
INF3580 – Semantic Technologies – Spring 2010
Lecture 9: More OWL, Role modeling

Audun Stolpe

23rd March 2010

Department of
Informatics

University of
Oslo

Om de obligatoriske oppgavene

oblig 1 er rettet

e-post skal være sendt ut til alle som har levert

frist for ny levering 8. april

kommentarer ligger ute p̊a kursets hjemmeside

sammen med enkelte hint til løsningen

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 2 / 48

Today’s Plan

1 Reminder: OWL

2 Cardinality restrictions

3 Role modeling

4 A worked example

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 3 / 48

Reminder: OWL

Outline

1 Reminder: OWL

2 Cardinality restrictions

3 Role modeling

4 A worked example

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 4 / 48



Reminder: OWL

Schematic representation of OWL/DL interpretations

class names C role names R

C I 
  

R I  
 

ΔI 

I    
 

I    
 

No reference/extension distinction

That is, no function IEXT

No properties in the domain

Classes are sets

Properties are relations

Simple extensional semantics

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 5 / 48

Reminder: OWL

ALC Semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, AI ⊆ ∆ for each atomic
concept A, and RI ⊆ ∆×∆ for each role R

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C )I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C )I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.C )I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 6 / 48

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of @ axioms

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 7 / 48

Cardinality restrictions

Outline

1 Reminder: OWL

2 Cardinality restrictions

3 Role modeling

4 A worked example

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 8 / 48



Cardinality restrictions

We shall add

Cardinality restrictions to the TBox

≤n R.C and ≥n R.C

Equality and difference to the ABox, that is

a owl:sameAs b and a owl:differentFrom b, or
a = b and a 6= b in logic notation

An ’RBox’, that is

Role characteristics
Role relationships

Note that

An ontology consists of classes and roles
Axioms in the TBox may affect roles
Role axioms may affect classes
Talk of boxes should not be taken too literally

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 9 / 48

Cardinality restrictions

The ALCQ Description Logic

ALCQ concept descriptions

C , D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (atomic negation)
C u D | (intersection)
C t D | (union)
∀R.C | (value restriction)
∃R.C | (existential restriction)
≤n R.C | (cardinality restriction)

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 10 / 48

Cardinality restrictions

ALCQ Semantics

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C )I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C )I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.C )I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

(≤n R.C )I = {a ∈ ∆I | {b : (a, b) ∈ RI ∧ b ∈ CI}# ≤ n}

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 11 / 48

Cardinality restrictions

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 12 / 48



Cardinality restrictions

Existential restrictions illustrated

Car v Vehicle u ∃hasPart.Engine

Vehicle 

Car Engine 

Anonymous restriction class

hasPart 

Figure: Existential restrictions

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 13 / 48

Cardinality restrictions

A different perspective

>

Vehicle Engine

Car

hasPart

Figure: Connecting classes

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 14 / 48

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 15 / 48

Cardinality restrictions

A tempting mistake

Cardinality restrictions cannot be used to reason with

durations

intervals

or any kind of sequence

and it cannot be used for arithmetic

Anti-pattern:

Scotch whisky is casked for more than three years:

Scotch vWhisky u ≥3 casked .Years

Why?

The class Years is just a set of objects

they are not necessarily related, except by type

the axiom may be satisfied by any random collection of years

≥12 casked .Years is not longer than ≥3 casked .Years

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 16 / 48



Cardinality restrictions

Cardinalities, non-unique names and open worlds

Cardinalities + the OWA and the NUNA is tricky, consider:

TBox:

Ensemble v ChamberEnsemble t Orchestra

ChamberEnsemble v ≤1 firstViolin.>
ABox:

firstViolin(oslo, båtnes)

firstViolin(oslo, tønnesen)

That is;

Ensembles are either orchestras or chamber ensembles

Chamber ensembles have only one instrument on each voice ..

in particular, only one first violin.

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 17 / 48

Cardinality restrictions

Musical taxons

>

Ensemble

ChamberEnsemble Orchestra

BrassQuintet

≤1
first

Violin

Figure: An ontology of ensembles

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 18 / 48

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that Oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 19 / 48

Role modeling

Outline

1 Reminder: OWL

2 Cardinality restrictions

3 Role modeling

4 A worked example

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 20 / 48



Role modeling

Role characteristics and relationships

Role characteristics are mathematical properties of roles.

A role can be:

reflexive/irreflexive
symmetric/asymmetric
transitive
functional/inverse functional

Role relationships: Roles R and S can be

declared disjoint, meaning that RI ∩ SI = ∅
related as inverses, meaning that SI = (R−)I

subsumed under each other, meaning that RI ⊆ SI

chained, e.g. RI ◦ SI ⊆ SI

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 21 / 48

Role modeling

Corresponding mathematical properties and operations

A relation R over a set X is

Reflexive: if (a, a) ∈ R for all a ∈ X
Irreflexive: if a ∈ X implies (a, a) /∈ R
Symmetric: if (a, b) ∈ R implies (b, a) ∈ R
Asymmetric: if (a, b) ∈ R implies (b, a) /∈ R
Transitive: if (a, b), (b, c) ∈ R implies (a, c) ∈ R
Functional: if (a, b), (a, c) ∈ R implies b = c
Inverse functional: if (a, b), (c , b) ∈ R implies a = c

If R and S are binary relations on X then

(a, c) ∈ R ◦ S: if (a, b) ∈ R and (b, c) ∈ S for some b ∈ X
(b, a) ∈ R−: if (a, b) ∈ R.

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 22 / 48

Role modeling

Relation diagrams

A transitive relation:A reflexive relation:

A symmetric relation:

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 23 / 48

Role modeling

Functionality

A (normal) car doesn’t have more than one engine

Vehicle 

Car Engine hasPart

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 24 / 48



Role modeling

Inverse functionality

An engine doesn’t sit in more than one car (simultaneously)

Vehicle 

Car Engine hasPart

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 25 / 48

Role modeling

Some role relationships: Inverses

R R−

Inverse roles R and R−.

a b

c

a b
 

c

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 26 / 48

Role modeling

Chaining of roles

R S

R ◦ S

a

b c

b

d
 

a

d
 

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 27 / 48

Role modeling

Some relations from ordinary language

Symmetric relations:
sibling of
different from

Non-symmetric relations:
brother of
likes

Asymmetric relations:
taller than (under a strict interpretation)
member of

Transitive relations:
taller than
part of (under certain qualifications)

Functional relations:
was born by

Inverse functional relations:
gave birth to

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 28 / 48



Role modeling

Som inverses and chains

Some inverses:

Uncle/nephew

Gave birth to/was born by

To the left of/to the right of

Taller than/shorter than

etc.

Some role chains:

fatherOf ◦ brotherOf v uncleOf

isLocatedIn ◦ isPartOf v isLocatedIn

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 29 / 48

Role modeling

Datatype properties and object properties

OWL enforces a separation between datatype- and object properties:

Object properties:

Also known as abstract roles
connect objects with objects
Example in Turtle syntax:

foaf:knows a owl:ObjectProperty .

Datatype properties:

Also known as concrete roles
connect objects with literal values, i.e. with elements of datatypes.
Example in Turtle-syntax:

ex:age a owl:DatatypeProperty .

ex:age rdfs:range xsd:positiveInteger .

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 30 / 48

Role modeling

Datatype properties and existential restrictions

Datatype properties:

May be used in existential restrictions too ..
to define membership conditions for other classes

Example–defining a class Teenager:

Add a property age as on the previous slide.
Add an existential restriction that sets the age range.
In Manchester syntax:

Person and (age some positiveInteger[>= 13, <= 19])

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 31 / 48

Role modeling

Characteristics of datatype properties

Datatype properties cannot be

reflexive, or they would not be datatype properties
transitive, since literals cannot be subjects of triples
symmetric, for the same reason
inverse functional, for computational reasons

In fact, as of today datatype properties may only be functional

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 32 / 48



Role modeling

Quirks

Role modeling in OWL 2 can get excessively complicated

For instance:

transitive roles cannot be irreflexive or asymmetric
role inclusions are not allowed to cycle, i.e. not

hasParent ◦ hasHusband v hasFather

fasFather v hasParent

transitive roles R and S cannot be declared disjoint

Note

these restrictions can be hard to keep track of
the reason they exist are computational, not logical

Fortunately:

There are also simple patterns ..
that are extremely useful

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 33 / 48

Role modeling

Managing roles in Protege

Object/datatype property tabs
Role characteristics

Domain/range, role relationships

c

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 34 / 48

A worked example

Outline

1 Reminder: OWL

2 Cardinality restrictions

3 Role modeling

4 A worked example

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 35 / 48

A worked example

Merging data from databases

Information in a table can be encoded as RDF:

The recipe is:
1 Come up with a URI for the database as such, and in this namespace:

Make each row in the table a resource,
construct the resource name from the table name and the primary key

2 make each cell a triple where

the resource corresponding to the row is the subject of the triple
the predicate name is constructed from the table and column name
the cell value is the object of the triple

This is called exposing RDBs as RDF and can be done by several tools:

For instance:

D2RQ
SquirrelRDF
OpenLink Virtuoso

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 36 / 48



A worked example

Desirable features

These tools have one or more of the following features

the data is exposed as virtual RDF,

that is, conversion is on-demand rather than up-front

they offer general-purpose mapping from RDB to ontology

that is, tables can be mapped to classes of one’s own choosing

and columns can be mapped to properties

D2RQ, for one, has all features.

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 37 / 48

A worked example

Example: Merging product infromation

The example is an adaptation from Allemang and Hendler:
”Semantic Web for the Working Ontologist”:

Suppose we want to integrate product information, and that

data is stored in two different tables

in two different databases

one contains information about the product per se

and the other about the facilities needed to produce them

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 38 / 48

A worked example

Table excerpts I

Product
Model Manufacture

ID Number Division Location Available
1 ZX-3 Manufacturing Sacramento 23
2 ZX-3P Manufacturing Seoul 14
3 ZX-3S Support Hong Kong 100
4 B1430X Engineering Elizabeth 14
5 B1431 Control Hong Kong 4
6 DBB-12 Accessories Cleveland 87

Figure: Table of products

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 39 / 48

A worked example

Table excerpts II

Product
ID Model Number Facility
1 B1430X Assembly Center
2 1180-M Machine Shop
3 TC-43 Factory
4 ZX-3P Factory
5 B1431 Assembly Center
6 SP-1234 Machine Shop

Figure: Parts and the facilities required to produce them

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 40 / 48



A worked example

The RDF encoding

There are 5 × 6 = 30 triples for the first table, among others

Manufacture location triples

mf:Product1 mf:Product Manufacture location "Sacramento" .

mf:Product2 mf:Product Manufacture location "Seoul" .

mf:Product3 mf:Product Manufacture location "Hong Kong" .

mf:Product4 mf:Product Manufacture location "Elizabeth" .

mf:Product5 mf:Product Manufacture location "Hong Kong" .

mf:Product6 mf:Product Manufacture location "Cleveland" .

We assume that mf: abbreviates the namespace of the database.

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 41 / 48

A worked example

.. contd

Similarly there are 3 × 6 = 18 triples for the second table, among others

Production facility triples

p:Product1 p:Product Facility "Assembly Center" .

p:Product2 p:Product Facility "Machine Shop" .

p:Product3 p:Product Facility "Factory" .

p:Product4 p:Product Facility "Factory" .

p:Product5 p:Product Facility "Assembly Center" .

p:Product6 p:Product Facility "Machine Shop" .

We assume that p: abbreviates the namespace of the database.

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 42 / 48

A worked example

The challenge

We wish to integrate the two tables, so that e.g.

places (i.e. manufacture locations) can be correlated with production
facilities

However, we would like to do so in manner such that

we do not have to go through the rows one-by-one

in a manual editing process

Rather we would like to

Specify a set of general relationships between the respective columns

that enables a reasoner to infer the correlations whenever they exist

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 43 / 48

A worked example

Solution

This can be solved by a two-step procedure:

1. Declare the respective Model Number columns equivalent properties:

if a product x has a mf:Model Number value of ”ZX-3P”
then x also has the same value for p:Model Number

This can be done manully, by adding the following triples:

mf:Product Number rdfs:subPropertyOf p:Product Number .
p:Product Number rdfs:subPropertyOf mf:Product Number .

or it can be done in Protegé

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 44 / 48



A worked example

solution contd.

2. Declare one property to be inverse functional

The range of such a property can be considered a set of unique keys

i.e. elements of the range provide unique identifiers for each element of the
domain.

Thus,

If, say, mf:Model Number is declared to be inverse functional,

then records with the same mf:Model Number represent the same product,

Inverse functionality,

can be declared manually by adding a triple such as

mf:Model Number a owl:InverseFunctionalProperty .

or one can simply check the appropriate box in the Protegé GUI

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 45 / 48

A worked example

A sample trace

A SPARQL query

SELECT ?location ?facility WHERE{
?product mf:Manufacture_Location ?location .
?product p:Product_Facility ?facility.
}

SPARQL finds mf:Product4

which has mf:Manufacture Location ”Hong Kong”

and mf:Product Number B1431

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 46 / 48

A worked example

trace contd.

B1431 is also the p:Product Number of p:Product5

these properties are equivalent

and mf:Product Number is inverse funtional

so it follows that p:Product5 is the same product as mf:Product4

now, p:Product5 has p:Product Facility ”Assembly Center”,

so, mf:Product4 also has p:Product Facility ”Assembly Center”

So (”Hong Kong”, ”Assembly Center”) is a solution for the query

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 47 / 48

A worked example

Other common role modeling patterns

Transitivity and reflexivity for ordering relations, e.g.

the mereological notion of part-whole
being a part of a part of is being a part of
everything is part of itself

Inversely related ordering relations, e.g.

hasPart and partOf
if a has b as a part then b is a part of a

Asymmetry for strict ordering relations, e.g.

the mereological isProperPartOf
if a is a proper part of b then b cannot be a proper part of a

Functional properties where sameness should be inferred, e.g.

the hasFather relation,
where fathers may be known by different names

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 48 / 48


	Reminder: OWL
	Cardinality restrictions
	Role modeling
	A worked example

