INF3580 - Semantic Technologies - Spring 2010 Lecture 9: More OWL, Role modeling

Audun Stolpe

23rd March 2010

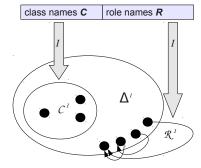
Today's Plan

- Reminder: OWL
- 2 Role modeling
- A worked example

Generelle opplysninger:

Om obligene:

- oblig 1 er rettet
- e-post skal være sendt ut til alle som har levert
- frist for ny levering 8. april
- kommentarer ligger ute på kursets hjemmeside
- sammen med enkelte hint til løsningen


Angående sommeren:

- Bli betalt for å jobbe med semantisk teknologi!
- Vi trenger studenter til å lære seg Cambridge Semantics
- Ta kontakt med Martin eller Audun.

Outline Reminder: OWL 2 Role modeling 3 A worked example

Reminder: OWI

Schematic representation of OWL/DL interpretations

- No reference/extension distinction
- That is, no function *IEXT*
- No properties in the domain
- Classes are sets
- Properties are relations
- Simple extensional semantics

NF3580 :: Spring 2010

Lecture 9 :: 23rd Marci

5/3

Reminder: OWI

\mathcal{ALC} TBox and ABox

- The TBox
 - is for terminological knowledge
 - is independent of any actual instance data
- The ABox
 - is for assertional knowledge
 - contains facts about concrete instances a, b, c, ...
 - A set of concept assertions C(a) ...
 - and role assertions R(b, c)

Reminder: 0

ALC Semantics

Interpretation

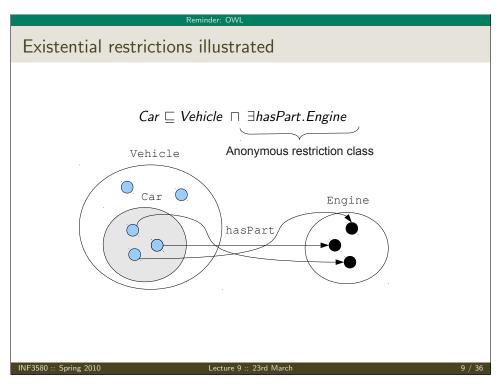
An interpretation $\mathcal I$ fixes a set $\Delta^{\mathcal I}$, the *domain*, $A^{\mathcal I}\subseteq \Delta$ for each atomic concept A, and $R^{\mathcal I}\subseteq \Delta\times \Delta$ for each role R

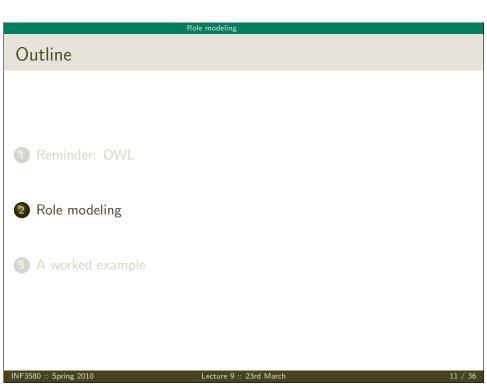
Interpretation of concept descriptions

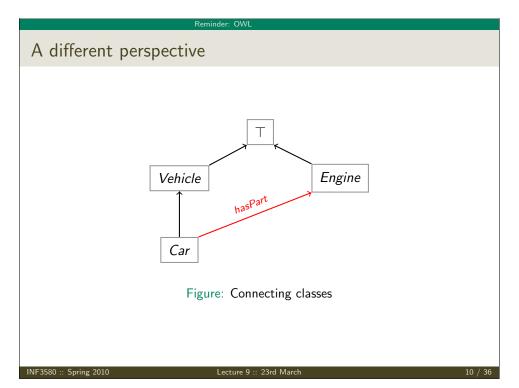
$$\begin{array}{rcl}
\top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\
\bot^{\mathcal{I}} &=& \emptyset \\
(\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\
(C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(C \sqcup D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cup D^{\mathcal{I}} \\
(\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \forall b.(a,b) \in R^{\mathcal{I}} \rightarrow b \in C^{\mathcal{I}}\} \\
(\exists R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \exists b.(a,b) \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}}\}
\end{array}$$

INF3580 :: Spring 2010

Lecture 9 :: 23rd March


6 / 36


Reminder: O\


Recap of restrictions

- Existential restrictions
 - have the form $\exists R.C$
 - typically used to connect classes
 - $A \sqsubseteq \exists R.C$: Every A-object is R-related to some C-object
- Universal restrictions
 - have the form $\forall R.C$
 - restrict the things a type of object can be connected to
 - $A \sqsubseteq \forall R.C$: Every A-object is R-related to C-objects only
 - A-objects may not be R-related to anything at all
- Example:
 - A car is a motorised vehicle
 - $Car \sqsubseteq Vehicle \sqcap \exists hasPart.Engine$

F3580 :: Spring 2010 Lecture 9 :: 23rd March 7 / 36 INF3580 :: Spring 2010 Lecture 9 :: 23rd March 8 / 36

Role modeling

Role characteristics and relationships

Role characteristics are mathematical properties of roles.

- A role can be:
 - reflexive/irreflexive
 - symmetric/asymmetric
 - transitive
 - functional/inverse functional

Role relationships: Roles R and S can be

- declared *disjoint*, meaning that $R^{\mathcal{I}} \cap S^{\mathcal{I}} = \emptyset$
- related as *inverses*, meaning that $S^{\mathcal{I}} = (R^{-})^{\mathcal{I}}$
- ullet subsumed under each other, meaning that $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- ullet chained, e.g. $R^{\mathcal{I}} \circ S^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

INF3580 :: Spring 2010 Lecture 9 :: 23rd March 12 / 36

Role modeling

Corresponding mathematical properties and operations

A relation R over a set X is

Reflexive: if $(a, a) \in R$ for all $a \in X$

Irreflexive: if $a \in X$ implies $(a, a) \notin R$

Symmetric: if $(a, b) \in R$ implies $(b, a) \in R$ Asymmetric: if $(a, b) \in R$ implies $(b, a) \notin R$

Transitive: if $(a, b), (b, c) \in R$ implies $(a, c) \in R$

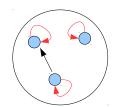
Functional: if $(a, b), (a, c) \in R$ implies b = c

Inverse functional: if $(a, b), (c, b) \in R$ implies a = c

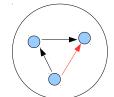
If R and S are binary relations on X then

 $(\mathbf{a},\mathbf{c}) \in \mathbf{R} \circ \mathbf{S}$: if $(a,b) \in R$ and $(b,c) \in S$ for some $b \in X$

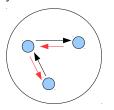
 $(\mathbf{b}, \mathbf{a}) \in \mathbf{R}^-$: if $(a, b) \in R$.


NF3580 :: Spring 2010

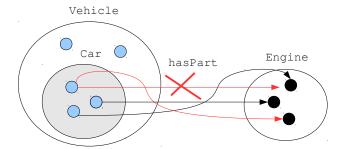
Lecture 9 :: 23rd March


13 / 36

Relation diagrams

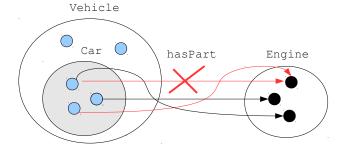

A reflexive relation:

A transitive relation:


A symmetric relation:

14 / 36

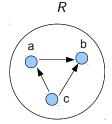
Role modeling

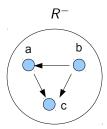

Functionality

A (normal) car doesn't have more than one engine

Role modeling

Inverse functionality




An engine doesn't sit in more than one car (simultaneously)

INF3580 ·· Spring 2010 Lecture 9 ·· 23rd March 16 / 36

Role modeling

Some role relationships: Inverses

Inverse roles R and R^- .

INF3580 :: Spring 201

Lecture 9 :: 23rd March

17 / 36

Chaining of roles R R R S R S A R S A R S A A R S A A A B R S A A A B R S A A A B R S A A B R S A A B R S A A B R S A A B R S A A B R S A B R S A B R S A B R S A B R S A B R A B R S A B R S A B R S A B R S A B R S A B R S A B R S A B R S A B R S A B R S A B R S B R

Role modeling

Some relations from ordinary language

- Symmetric relations:
 - _ sibling of _
 - _ different from _
- *Non*-symmetric relations:
 - _ brother of _
 - _ likes _
- Asymmetric relations:
 - _ taller than _ (under a strict interpretation)
 - _ member of _
- Transitive relations:
 - _ taller than _
 - \bullet _ part of _ (under certain qualifications)
- Functional relations:
 - _ was born by _
- Inverse functional relations:
 - _ gave birth to _

Role modeli

Som inverses and chains

Some inverses:

- Uncle/nephew
- Gave birth to/was born by
- To the left of/to the right of
- Taller than/shorter than
- etc.

Some role chains:

- fatherOf \circ brotherOf \sqsubseteq uncleOf
- ullet isLocatedIn \circ isPartOf \sqsubseteq isLocatedIn

Note modeling

Datatype properties and object properties

OWL enforces a separation between datatype- and object properties:

Object properties:

- Also known as abstract roles
- connect objects with objects
- Example in Turtle syntax:

foaf:knows a owl:ObjectProperty .

Datatype properties:

- Also known as concrete roles
- connect objects with literal values, i.e. with elements of datatypes.
- Example in Turtle-syntax:

```
ex:age a owl:DatatypeProperty .
ex:age rdfs:range xsd:positiveInteger .
```

INF3580 :: Spring 2010

Lecture 9 :: 23rd Marc

21 / 36

Outline 1 Reminder: OWL 2 Role modeling 3 A worked example

Managing roles in Protege Object/datatype property tabs Role characteristics Domain/range, role relationships To delivery bearing from the control of the

A worked exampl

Example: Merging product information

The example is an adaptation from Allemang and Hendler: "Semantic Web for the Working Ontologist":

Suppose we want to integrate product information, and that

- data is stored in two different tables
- in two different databases
- one contains information about the product per se
- \bullet and the other about the facilities needed to produce them

INE3580 ·· Spring 2010 | Lecture 9 ·· 23rd March 24 / 36

A worked example

Table excerpts I

Product					
	Model		Manufacture		
ID	Number	Division	Location	Available	
1	ZX-3	Manufacturing	Sacramento	23	
2	ZX-3P	Manufacturing	Seoul	14	
3	ZX-3S	Support	Hong Kong	100	
4	B1431	Control	Hong Kong	4	
5	B1430X	Engineering	Elizabeth	14	
6	DBB-12	Accessories	Cleveland	87	

Figure: Table of products

NF3580 :: Spring 2010

Lecture 9 :: 23rd March

25 / 36

ecture 9 :: 23rd iviarch

26 / 26

A worked example

The challenge

We wish to integrate the two tables, so that e.g.

• places can be correlated with production facilities

However, we would like to do so in manner such that

- we do not have to go through the rows one-by-one
- in a manual editing process

Rather we would like to

- Specify a set of general relationships between the respective columns
- \bullet that enables a reasoner to \emph{infer} the correlations whenever they exist

Table excerpts II

	Product	
ID	Model Number	Facility
1	B1430X	Assembly Center
2	1180-M	Machine Shop
3	TC-43	Factory
4	ZX-3P	Factory
5	B1431	Assembly Center
6	SP-1234	Machine Shop

Figure: Parts and the facilities required to produce them

A worked exam

Exposing RDBs as RDF

Information in a table can be encoded as RDF:

The recipe is:

- ① Come up with a URI for the database as such, and in this namespace:
 - Make each row in the table a resource.
 - construct the resource name from the table name and the primary key
- make each cell a triple where
 - the resource corresponding to the row is the subject of the triple
 - the predicate name is constructed from the table and column name
 - the cell value is the object of the triple

This is called *exposing RDBs as RDF* and can be done by several tools:

For instance:

- D2RQ
- SquirrelRDF
- OpenLink Virtuoso

IF3580 :: Spring 2010 Lecture 9 :: 23rd March 27 / 36 INF3580 :: Spring 2010 Lecture 9 :: 23rd March 28 / 36

A worked example

Desirable features

These tools have one or more of the following features

- the data is exposed as virtual RDF,
- that is, conversion is on-demand rather than up-front
- they offer general-purpose mapping from RDB to ontology
- that is, tables can be mapped to classes of one's own choosing
- and columns can be mapped to properties

D2RQ, for one, has all features.

NF3580 :: Spring 2010

Lecture 9 :: 23rd March

29 / 36

A worked example

.. contd

Similarly there are $3 \times 6 = 18$ triples for the second table, among others

Production facility triples

```
p:Product1 p:Product_Facility "Assembly Center" .
p:Product2 p:Product_Facility "Machine Shop" .
p:Product3 p:Product_Facility "Factory" .
p:Product4 p:Product_Facility "Factory" .
p:Product5 p:Product_Facility "Assembly Center" .
p:Product6 p:Product_Facility "Machine Shop" .
```

We assume that p: abbreviates the namespace of the database.

A worked example

The RDF encoding

There are $5 \times 6 = 30$ triples for the first table, among others

```
Manufacture location triples
```

```
mf:Product1 mf:Product_Manufacture_location "Sacramento" .
mf:Product2 mf:Product_Manufacture_location "Seoul" .
mf:Product3 mf:Product_Manufacture_location "Hong Kong" .
mf:Product4 mf:Product_Manufacture_location "Elizabeth" .
mf:Product5 mf:Product_Manufacture_location "Hong Kong" .
mf:Product6 mf:Product_Manufacture_location "Cleveland" .
```

We assume that mf: abbreviates the namespace of the database.

INF3580 :: Spring 2010

ecture 9 :: 23rd March

30 / 36

A worked exar

Solution

The challenge can now be solved by a two-step procedure:

- 1. Declare the respective **Model Number** columns equivalent properties:
 - if a product x has a mf:Model_Number value of "ZX-3P"
 - then x also has the same value for p:Model_Number
- This can be done manully, by adding the following triples:
 - mf:Product_Number rdfs:subPropertyOf p:Product_Number .
 p:Product_Number rdfs:subPropertyOf mf:Product_Number .
- or it can be done in Protegé

F3580 ·· Spring 2010 | Lecture 9 ·· 23rd March 31 / 36 | INF3580 ·· Spring 2010 | Lecture 9 ·· 23rd March 32 / 36

A worked example

solution contd.

- 2. Declare one property to be inverse functional
- The range of such a property can be considered a set of unique keys
- i.e. elements of the range provide unique identifiers for each element of the domain.

Thus,

- If, say, mf:Model_Number is declared to be inverse functional,
- then records with the same mf:Model_Number represent the same product, Inverse functionality,
 - can be declared manually by adding a triple such as
 mf:Model_Number a owl:InverseFunctionalProperty .
 which will land you in OWL-full
 - or by using the owl:hasKey facility of OWL 2 (consult the spec)

NF3580 :: Spring 2010

Lecture 9 :: 23rd March

33 / 36

A worked example

trace contd.

- "B1431" is also the p:Product_Number of p:Product5
- these properties are equivalent
- so "B1431" is also the mf:Product_Number of p:Product5
- whence, since mf:Product_Number is inverse funtional, we have p:Product5 = mf:Product4
- now, p:Product5 has p:Product_Facility "Assembly Center",
- and mf:Product4 has mf:Manufacture_Location "Hong Kong"
- So ("Hong Kong", "Assembly Center") is a solution for the query

A worked example

A sample trace

A SPARQL query

- SPARQL finds mf:Product4
- which has mf:Manufacture_Location "Hong Kong"
- and mf:Product Number "B1431"

INF3580 :: Spring 2010

ecture 9 :: 23rd March

3/ / 36

A worked exam

Other common role modeling patterns

- Transitivity and reflexivity for ordering relations, e.g.
 - the mereological notion of part-whole
 - being a part of a part of is being a part of
 - everything is part of itself
- Inversely related ordering relations, e.g.
 - hasPart and partOf
 - if a has b as a part then b is a part of a
- Asymmetry for strict ordering relations, e.g.
 - the mereological isProperPartOf
 - if a is a proper part of b then b cannot be a proper part of a
- Functional properties where sameness should be inferred, e.g.
 - the hasFather relation,
 - where fathers may be known by different names

580 ·· Spring 2010 | Lecture 9 ·· 23rd March 35 / 36 | INE3580 ·· Spring 2010 | Lecture 9 ·· 23rd March 36 / 36