axioms, less used

Correspondence to DL constructs:

DL Manchester

C u D C and D
C t D C or D
¬C not C
∀R.C R only C
∃R.C R some C

Examples:

DL Manchester

FrontAxle t RearAxle FrontAxle or RearAxle
∀driveAxle.FrontAxle driveAxle only FrontAxle
∃driveAxle.RearAxle driveAxle some RearAxle
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Introduction to OWL

Demo: Using Protégé

- Create a Car class

- Create an Axle class

- Create FrontAxle and RearAxle as subclasses

- Make the axle classes disjoint

- Add a driveAxle object property

- Add domain Car and range Axle

- Add 2CV, subclass of Car

- Add superclass driveAxle only FrontAxle

- Add Lotus, subclass of Car

- Add superclass driveAxle only RearAxle

- Add LandRover, subclass of Car

- Add superclass driveAxle some FrontAxle

- Add superclass driveAxle some RearAxle

- Add 4WD as subclass of Thing

- Make equivalent to driveAxle some RearAxle and driveAxle some FrontAxle

- Classify.

- Show inferred class hierarchy: Car w 4WD w LandRover

- Tell story of 2CV Sahara, which is a 2CV with two motors, one front, one back

- Add Sahara as subclass of 2CV

- Add 4WD as superclass of 2CV

- Classify.

- Show that Sahara is equivalent to bottom.

- Explain why. In particular, disjointness of front and rear axles
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Introduction to OWL

The Relationship to Description Logics

Protégé presents ontologies almost like an OO modelling tool

Everything can be mapped to DL axioms!

(will see some features that require more than ALC next time)

We have seen how domain and range become ex./univ. restrictions

C and D disjoint: C v ¬D

Many ways of saying the same thing in OWL, more in Protégé

Reasoning (e.g. Classification) maps everything to DL first
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Introduction to OWL

OWL in Jena

Can use usual Jena API to build OWL/RDF ontologies

Cumbersome and error prone!

Jena class OntModel provides convenience methods to create
OWL/RDF ontologies.

e.g.

OntModel model = ModelFactory.createOntologyModel();
Property driveAxle = model.createProperty(CARS+"driveAxle");
OntClass car = model.createClass(CARS+"Car");
OntClass frontAxle = model.createClass(CARS+"FrontAxle");
Resource r = model.createAllValuesFromRestriction(

null, driveAxle, frontAxle);
car.addSuperClass(r);

Can be combined with inferencing mechanisms from previous lecture

See class OntModelSpec
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Introduction to OWL

The OWL API

OWL in Jena means OWL expressed as RDF

Still somewhat cumbersome, tied to OWL/RDF peculiarities

For pure ontology programming, consider OWL API:

http://owlapi.sourceforge.net/

Works on the level of concept descriptions and axioms

Can parse and write all mentioned OWL formats, and then some
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Introduction to OWL

Next time

More about OWL. . .

Saying that things are the same or not

More about roles/properties:

object properties and datatype properties
transitive, inverse, symmetric, functional properties

INF3580 :: Spring 2010 Lecture 8 :: 16th March 35 / 35



Introduction to OWL

Next time

More about OWL. . .

Saying that things are the same or not

More about roles/properties:

object properties and datatype properties
transitive, inverse, symmetric, functional properties

INF3580 :: Spring 2010 Lecture 8 :: 16th March 35 / 35



Introduction to OWL

Next time

More about OWL. . .

Saying that things are the same or not

More about roles/properties:

object properties and datatype properties
transitive, inverse, symmetric, functional properties

INF3580 :: Spring 2010 Lecture 8 :: 16th March 35 / 35



Introduction to OWL

Next time

More about OWL. . .

Saying that things are the same or not

More about roles/properties:

object properties and datatype properties

transitive, inverse, symmetric, functional properties

INF3580 :: Spring 2010 Lecture 8 :: 16th March 35 / 35



Introduction to OWL

Next time

More about OWL. . .

Saying that things are the same or not

More about roles/properties:

object properties and datatype properties
transitive, inverse, symmetric, functional properties

INF3580 :: Spring 2010 Lecture 8 :: 16th March 35 / 35


	Reminder: RDFS
	Description Logics
	Introduction to OWL

