
INF3580 – Semantic Technologies – Spring 2010
Lecture 10: OWL: Loose Ends

Martin Giese

13th April 2010

Department of
Informatics

University of
Oslo

Today’s Plan

1 Reminder: OWL

2 Cardinality restrictions

3 More about Datatypes

4 owl:sameAs and owl:differentFrom

5 Disjointness and Covering Axioms

INF3580 :: Spring 2010 Lecture 10 :: 13th April 2 / 38

Reminder: OWL

Outline

1 Reminder: OWL

2 Cardinality restrictions

3 More about Datatypes

4 owl:sameAs and owl:differentFrom

5 Disjointness and Covering Axioms

INF3580 :: Spring 2010 Lecture 10 :: 13th April 3 / 38

Reminder: OWL

ALC Semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, AI ⊆ ∆ for each atomic
concept A, and RI ⊆ ∆×∆ for each role R

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

INF3580 :: Spring 2010 Lecture 10 :: 13th April 4 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge

is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data

is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡

Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge

contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .

A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .

and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

ALC TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
Role inclusion, functionality, transitivity, inverses,. . .

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of concept assertions C (a) . . .
and role assertions R(b, c)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 5 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C

typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes

A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C

restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to

A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only

A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle

Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Recap of restrictions

Existential restrictions

have the form ∃R.C
typically used to connect classes
A v ∃R.C : Every A-object is R-related to some C -object

Universal restrictions

have the form ∀R.C
restrict the things a type of object can be connected to
A v ∀R.C : Every A-object is R-related to C -objects only
A-objects may not be R-related to anything at all

Example:

A car is a motorised vehicle
Car v Vehicle u ∃hasPart.Engine

INF3580 :: Spring 2010 Lecture 10 :: 13th April 6 / 38

Reminder: OWL

Existential restrictions illustrated

Car v Vehicle u ∃hasPart.Engine

Vehicle

Car Engine

Anonymous restriction class

hasPart

Figure: Existential restrictions

INF3580 :: Spring 2010 Lecture 10 :: 13th April 7 / 38

Reminder: OWL

A different perspective

>

Vehicle Engine

Car

hasPart

Figure: Connecting classes

INF3580 :: Spring 2010 Lecture 10 :: 13th April 8 / 38

Cardinality restrictions

Outline

1 Reminder: OWL

2 Cardinality restrictions

3 More about Datatypes

4 owl:sameAs and owl:differentFrom

5 Disjointness and Covering Axioms

INF3580 :: Spring 2010 Lecture 10 :: 13th April 9 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C

where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number

used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections

A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.

A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>

Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star

Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star

A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Cardinality restrictions

Cardinality restrictions,

have the form ≥n R.C or ≤n R.C
where n is a natural number
used to restrict the number of connections
A v ≥3 R.C : Every A-object is R-related to at least three C -objects.
A v ≤3 R.C : Every A-object is R-related to at most three C -objects.

Example, combining restrictions:

Every planet orbits something: Planet v ∃orbits.>
Anything a planet orbits is a star: Planet v ∀orbits.Star
Planets cannot orbit more than one star: Planet v ≤1 orbits.Star
A solar system has at least one star and one planet:

SolarSystem v ≥1 hasPart.Star u ≥1 hasPart.Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 10 / 38

Cardinality restrictions

Some equivalences

Existential restrictions vs. Cardinality restrictions:

∃R.C ≡ ≥1 R.C

Universal restrictions vs. Cardinality restrictions:

∀R.C ≡ ≤0 R.¬C

Minimum cardinality versus maximum cardinality

≤3 R.C ≡ ¬ ≥4 R.C

≤n R.C ≡ ¬ ≥n+1 R.C

The 0 case
≤0 R.C ≡ ¬∃R.C

≥0 R.C ≡ >
R is functional ⇐⇒ ≤1 R.>

INF3580 :: Spring 2010 Lecture 10 :: 13th April 11 / 38

Cardinality restrictions

Some equivalences

Existential restrictions vs. Cardinality restrictions:

∃R.C ≡ ≥1 R.C

Universal restrictions vs. Cardinality restrictions:

∀R.C ≡ ≤0 R.¬C

Minimum cardinality versus maximum cardinality

≤3 R.C ≡ ¬ ≥4 R.C

≤n R.C ≡ ¬ ≥n+1 R.C

The 0 case
≤0 R.C ≡ ¬∃R.C

≥0 R.C ≡ >
R is functional ⇐⇒ ≤1 R.>

INF3580 :: Spring 2010 Lecture 10 :: 13th April 11 / 38

Cardinality restrictions

Some equivalences

Existential restrictions vs. Cardinality restrictions:

∃R.C ≡ ≥1 R.C

Universal restrictions vs. Cardinality restrictions:

∀R.C ≡ ≤0 R.¬C

Minimum cardinality versus maximum cardinality

≤3 R.C ≡ ¬ ≥4 R.C

≤n R.C ≡ ¬ ≥n+1 R.C

The 0 case
≤0 R.C ≡ ¬∃R.C

≥0 R.C ≡ >
R is functional ⇐⇒ ≤1 R.>

INF3580 :: Spring 2010 Lecture 10 :: 13th April 11 / 38

Cardinality restrictions

Some equivalences

Existential restrictions vs. Cardinality restrictions:

∃R.C ≡ ≥1 R.C

Universal restrictions vs. Cardinality restrictions:

∀R.C ≡ ≤0 R.¬C

Minimum cardinality versus maximum cardinality

≤3 R.C ≡ ¬ ≥4 R.C

≤n R.C ≡ ¬ ≥n+1 R.C

The 0 case
≤0 R.C ≡ ¬∃R.C

≥0 R.C ≡ >
R is functional ⇐⇒ ≤1 R.>

INF3580 :: Spring 2010 Lecture 10 :: 13th April 11 / 38

Cardinality restrictions

Some equivalences

Existential restrictions vs. Cardinality restrictions:

∃R.C ≡ ≥1 R.C

Universal restrictions vs. Cardinality restrictions:

∀R.C ≡ ≤0 R.¬C

Minimum cardinality versus maximum cardinality

≤3 R.C ≡ ¬ ≥4 R.C

≤n R.C ≡ ¬ ≥n+1 R.C

The 0 case
≤0 R.C ≡ ¬∃R.C

≥0 R.C ≡ >

R is functional ⇐⇒ ≤1 R.>

INF3580 :: Spring 2010 Lecture 10 :: 13th April 11 / 38

Cardinality restrictions

Some equivalences

Existential restrictions vs. Cardinality restrictions:

∃R.C ≡ ≥1 R.C

Universal restrictions vs. Cardinality restrictions:

∀R.C ≡ ≤0 R.¬C

Minimum cardinality versus maximum cardinality

≤3 R.C ≡ ¬ ≥4 R.C

≤n R.C ≡ ¬ ≥n+1 R.C

The 0 case
≤0 R.C ≡ ¬∃R.C

≥0 R.C ≡ >
R is functional ⇐⇒ ≤1 R.>

INF3580 :: Spring 2010 Lecture 10 :: 13th April 11 / 38

Cardinality restrictions

Manchester Syntax

≤1 orbits.Star
orbits max 1 Star

≥8 hasPart.Planet
hasPart min 8 Planet

INF3580 :: Spring 2010 Lecture 10 :: 13th April 12 / 38

Cardinality restrictions

The ALCQ Description Logic

ALCQ concept descriptions

C , D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬C | (atomic negation)
C u D | (intersection)
C t D | (union)
∀R.C | (value restriction)
∃R.C | (existential restriction)
≤n R.C | (max. cardinality restriction)
≥n R.C | (min. cardinality restriction)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 13 / 38

Cardinality restrictions

ALCQ Semantics

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

(≤n R.C)I = {a ∈ ∆I | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≤ n}
(≥n R.C)I = {a ∈ ∆I | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≥ n}

INF3580 :: Spring 2010 Lecture 10 :: 13th April 14 / 38

Cardinality restrictions

Cardinalities, non-unique names and open worlds

Cardinalities + the OWA and the NUNA is tricky, consider:

TBox:

Ensemble v ChamberEnsemble t Orchestra

ChamberEnsemble v ≤1 firstViolin.>

That is;

Ensembles are either orchestras or chamber ensembles

Chamber ensembles have only one instrument on each voice. . .

in particular, only one first violin.

ABox:

Ensemble(oslo)

firstViolin(oslo, båtnes)

firstViolin(oslo, tønnesen)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 15 / 38

Cardinality restrictions

Cardinalities, non-unique names and open worlds

Cardinalities + the OWA and the NUNA is tricky, consider:

TBox:

Ensemble v ChamberEnsemble t Orchestra

ChamberEnsemble v ≤1 firstViolin.>
That is;

Ensembles are either orchestras or chamber ensembles

Chamber ensembles have only one instrument on each voice. . .

in particular, only one first violin.

ABox:

Ensemble(oslo)

firstViolin(oslo, båtnes)

firstViolin(oslo, tønnesen)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 15 / 38

Cardinality restrictions

Cardinalities, non-unique names and open worlds

Cardinalities + the OWA and the NUNA is tricky, consider:

TBox:

Ensemble v ChamberEnsemble t Orchestra

ChamberEnsemble v ≤1 firstViolin.>
That is;

Ensembles are either orchestras or chamber ensembles

Chamber ensembles have only one instrument on each voice. . .

in particular, only one first violin.

ABox:

Ensemble(oslo)

firstViolin(oslo, båtnes)

firstViolin(oslo, tønnesen)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 15 / 38

Cardinality restrictions

Musical taxons

>

Ensemble

ChamberEnsemble Orchestra

BrassQuintet

≤1
first

Violin

Figure: An ontology of ensembles

INF3580 :: Spring 2010 Lecture 10 :: 13th April 16 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA

We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct

Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,

or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble

This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA

According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo

in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an Orchestra

This is due to the NUNA
We cannot assume that båtnes and tønnesen are distinct
Hence, we must add statements to this effect to the ABox:

båtnes owl:differentFrom tønnesen,
or in logic-notation: båtnes6=tønnesen,

Conversely, if we remove firstViolin(oslo, tønnesen). . .

it does not follow that oslo is a ChamberEnsemble
This is due to the OWA
According to which we may not know everything about oslo
in particular there may be other first violinists

INF3580 :: Spring 2010 Lecture 10 :: 13th April 17 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations

intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals

or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence

and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:

Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.

Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages

For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15

INF3580 :: Spring 2010 Lecture 10 :: 13th April 18 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked

domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked

domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky

range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int

relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person

Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person

Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

Cardinality restrictions

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2010 Lecture 10 :: 13th April 19 / 38

More about Datatypes

Outline

1 Reminder: OWL

2 Cardinality restrictions

3 More about Datatypes

4 owl:sameAs and owl:differentFrom

5 Disjointness and Covering Axioms

INF3580 :: Spring 2010 Lecture 10 :: 13th April 20 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources

datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .

Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings

Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans

Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data

IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs

Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants

XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2010 Lecture 10 :: 13th April 21 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string

xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.

xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.

xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.

xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.

xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.

xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string
xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 22 / 38

More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and nrInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties

INF3580 :: Spring 2010 Lecture 10 :: 13th April 23 / 38

More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and nrInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties

INF3580 :: Spring 2010 Lecture 10 :: 13th April 23 / 38

More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and nrInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties

INF3580 :: Spring 2010 Lecture 10 :: 13th April 23 / 38

More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and nrInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties

INF3580 :: Spring 2010 Lecture 10 :: 13th April 23 / 38

More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,
pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property
A ≡ str some string[pattern "(ab)*"]
B ≡ str some string[pattern "a(ba)*b"]
Reasoner can find out that B v A.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 24 / 38

More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,
pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property
A ≡ str some string[pattern "(ab)*"]
B ≡ str some string[pattern "a(ba)*b"]
Reasoner can find out that B v A.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 24 / 38

More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,
pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property
A ≡ str some string[pattern "(ab)*"]
B ≡ str some string[pattern "a(ba)*b"]
Reasoner can find out that B v A.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 24 / 38

More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,
pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property
A ≡ str some string[pattern "(ab)*"]
B ≡ str some string[pattern "a(ba)*b"]
Reasoner can find out that B v A.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 24 / 38

More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,
pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property
A ≡ str some string[pattern "(ab)*"]
B ≡ str some string[pattern "a(ba)*b"]
Reasoner can find out that B v A.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 24 / 38

More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,
pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property

A ≡ str some string[pattern "(ab)*"]
B ≡ str some string[pattern "a(ba)*b"]
Reasoner can find out that B v A.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 24 / 38

More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,
pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property
A ≡ str some string[pattern "(ab)*"]

B ≡ str some string[pattern "a(ba)*b"]
Reasoner can find out that B v A.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 24 / 38

More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,
pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property
A ≡ str some string[pattern "(ab)*"]
B ≡ str some string[pattern "a(ba)*b"]

Reasoner can find out that B v A.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 24 / 38

More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,
pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property
A ≡ str some string[pattern "(ab)*"]
B ≡ str some string[pattern "a(ba)*b"]
Reasoner can find out that B v A.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 24 / 38

owl:sameAs and owl:differentFrom

Outline

1 Reminder: OWL

2 Cardinality restrictions

3 More about Datatypes

4 owl:sameAs and owl:differentFrom

5 Disjointness and Covering Axioms

INF3580 :: Spring 2010 Lecture 10 :: 13th April 25 / 38

owl:sameAs and owl:differentFrom

Orchestras again. . .

TBox:

Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)

Want to infer: Orchestra(oslo)

But: tønnesenI = båtnesI

INF3580 :: Spring 2010 Lecture 10 :: 13th April 26 / 38

owl:sameAs and owl:differentFrom

Orchestras again. . .

TBox:
Ensemble v ChamberEnsemble t Orchestra

ChamberEnsemble v ≤1 firstViolin.>
ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)

Want to infer: Orchestra(oslo)

But: tønnesenI = båtnesI

INF3580 :: Spring 2010 Lecture 10 :: 13th April 26 / 38

owl:sameAs and owl:differentFrom

Orchestras again. . .

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)

Want to infer: Orchestra(oslo)

But: tønnesenI = båtnesI

INF3580 :: Spring 2010 Lecture 10 :: 13th April 26 / 38

owl:sameAs and owl:differentFrom

Orchestras again. . .

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)

Want to infer: Orchestra(oslo)

But: tønnesenI = båtnesI

INF3580 :: Spring 2010 Lecture 10 :: 13th April 26 / 38

owl:sameAs and owl:differentFrom

Orchestras again. . .

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)

firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)

Want to infer: Orchestra(oslo)

But: tønnesenI = båtnesI

INF3580 :: Spring 2010 Lecture 10 :: 13th April 26 / 38

owl:sameAs and owl:differentFrom

Orchestras again. . .

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)
firstViolin(oslo, båtnes)

firstViolin(oslo, tønnesen)

Want to infer: Orchestra(oslo)

But: tønnesenI = båtnesI

INF3580 :: Spring 2010 Lecture 10 :: 13th April 26 / 38

owl:sameAs and owl:differentFrom

Orchestras again. . .

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)

Want to infer: Orchestra(oslo)

But: tønnesenI = båtnesI

INF3580 :: Spring 2010 Lecture 10 :: 13th April 26 / 38

owl:sameAs and owl:differentFrom

Orchestras again. . .

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)

Want to infer: Orchestra(oslo)

But: tønnesenI = båtnesI

INF3580 :: Spring 2010 Lecture 10 :: 13th April 26 / 38

owl:sameAs and owl:differentFrom

Orchestras again. . .

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)

Want to infer: Orchestra(oslo)

But: tønnesenI = båtnesI

INF3580 :: Spring 2010 Lecture 10 :: 13th April 26 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:

Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:

Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:

Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:
Ensemble v ChamberEnsemble t Orchestra

ChamberEnsemble v ≤1 firstViolin.>
ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:

Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)

firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)
firstViolin(oslo, båtnes)

firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)

owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

owl:differentFrom

Need to say that båtnes and tønnesen are different

This can be expressed with a triple
båtnes owl:differentFrom tønnesen

TBox:
Ensemble v ChamberEnsemble t Orchestra
ChamberEnsemble v ≤1 firstViolin.>

ABox:
Ensemble(oslo)
firstViolin(oslo, båtnes)
firstViolin(oslo, tønnesen)
owl:differentFrom(tønnesen,båtnes)

. . . together imply Orchestra(oslo).

OWL also provides an “allDifferent” construct for whole sets

INF3580 :: Spring 2010 Lecture 10 :: 13th April 27 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo

description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/

:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...

fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages

dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/

:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...

fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang

dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/

:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...

fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/

:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...

fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/

:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...

fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/
:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)

:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...

fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/
:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...

fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/
:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...

fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/
:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...
fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/
:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...
fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/
:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...
fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

Information about Oslo

DBpedia: http://dbpedia.org/resource/Oslo
description in many languages
dbpprop:leaderName dbpedia:Fabian_Stang
dbpprop:aprSnowCm "3"^^xsd:double

Geonames: http://sws.geonames.org/3143244/
:parentFeature http://sws.geonames.org/3143242/ (Oslo fylke)
:nearby http://sws.geonames.org/6697867/ (Oslo Sentrum)

Freebase: http://rdf.freebase.com/ns/guid.9202a8c...
fb:local_transportation fb:en.oslo_t-bane

And a couple more!

Many different URIs for the same resource!

How can a machine combine the information?

INF3580 :: Spring 2010 Lecture 10 :: 13th April 28 / 38

owl:sameAs and owl:differentFrom

owl:sameAs

Two resources can be made the same using owl:sameAs,e.g.
dbpedia:Oslo owl:sameAs geonames:3143244

Semantics: a owl:sameAs b is true in I iff aI = bI

Allows to infer the same, joint, information about several URIs:

a owl:sameAs b
a R c

b R c

Note: only for individuals. For classes, use class equivalence axioms:
en:Town owl:equivalentClass no:By .

INF3580 :: Spring 2010 Lecture 10 :: 13th April 29 / 38

owl:sameAs and owl:differentFrom

owl:sameAs

Two resources can be made the same using owl:sameAs,e.g.
dbpedia:Oslo owl:sameAs geonames:3143244

Semantics: a owl:sameAs b is true in I iff aI = bI

Allows to infer the same, joint, information about several URIs:

a owl:sameAs b
a R c

b R c

Note: only for individuals. For classes, use class equivalence axioms:
en:Town owl:equivalentClass no:By .

INF3580 :: Spring 2010 Lecture 10 :: 13th April 29 / 38

owl:sameAs and owl:differentFrom

owl:sameAs

Two resources can be made the same using owl:sameAs,e.g.
dbpedia:Oslo owl:sameAs geonames:3143244

Semantics: a owl:sameAs b is true in I iff aI = bI

Allows to infer the same, joint, information about several URIs:

a owl:sameAs b
a R c

b R c

Note: only for individuals. For classes, use class equivalence axioms:
en:Town owl:equivalentClass no:By .

INF3580 :: Spring 2010 Lecture 10 :: 13th April 29 / 38

owl:sameAs and owl:differentFrom

owl:sameAs

Two resources can be made the same using owl:sameAs,e.g.
dbpedia:Oslo owl:sameAs geonames:3143244

Semantics: a owl:sameAs b is true in I iff aI = bI

Allows to infer the same, joint, information about several URIs:

a owl:sameAs b
a R c

b R c

Note: only for individuals. For classes, use class equivalence axioms:
en:Town owl:equivalentClass no:By .

INF3580 :: Spring 2010 Lecture 10 :: 13th April 29 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia

geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames

freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase

OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc

etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer

A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities

⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.

OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?

Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

owl:sameAs and owl:differentFrom

owl:sameAs in Practice

Many Semantic Web sites are interlinked with owl:sameAs:

DBpedia
geonames
freebase
OpenCyc
etc.

Not always both ways but often

Easy to misuse for things not quite the same

E.g. two FOAF files at the current and a former employer
A owl:sameAs link between the two identities
⇒ Two workplaces, two addresses, etc.
OK to equate the old me and the new me?
Temporal aspects are a weakness in sem. tek. standards!

Can’t trust owl:sameAs links blindly

Linked Open Data browsers treat them like other predicates

INF3580 :: Spring 2010 Lecture 10 :: 13th April 30 / 38

Disjointness and Covering Axioms

Outline

1 Reminder: OWL

2 Cardinality restrictions

3 More about Datatypes

4 owl:sameAs and owl:differentFrom

5 Disjointness and Covering Axioms

INF3580 :: Spring 2010 Lecture 10 :: 13th April 31 / 38

Disjointness and Covering Axioms

Guys and Gals

Try to model the relationship between the concepts

Person
Man
Woman

First try:
Man v Person

Woman v Person

General shape of a model:

x is both Man and Woman, y is neither but a Person.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 32 / 38

Disjointness and Covering Axioms

Guys and Gals

Try to model the relationship between the concepts
Person

Man
Woman

First try:
Man v Person

Woman v Person

General shape of a model:

x is both Man and Woman, y is neither but a Person.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 32 / 38

Disjointness and Covering Axioms

Guys and Gals

Try to model the relationship between the concepts
Person
Man

Woman

First try:
Man v Person

Woman v Person

General shape of a model:

x is both Man and Woman, y is neither but a Person.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 32 / 38

Disjointness and Covering Axioms

Guys and Gals

Try to model the relationship between the concepts
Person
Man
Woman

First try:
Man v Person

Woman v Person

General shape of a model:

x is both Man and Woman, y is neither but a Person.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 32 / 38

Disjointness and Covering Axioms

Guys and Gals

Try to model the relationship between the concepts
Person
Man
Woman

First try:
Man v Person

Woman v Person

General shape of a model:

x is both Man and Woman, y is neither but a Person.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 32 / 38

Disjointness and Covering Axioms

Guys and Gals

Try to model the relationship between the concepts
Person
Man
Woman

First try:
Man v Person

Woman v Person

General shape of a model:

x is both Man and Woman, y is neither but a Person.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 32 / 38

Disjointness and Covering Axioms

Guys and Gals

Try to model the relationship between the concepts
Person
Man
Woman

First try:
Man v Person

Woman v Person

General shape of a model:

x is both Man and Woman, y is neither but a Person.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 32 / 38

Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Man and a Woman

Add a disjointness axiom for Man and Woman

Equivalent possibilities:

Man uWoman ≡ ⊥
Man v ¬Woman
Woman v ¬Man

General shape of a model:

Specific support in OWL (owl:disjointWith) and Protégé

INF3580 :: Spring 2010 Lecture 10 :: 13th April 33 / 38

Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Man and a Woman

Add a disjointness axiom for Man and Woman

Equivalent possibilities:

Man uWoman ≡ ⊥
Man v ¬Woman
Woman v ¬Man

General shape of a model:

Specific support in OWL (owl:disjointWith) and Protégé

INF3580 :: Spring 2010 Lecture 10 :: 13th April 33 / 38

Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Man and a Woman

Add a disjointness axiom for Man and Woman

Equivalent possibilities:

Man uWoman ≡ ⊥
Man v ¬Woman
Woman v ¬Man

General shape of a model:

Specific support in OWL (owl:disjointWith) and Protégé

INF3580 :: Spring 2010 Lecture 10 :: 13th April 33 / 38

Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Man and a Woman

Add a disjointness axiom for Man and Woman

Equivalent possibilities:

Man uWoman ≡ ⊥
Man v ¬Woman
Woman v ¬Man

General shape of a model:

Specific support in OWL (owl:disjointWith) and Protégé

INF3580 :: Spring 2010 Lecture 10 :: 13th April 33 / 38

Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Man and a Woman

Add a disjointness axiom for Man and Woman

Equivalent possibilities:

Man uWoman ≡ ⊥
Man v ¬Woman
Woman v ¬Man

General shape of a model:

Specific support in OWL (owl:disjointWith) and Protégé

INF3580 :: Spring 2010 Lecture 10 :: 13th April 33 / 38

Disjointness and Covering Axioms

Covering Axioms

Any Person should be either a Man or a Woman.

Add a covering axiom

Person v Man tWoman

General shape of a model (with disjointness!):

Specific support in Protégé (“Add Covering Axiom”)

Compare to “abstract classes” in OO!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 34 / 38

Disjointness and Covering Axioms

Covering Axioms

Any Person should be either a Man or a Woman.

Add a covering axiom

Person v Man tWoman

General shape of a model (with disjointness!):

Specific support in Protégé (“Add Covering Axiom”)

Compare to “abstract classes” in OO!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 34 / 38

Disjointness and Covering Axioms

Covering Axioms

Any Person should be either a Man or a Woman.

Add a covering axiom

Person v Man tWoman

General shape of a model (with disjointness!):

Specific support in Protégé (“Add Covering Axiom”)

Compare to “abstract classes” in OO!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 34 / 38

Disjointness and Covering Axioms

Covering Axioms

Any Person should be either a Man or a Woman.

Add a covering axiom

Person v Man tWoman

General shape of a model (with disjointness!):

Specific support in Protégé (“Add Covering Axiom”)

Compare to “abstract classes” in OO!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 34 / 38

Disjointness and Covering Axioms

Covering Axioms

Any Person should be either a Man or a Woman.

Add a covering axiom

Person v Man tWoman

General shape of a model (with disjointness!):

Specific support in Protégé (“Add Covering Axiom”)

Compare to “abstract classes” in OO!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 34 / 38

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering!

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both. . .

. . . in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 35 / 38

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering!

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both. . .

. . . in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 35 / 38

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering!

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both. . .

. . . in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 35 / 38

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering!

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both. . .

. . . in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 35 / 38

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering!

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both. . .

. . . in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 35 / 38

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering!

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both. . .

. . . in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 35 / 38

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering!

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both. . .

. . . in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 35 / 38

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering!

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both. . .

. . . in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 35 / 38

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal

Dog v Mammal

Nothing is both a cat and a dog. . .

Cat v ¬Dog

But there are mammals which are neither. . .

. . . in this lecture hall!

No covering axiom for subclasses Cat and Dog of Mammal

INF3580 :: Spring 2010 Lecture 10 :: 13th April 36 / 38

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal

Dog v Mammal

Nothing is both a cat and a dog. . .

Cat v ¬Dog

But there are mammals which are neither. . .

. . . in this lecture hall!

No covering axiom for subclasses Cat and Dog of Mammal

INF3580 :: Spring 2010 Lecture 10 :: 13th April 36 / 38

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal

Dog v Mammal

Nothing is both a cat and a dog. . .

Cat v ¬Dog

But there are mammals which are neither. . .

. . . in this lecture hall!

No covering axiom for subclasses Cat and Dog of Mammal

INF3580 :: Spring 2010 Lecture 10 :: 13th April 36 / 38

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal

Dog v Mammal

Nothing is both a cat and a dog. . .

Cat v ¬Dog

But there are mammals which are neither. . .

. . . in this lecture hall!

No covering axiom for subclasses Cat and Dog of Mammal

INF3580 :: Spring 2010 Lecture 10 :: 13th April 36 / 38

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal

Dog v Mammal

Nothing is both a cat and a dog. . .

Cat v ¬Dog

But there are mammals which are neither. . .

. . . in this lecture hall!

No covering axiom for subclasses Cat and Dog of Mammal

INF3580 :: Spring 2010 Lecture 10 :: 13th April 36 / 38

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal

Dog v Mammal

Nothing is both a cat and a dog. . .

Cat v ¬Dog

But there are mammals which are neither. . .

. . . in this lecture hall!

No covering axiom for subclasses Cat and Dog of Mammal

INF3580 :: Spring 2010 Lecture 10 :: 13th April 36 / 38

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal

Dog v Mammal

Nothing is both a cat and a dog. . .

Cat v ¬Dog

But there are mammals which are neither. . .

. . . in this lecture hall!

No covering axiom for subclasses Cat and Dog of Mammal

INF3580 :: Spring 2010 Lecture 10 :: 13th April 36 / 38

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither students nor teachers

though not in this lecture hall!

No covering axiom for these subclasses of Person

There are people who are both students and teachers

E.g. most PhD students

No disjointness axiom for Teacher and Student!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 37 / 38

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither students nor teachers

though not in this lecture hall!

No covering axiom for these subclasses of Person

There are people who are both students and teachers

E.g. most PhD students

No disjointness axiom for Teacher and Student!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 37 / 38

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither students nor teachers

though not in this lecture hall!

No covering axiom for these subclasses of Person

There are people who are both students and teachers

E.g. most PhD students

No disjointness axiom for Teacher and Student!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 37 / 38

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither students nor teachers

though not in this lecture hall!

No covering axiom for these subclasses of Person

There are people who are both students and teachers

E.g. most PhD students

No disjointness axiom for Teacher and Student!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 37 / 38

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither students nor teachers

though not in this lecture hall!

No covering axiom for these subclasses of Person

There are people who are both students and teachers

E.g. most PhD students

No disjointness axiom for Teacher and Student!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 37 / 38

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither students nor teachers

though not in this lecture hall!

No covering axiom for these subclasses of Person

There are people who are both students and teachers

E.g. most PhD students

No disjointness axiom for Teacher and Student!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 37 / 38

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither students nor teachers

though not in this lecture hall!

No covering axiom for these subclasses of Person

There are people who are both students and teachers

E.g. most PhD students

No disjointness axiom for Teacher and Student!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 37 / 38

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither students nor teachers

though not in this lecture hall!

No covering axiom for these subclasses of Person

There are people who are both students and teachers

E.g. most PhD students

No disjointness axiom for Teacher and Student!

INF3580 :: Spring 2010 Lecture 10 :: 13th April 37 / 38

Disjointness and Covering Axioms

Next Week

Audun will take a recap:

Some basic notions of sets and relations

Repetition of logic, models, entailment, etc.

INF3580 :: Spring 2010 Lecture 10 :: 13th April 38 / 38

	Reminder: OWL
	Cardinality restrictions
	More about Datatypes
	owl:sameAs and owl:differentFrom
	Disjointness and Covering Axioms

