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Basic notions Sets

Sets

Definition

A set is a finite or infinite collection of objects called elements of the
set, considered exclusively in terms of membership. That is:

the ordering of elements doesn’t matter
the number of occurrences of an element doesn’t matter

Extensionality

Two sets A and B are equal, A = B, if and only if they contain the
same elements (in any order, any number of times)

Notation

The object a is/is not an element in A: a ∈ A, a /∈ A

E. g. the set of natural numbers from 1 to 4 inclusive: {1, 2, 3, 4}
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Basic notions Sets

Set-builder notation, cardinality

Set-builders

Construct sets by restricting other sets

Correspond to definitions “the set of all elements a ∈ A such that . . .”

Is usually written {a ∈ A| restriction on a} (expect variation)

Example: {i ∈ Z| i < 0} = {. . . ,−2,−3,−1}

Cardinality

The size of a set A is called its cardinality. It is usually denoted |A| or ]A.
For instance

]{a, b, c} = |{a, b, c}| = 3

]{a, b, d , a, c, b} = ]{d , c , b, b, a} = ]{a, b, c , d} = 4

The inclusion exclusion principle: |A ∪ B| = |A|+ |B| − |A ∩ B|
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Basic notions Sets

Families of sets, singleton sets, the empty set

Families of sets

Sets can be elements of other sets (given that its not the very same set):

{{. . . ,−3,−2,−1}, {0}, {1, 2, 3, . . .}}
{{1, 3, 5 . . .}, {2, 4, 6, . . .}}

Singletons

A set that contains exactly one element is called a singleton

{a} is a singleton

{{a}} is a singleton

{b, b} is a singleton

INF3580 :: Spring 2010 Lecture 11 :: 20th April 6 / 52

Basic notions Sets

Two distinguished sets

The universal set

The universal set is the sum total of objects that are assumed to exist
relative to a given problem. We shall denote it ∆. The assumption is that:

A ⊆ ∆ for all sets A

The empty set

The empty set is the unique set without elements. It is denoted ∅ or
simple {}. The empty set is a set, and

∅ ⊆ A for all A

INF3580 :: Spring 2010 Lecture 11 :: 20th April 7 / 52

Basic notions Sets

Some examples

Equalities and non-equalities

Some basic equalities:

{a, b, c} = {a, a, b, c}
= {b, c , a}
= {c , a, b, b}

Equalities involving set-builders:

{2k + 1| k ∈ N} = {3, 5, 7, 9, 11 . . .}
{{0}, {1}, {2}, . . .} = {{n}| n ∈ N}.
{{0}, {0, 1}, {0, 1, 2}, . . .} = {{m| 0 ≤ m ≤ n}| n ∈ N}.

Non-equalities:

{a, b, c} 6= {a, b} 6= {a, b, d}
∅ 6= {∅}
{b, b} 6= {{b}}
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Basic notions Sets

Operations on sets: Intersection

A ∩ B = {a ∈ ∆| a ∈ A & a ∈ B}
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Basic notions Sets

Operations on sets: Union

A ∪ B = {a ∈ ∆| a ∈ A or a ∈ B}
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Basic notions Sets

Operations on sets: Relative complement/difference

A− B = {a ∈ ∆| a ∈ A & a /∈ B}
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Basic notions Sets

Operations on sets: Absolute complement

−A = {a ∈ ∆| a /∈ A}
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Basic notions Sets

Relations between sets: Subsumption

A ⊆ B iff a ∈ A implies a ∈ B
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Basic notions Sets

The algebra of sets

Associativity:
A ∪ (B ∪ C) = (A ∪ B) ∪ C A ∩ (B ∩ C) = (A ∩ B) ∩ C

Commutativity:
A ∪ B = B ∪ A A ∩ B = B ∩ A

Units and zeros:
A ∪ ∅ = A A ∪∆ = ∆ A ∩∆ = A A ∩ ∅ = ∅

Idempotence:
A ∪ A = A A ∩ A = A

Distribution:
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Complementation:
A ∪ −A = ∆ −∆ = ∅ −(−A) = A

A ∩ −A = ∅ −∅ = ∆

De Morgan’s Laws:
−(A ∪ B) = −A ∩ −B −(A ∩ B) = −A ∪ −B
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Basic notions Sets

Go figure

From this meager framework comes very surprising things, e.g.

That infinity comes in different sizes

that an infinite set can have a proper subset of equal size

that there are just as many points along a line as in a plane

that some sets cannot be counted, even in principle

anyway .... back to topic
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Basic notions Relations

Pairs and products

Ordered pair

An ordered pair is an object of the form (a, b) where a is an element of
some set A and b is an element of some set B.

The pair is ordered in the sense that (a, b) 6= (b, a) unless a = b.

It follows that (a, b) 6= {a, b}

Cartesian product

The set of all ordered pairs (a, b) where a ∈ A and b ∈ B is called the
Cartesian product of A and B. It is written A× B.

A× B = {(a, b)| a ∈ A & b ∈ B}
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Basic notions Relations

Relations

Binary relation

A binary relation R between two sets A and B is a subset of the Cartesian
product A× B. In the special case that A = B we say that R is a relation
on A.

Notation

That x is R-related to y may be written

1 (x , y) ∈ R

2 R(x , y)

3 xRy

We may regard 2 and 3 as syntactical sugar for 1.
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Basic notions Relations

Properties of relations

Some very common properties

A relation R on a set A is

Reflexive when (x , x) ∈ R for all x ∈ A.

Symmetric if (x , y) ∈ R whenever (y , x) ∈ R for all x , y ∈ A

Transitive if (x , z) ∈ R whenever (x , y), (y , z) ∈ R for all x , y , z ∈ A

Asymmetric if (y , x) ∈ R and (x , y) ∈ R is true of no x , y ∈ A.

... there are many more

A comprehensive list of OWL-supported properties was given in lecture 9.
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Basic notions Relations

Some operations on relations

Inverse

Let R be a binary relation on ∆. The inverse of R is:

R−1 = {(b, a) : (a, b) ∈ R}

Composition

Let R and S be binary relations on ∆. The composition of R and S is:

R ◦ S = {(a, c) : (a, b) ∈ R and (b, c) ∈ S for some b ∈ ∆}

Image formation

Let R a binary relation on ∆ and A ⊆ ∆. The image of R under A, is:

R(A) = {b ∈ ∆ : (a, b) ∈ R and a ∈ A}
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Basic notions Relations

Some images

R 

a

b

c

d

e
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Basic notions Relations

Some images

a

b

c

d

e

R({a}) = {b, c}
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Basic notions Relations

Some images

a

b

c

d

e

R({d}) = {b, e}
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Basic notions Relations

Some images

a

b

c

d

e

R({d, a}) = R({a}) U R({d})
              = {b, c, e}
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Basic notions Functions

Functions

Definition

A function f from a set A to a set B is a special kind of binary relation in
which every element of A is associated with a unique element of B. In
other words:

For every a ∈ A there is precisely one pair of the form (a, b) ∈ f

stated differently, if (a, b) ∈ f and (a, c) ∈ f then b = c

Notation

It is common to write (a, b) ∈ f as

f (a) = b, or

af = b

We think of f as being applied to the argument a.
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Basic notions Functions

A function and a non-function

a

c

d

e

b

A function f from {a, b, c} to {d, e}
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Basic notions Functions

A function and a non-function

a

c

d

e

b

A relation but not a function from {a, b, c} to {d, e}
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Basic notions Functions

The function of functions

Functions may be said to describe processes (broadly conceived) whereby

the elements of one set are transformed into those of another

The models of model-theoretic semantics are functions

they are also called interpretations

they interpret a formal language in terms of objects, sets and relations

that is, interpretations assign meanings to linguistic entities, e.g.:

objects to names
sets of objects to concepts
relations to predicates
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Semantics

Revisiting ALCQ semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, and

AI ⊆ ∆ for each atomic concept A,

RI ⊆ ∆×∆ for each role R, and

aI ∈ ∆I for each name a.

Interpretations thus assign a meaning to all simple non-logical symbols

however, there are also complex relations and classes as well

so this does not in general suffice to interpret arbitrary formulae

we need in addition to say

how the meaning of a complex expression ....
depends on the meaning of its simple parts
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Semantics

Interpretation of complex ALCQ concepts

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C )I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C )I = {a ∈ ∆I | if (a, b) ∈ RI then b ∈ CI}
(∃R.C )I = {a ∈ ∆I | there is a b ∈ ∆Is.t.(a, b) ∈ RIand b ∈ CI}

(≥n R.C )I = {a ∈ ∆I | ]{b | (a, b) ∈ RI and b ∈ CI} ≥ n}

Notational variants

(∀R.C )I = {a ∈ ∆I | RI(a) ⊆ CI}
(∃R.C )I = {a ∈ ∆I | RI(a) ∩ CI 6= ∅}

(≥n R.C )I = {a ∈ ∆I | |RI(a) ∩ CI}| ≥ n}
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Semantics

The form of DL/OWL ontologies

TBox and ABox formulae

An ALCQ knowledge base consists of two kinds of formulae

Subsumption axioms:

Are of the form C v D (where C and D are concepts)
model general relationships
belong to the ontological level or the TBox

Assertions:

Are of the form C (a) or R(a, b)
where C is a concept, and R a role
describe facts
belong to the dataset or the ABox
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Semantics

Connection with OWL ontologies

The Ontology level

Car v Vehicle

Car v ∃hasPart.Engine

>

Vehicle Engine

Car

has
Part

—————————The data level———————-

Car(myBeetle)
Engine(theEngine)
hasPart(myBeetle, theEngine)
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Semantics

Satisfation/truth

Satisfaction/truth

Subsumption axioms: C v D is true in an interpretation I:

Written I � C v D,
holds if and only if CI ⊆ DI

alternatively, if and only if I(C ) ⊆ I(D)

Assertions: C (a) or R(a, b) is true in I:

Written I � C (a) or I � R(a, b),
I � C (a) iff aI ∈ CI

I � R(a, b) iff (aI , bI) ∈ RI

We say that I satisfies a set of sentences S , written I � S iff

I � s for all s ∈ S .
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Semantics

Taking stock

Interpretations/models I are functions

CI might have been written I(C )

Interpretations fix reference/meaning in a set or domain ∆I , e. g.:

∆I = {a, b, c , d , e}
CI = {c , d , e}
RI = {(a, d), (a, e), (b, c)}

(∃R.C )I = {a ∈ ∆I |RI(a) ∩ CI 6= ∅}
= {a, b}

Truth is in turn defined in terms of reference ...

to yield a complex notion of a statement’s being true in a model I
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Semantics

What’s the point?

Semantic technology is about computable descriptions of data

where the data descriptions are declarative,
give the intended interpretation of the data,
and of the relationship between data items

The descriptions enable computers to reason logically, e.g. to

check for consistency
add implicit information
answer complex queries

Automated inference is based on logical entailment

which is defined in terms of truth in a class of models
hence we need a precise definition of what truth in a model is
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Semantics

Entailment, countermodels and consistency in general

Validity

A set of sentences S entails a formula ψ, written S � ψ, iff I � ψ
whenever I � S for all interpretations I of the given class.

Consistency

A set of sentences S is consistent iff it has a model. That is, if and only if
there is a model I such that I � S .

Countermodels

A set of sentences S does not entail a formula ψ if there is a model I such
that I � S but I 2 ψ. We say that I is a countermodel for the entailment
S ⇒ ψ
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Semantics

... and in ALCQ TBoxes

Validity

A subsumption axiom C v D is entailed by an ontology O iff O � C v D,
that is, iff I � C v D whenever I � O for all ALCQ models I

Countermodels

An ontology O does not entail a subsumption axiom C v D if there is an
ALCQ model I such that I � O ∪ {C} but I 2 D.
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Walkthroughs

Revisiting some examples from lecture 8

Ax1 TwoCV v Car

Any TwoCV is a car

Ax2 TwoCV v ∀driveAxle.FrontAxle

All drive axles of TwoCV s are front axles

Ax3 FrontDrivenCar ≡ Car u ∀driveAxle.FrontAxle

A front driven car is one where all drive axles are front axles

Now let’s ask some questions:

Does Ax1 entail that any TwoCV is a Car?
Does Ax1 and Ax2 entail that any TwoCV has a FrontAxle?
Is it consistent to assume that a front driven car may lack a drive axle?
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Walkthroughs

Does Ax1 entail that any TwoCV is a CAR?

Fix any domain of objects ∆I ,

Fix a set TwoCV I

Fix a set CARI

Check what the axioms require

In this case TwoCV I ⊆ CARI

(Ax1)

Adjust the model accordingly

TwoCV s are CARs in this model

The model was chosen arbitrarily

So TwoCV s ar CARs in all models

ΔI ΔI

TwoCVI 

ΔI

TwoCVI  

CARI 

ΔI

TwoCVI

CARI 
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Walkthroughs

Does being a TwoCV entail having a FrontAxle?

Let’s start with a particular TwoCV a

assume it has a driveAxle b

which is a FrontAxle

Ax1 is still satisfied

Ax2 requires

that TwoCV s only have front
axles
in this case it requires
driveAxleI(a) ⊆ FrontAxleI

now driveAxleI(a) = b ∈ FrontaxleI

hence both Ax1 and Ax2 are satisfied

and a has a FrontAxle

ΔI

TwoCVI 

CARI 

 a

ΔI

TwoCVI 

CARI 

 a

 driveAxleI  

b

ΔI

TwoCVI 

CARI 

 a

 driveAxleI  

b

 FrontAxleI
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Walkthroughs

Hang on !?

This does not in fact answer our question

Entailment is truth in all models

Truth in one model does not necessarily generalize to all models

But this is what we did in the first example, what is the difference?

In the first example we chose the model arbitrarily, i. e.:

We did not make any particular assumptions about it
except of course, that it satisfies the axioms,
therefore whatever properties that that model has all models have
.... again, given that they satisfy the axioms
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Walkthroughs

Hang on a little longer!

In the second example we chose an intended model, i.e.

we chose a model according to our intutitions about cars and axles
in so doing, we made certain assumptions beyond the axioms,
notably, that the only TwoCV in the model has a FrontAxel
clearly, this is just an assumption
it says nothing about other TwoCV s in other models

Truth in a model and validity in a class of models is not the same

Truth in one model does not rule out falsity in another

Let’s see if we can find a countermodel ...
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Walkthroughs

A countermodel

Let’s start with the same TwoCV

only this time it has no driveAxle

are Ax1 and Ax2 still satisfied?

Clearly Ax1 is

For Ax2 we need to calculate a little:

ΔI

TwoCVI 

CARI 

 a
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Walkthroughs

Is Ax2 satisfied?

We recall that Ax2 is TwoCV v ∀driveAxle.FrontAxle
This axioms is satisfied if TwoCV I ⊆ (∀driveAxle.FrontAxle)I

Now, a ∈ TwoCV I so we must put a ∈ (∀driveAxle.FrontAxle)I

According to ALC semantics we have

(∀driveAxle.FrontAxle)I = {a ∈ ∆ : if driveAxleI(a, b) then b ∈ FrontAxleI}
or

(∀driveAxle.FrontAxle)I = {a ∈ ∆ : driveAxleI(a) ⊆ FrontAxleI}
Hence we must show that driveAxleI(a) ⊆ FrontAxleI

But driveAxleI(a) = ∅; a has no drive axle at all
Since the emptyset is a subset of every other set we thus have
∅ ⊆ FrontAxleI , whence
driveAxleI(a) = ∅ ⊆ FrontAxleI

In other words, Ax2 is satisfied (vacuously), whence I is a
countermodel.
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Walkthroughs

Can a front driven car lack a drive axle?

Let’s try to answer it affirmatively:

We need to construct a model

in which there is an object a s.t.:

a is a Car
a has either no axle or
only (one or more) front axles

we already have such a model, namely

Ax1-3 entail that TwoCV s are front
driven cars

and we have already proved the
property for TwoCV s

ΔI

TwoCVI 

CARI 

 a
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Recalling soundness and completeness

Semantics and calculi

Model-theoretic semantics yields an unambigous notion of entailment,

But does not lend itself naturally to implementation

The problem is that

There are always infinitely many models to check
but an algorithm is a finite object
so entailment cannot be checked directly

It is therefore common to supplement a semantics with a proof system

which is a system of inference rules

in which each step of a derivation is determined by syntactical form
alone

and every derivation terminates
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Recalling soundness and completeness

Recalling a few RDFS rules

We have seen that RDFS can be characterised by rules that includes:

Membership abstraction:

u rdfs:subClassOf x . v rdf:type u .
rdfs9v rdf:type x .

Transitivity of subsumption:

u rdfs:subClassOf v . v rdfs:subClassOf x .
rdfs11u rdfs:subClassOf x .

Domain reasoning:

p rdfs:domain u . x p y .
rdfs2x rdf:type u .
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Recalling soundness and completeness

Soundness and completeness

Semantics and calculus are typically made to work like chopsticks:

One proves that,

I. every conclusion derivable in the calculus from a set of premises A, is
true in all models that satisfy A

II. and conversely that every statement entailed by A-models is derivable
in the calculus when the elements of A are used as premises.

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.
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Recalling soundness and completeness

The complementarity of semantics and calculus

A proof system provides

a finite means of reasoning as if we could run through an infinite
number of models

that is, a finite means of checking entailment

A semantics provides

An intuitive justification for logical properties

and a way to prove that properties do not hold (countermodels)

When semantics and proof system coincides

We have a powerful way of checking positive and negative properties

a finite representation of an infinite number of models,

and a semantic justification for the inference rules in the proof system
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Recalling soundness and completeness

Next time

David Norheim talks about Computas’ RDF development projects:

1 Mediasone:

An RDF-based navigation application for Deichmanske Bibliotek:
Uses OWL with the Pellet reasoner, Virtuoso triple store and SPARQL
Collects data from dbpedia

2 Sublima:

Uses the OWL vocabulary SKOS (Simple Knowledge Oragnisation
System)
Together with a Web interface for manual annotation of data
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