

Today's Plan

(1) Basic notions
(2) Semantics
(3) Walkthroughs

4 Recalling soundness and completeness

Sets

Definition

- A set is a finite or infinite collection of objects called elements of the set, considered exclusively in terms of membership. That is:
- the ordering of elements doesn't matter
- the number of occurrences of an element doesn't matter

Extensionality

- Two sets A and B are equal, $A=B$, if and only if they contain the same elements (in any order, any number of times)

Notation

- The object a is/is not an element in $A: a \in A, a \notin A$
- E. g. the set of natural numbers from 1 to 4 inclusive: $\{1,2,3,4\}$

Set-builder notation, cardinality

Set-builders

- Construct sets by restricting other sets
- Correspond to definitions "the set of all elements $a \in A$ such that ..."
- Is usually written $\{a \in A \mid$ restriction on $a\}$ (expect variation)
- Example: $\{i \in \mathbb{Z} \mid i<0\}=\{\ldots,-2,-3,-1\}$

Cardinality

The size of a set A is called its cardinality. It is usually denoted $|A|$ or $\sharp A$. For instance

- $\sharp\{a, b, c\}=|\{a, b, c\}|=3$
- $\sharp\{a, b, d, a, c, b\}=\sharp\{d, c, b, b, a\}=\sharp\{a, b, c, d\}=4$

The inclusion exclusion principle: $|A \cup B|=|A|+|B|-|A \cap B|$

Two distinguished sets

The universal set

The universal set is the sum total of objects that are assumed to exist relative to a given problem. We shall denote it Δ. The assumption is that:

- $A \subseteq \Delta$ for all sets A

The empty set

The empty set is the unique set without elements. It is denoted \emptyset or simple $\}$. The empty set is a set, and

- $\emptyset \subseteq A$ for all A

Families of sets, singleton sets, the empty set

Families of sets

Sets can be elements of other sets (given that its not the very same set)

- $\{\{\ldots,-3,-2,-1\},\{0\},\{1,2,3, \ldots\}\}$
- $\{\{1,3,5 \ldots\},\{2,4,6, \ldots\}\}$

Singletons

A set that contains exactly one element is called a singleton

- $\{a\}$ is a singleton
- $\{\{a\}\}$ is a singleton
- $\{b, b\}$ is a singleton

NF3580 :: Spring 2010

Some examples

Equalities and non-equalities

- Some basic equalities:

$$
\begin{aligned}
\{a, b, c\} & =\{a, a, b, c\} \\
& =\{b, c, a\} \\
& =\{c, a, b, b\}
\end{aligned}
$$

- Equalities involving set-builders:
- $\{2 k+1 \mid k \in \mathbb{N}\}=\{3,5,7,9,11 \ldots\}$
- $\{\{0\},\{1\},\{2\}, \ldots\}=\{\{n\} \mid n \in \mathbb{N}\}$.
- $\{\{0\},\{0,1\},\{0,1,2\}, \ldots\}=\{\{m \mid 0 \leq m \leq n\} \mid n \in \mathbb{N}\}$.
- Non-equalities:
- $\{a, b, c\} \neq\{a, b\} \neq\{a, b, d\}$
- $\emptyset \neq\{\emptyset\}$
- $\{b, b\} \neq\{\{b\}\}$

$$
A \cap B=\{a \in \Delta \mid a \in A \& a \in B\}
$$

INF3580 :: Spring 2010

Operations on sets: Relative complement/difference

$A-B=\{a \in \Delta \mid a \in A \& a \notin B\}$

\checkmark

$$
A \subseteq B \text { iff } a \in A \text { implies } a \in B
$$

Go figure

From this meager framework comes very surprising things, e.g.

- That infinity comes in different sizes
- that an infinite set can have a proper subset of equal size
- that there are just as many points along a line as in a plane
- that some sets cannot be counted, even in principle
- anyway back to topic

The algebra of sets

Associativity:

$$
A \cup(B \cup C)=(A \cup B) \cup C \quad A \cap(B \cap C)=(A \cap B) \cap C
$$

Commutativity:

$$
A \cup B=B \cup A \quad A \cap B=B \cap A
$$

Units and zeros:

$$
A \cup \emptyset=A \quad A \cup \Delta=\Delta \quad A \cap \Delta=A \quad A \cap \emptyset=\emptyset
$$

Idempotence:

$$
A \cup A=A \quad A \cap A=A
$$

Distribution:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

Complementation:

$$
\begin{array}{lll}
A \cup-A=\Delta & -\Delta=\emptyset & -(-A)=A \\
A \cap-A=\emptyset & -\emptyset=\Delta &
\end{array}
$$

De Morgan's Laws

$$
-(A \cup B)=-A \cap-B \quad-(A \cap B)=-A \cup-B
$$

NF3580 :: Spring 2010

Pairs and products
Ordered pair notions Relations
An ordered pair is an object of the form (a, b) where a is an element of
some set A and b is an element of some set B.
- The pair is ordered in the sense that $(a, b) \neq(b, a)$ unless $a=b$.
- It follows that $(a, b) \neq\{a, b\}$

Cartesian product

The set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ is called the Cartesian product of A and B. It is written $A \times B$.

- $A \times B=\{(a, b) \mid a \in A \& b \in B\}$

Relations

Binary relation

A binary relation R between two sets A and B is a subset of the Cartesian product $A \times B$. In the special case that $A=B$ we say that R is a relation on A.

Notation

That x is R-related to y may be written

$$
\begin{aligned}
& 1(x, y) \in R \\
& 2 R(x, y) \\
& 3 x R y
\end{aligned}
$$

Properties of relations

Some very common properties

A relation R on a set A is
Reflexive when $(x, x) \in R$ for all $x \in A$.
Symmetric if $(x, y) \in R$ whenever $(y, x) \in R$ for all $x, y \in A$
Transitive if $(x, z) \in R$ whenever $(x, y),(y, z) \in R$ for all $x, y, z \in A$
Asymmetric if $(y, x) \in R$ and $(x, y) \in R$ is true of no $x, y \in A$.
... there are many more
A comprehensive list of OWL-supported properties was given in lecture 9.
We may regard 2 and 3 as syntactical sugar for 1 .

Some operations on relations

Inverse

Let R be a binary relation on Δ. The inverse of R is:

$$
R^{-1}=\{(b, a):(a, b) \in R\}
$$

Composition

Let R and S be binary relations on Δ. The composition of R and S is:

$$
R \circ S=\{(a, c):(a, b) \in R \text { and }(b, c) \in S \text { for some } b \in \Delta\}
$$

Image formation

Let R a binary relation on Δ and $A \subseteq \Delta$. The image of R under A, is:

$$
R(A)=\{b \in \Delta:(a, b) \in R \text { and } a \in A\}
$$

A function and a non-function

A relation but not a function from $\{a, b, c\}$ to $\{d, e\}$

The function of functions

Outline

(1) Basic notions

Functions may be said to describe processes (broadly conceived) whereby

- the elements of one set are transformed into those of another

The models of model-theoretic semantics are functions

- they are also called interpretations
- they interpret a formal language in terms of objects, sets and relations
- that is, interpretations assign meanings to linguistic entities, e.g.:
- objects to names
- sets of objects to concepts
- relations to predicates
- Sets
- Relations
- Functions
(2) Semantics
(3) Walkthroughs

4 Recalling soundness and completeness

Revisiting $\mathcal{A L C Q}$ semantics

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the domain, and

- $A^{\mathcal{I}} \subseteq \Delta$ for each atomic concept A,
- $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role R, and
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each name a.

Interpretations thus assign a meaning to all simple non-logical symbols

- however, there are also complex relations and classes as well
- so this does not in general suffice to interpret arbitrary formulae
- we need in addition to say
- how the meaning of a complex expression.
- depends on the meaning of its simple parts

Semantics

The form of DL/OWL ontologies

TBox and ABox formulae

An $\mathcal{A} \mathcal{L C Q}$ knowledge base consists of two kinds of formulae
Subsumption axioms:

- Are of the form $C \sqsubseteq D$ (where C and D are concepts)
- model general relationships
- belong to the ontological level or the TBox

Assertions:

- Are of the form $C(a)$ or $R(a, b)$
- where C is a concept, and R a role
- describe facts
- belong to the dataset or the ABox

Interpretation of complex $\mathcal{A L C Q}$ concepts

Interpretation of concept descriptions

$$
\begin{aligned}
\top^{\mathcal{I}} & =\Delta^{\mathcal{I}} \\
\perp^{\mathcal{I}} & =\emptyset \\
(\neg C)^{\mathcal{I}} & =\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}} \\
(C \sqcap D)^{\mathcal{I}} & =C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(C \sqcup D)^{\mathcal{I}} & =C^{\mathcal{I}} \cup D^{\mathcal{I}} \\
(\forall R \cdot C)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid \text { if }(a, b) \in R^{\mathcal{I}} \text { then } b \in C^{\mathcal{I}}\right\} \\
(\exists R \cdot C)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid \text { there is } a b \in \Delta^{\mathcal{I}} s . t .(a, b) \in R^{\mathcal{I}} \text { and } b \in C^{\mathcal{I}}\right\} \\
\left(\geq{ }_{n} R \cdot C\right)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid \sharp\left\{b \mid(a, b) \in R^{\mathcal{I}} \text { and } b \in C^{\mathcal{I}}\right\} \geq n\right\}
\end{aligned}
$$

Notational variants

$$
\begin{aligned}
(\forall R \cdot C)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid R^{\mathcal{I}}(a) \subseteq C^{\mathcal{I}}\right\} \\
(\exists R \cdot C)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid R^{\mathcal{I}}(a) \cap C^{\mathcal{I}} \neq \emptyset\right\} \\
\left(\geq{ }_{n} R \cdot C\right)^{\mathcal{I}} & \left.=\left\{a \in \Delta^{\mathcal{I}}| | R^{\mathcal{I}}(a) \cap C^{\mathcal{I}}\right\} \mid \geq n\right\}
\end{aligned}
$$

NF3580 :: Spring 2010

Connection with OWL ontologies

The data level
Car (myBeetle)
Engine (theEngine)
hasPart(myBeetle, theEngine)

Satisfation/truth

Satisfaction/truth

Subsumption axioms: $C \sqsubseteq D$ is true in an interpretation \mathcal{I} :

- Written $\mathcal{I} \vDash C \sqsubseteq D$,
- holds if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- alternatively, if and only if $\mathcal{I}(C) \subseteq \mathcal{I}(D)$

Assertions: $\quad C(a)$ or $R(a, b)$ is true in \mathcal{I} :

- Written $\mathcal{I} \vDash C(a)$ or $\mathcal{I} \vDash R(a, b)$,
- $\mathcal{I} \vDash C(a)$ iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- $\mathcal{I} \vDash R(a, b)$ iff $\left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \in R^{\mathcal{I}}$

We say that \mathcal{I} satisfies a set of sentences S, written $\mathcal{I} \vDash S$ iff

- $\mathcal{I} \vDash s$ for all $s \in S$.

What's the point?

- Semantic technology is about computable descriptions of data
- where the data descriptions are declarative,
- give the intended interpretation of the data,
- and of the relationship between data items
- The descriptions enable computers to reason logically, e.g. to
- check for consistency
- add implicit information
- answer complex queries
- Automated inference is based on logical entailment
- which is defined in terms of truth in a class of models
- hence we need a precise definition of what truth in a model is

Taking stock

- Interpretations/models \mathcal{I} are functions
- $C^{\mathcal{I}}$ might have been written $\mathcal{I}(C)$
- Interpretations fix reference/meaning in a set or domain $\Delta^{\mathcal{I}}$, e. g.:
- $\Delta^{\mathcal{I}}=\{a, b, c, d, e\}$
- $C^{\mathcal{I}}=\{c, d, e\}$
- $R^{\mathcal{I}}=\{(a, d),(a, e),(b, c)\}$

$$
\begin{aligned}
(\exists R \cdot C)^{\mathcal{I}} & =\left\{a \in \Delta^{\mathcal{I}} \mid R^{\mathcal{I}}(a) \cap C^{\mathcal{I}} \neq \emptyset\right\} \\
& =\{a, b\}
\end{aligned}
$$

- Truth is in turn defined in terms of reference ...
- to yield a complex notion of a statement's being true in a model \mathcal{I}

Entailment, countermodels and consistency in general

Validity

A set of sentences S entails a formula ψ, written $S \vDash \psi$, iff $\mathcal{I} \vDash \psi$ whenever $\mathcal{I} \vDash S$ for all interpretations \mathcal{I} of the given class.

Consistency

A set of sentences S is consistent iff it has a model. That is, if and only if there is a model \mathcal{I} such that $\mathcal{I} \vDash S$.

Countermodels

A set of sentences S does not entail a formula ψ if there is a model \mathcal{I} such that $\mathcal{I} \vDash S$ but $\mathcal{I} \not \models \psi$. We say that \mathcal{I} is a countermodel for the entailment $S \Rightarrow \psi$
... and in $\mathcal{A L C Q}$ TBoxes

Validity

A subsumption axiom $C \sqsubseteq D$ is entailed by an ontology \mathcal{O} iff $\mathcal{O} \vDash C \sqsubseteq D$, that is, iff $\mathcal{I} \vDash C \sqsubseteq D$ whenever $\mathcal{I} \vDash \mathcal{O}$ for all $\mathcal{A L C Q}$ models \mathcal{I}

Countermodels

An ontology \mathcal{O} does not entail a subsumption axiom $C \sqsubseteq D$ if there is an $\mathcal{A} \mathcal{L C Q}$ model \mathcal{I} such that $\mathcal{I} \vDash \mathcal{O} \cup\{C\}$ but $\mathcal{I} \not \vDash D$.

Revisiting some examples from lecture 8

Ax1 TwoCV $\sqsubseteq C a r$

- Any TwoCV is a car

Ax2 TwoCV $\sqsubseteq \forall d r i v e A x l e . F r o n t A x l e$

- All drive axles of TwoCVs are front axles

Ax3 FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle

- A front driven car is one where all drive axles are front axles

Now let's ask some questions:

- Does A×1 entail that any TwoCV is a Car?
- Does $A \times 1$ and $A \times 2$ entail that any TwoCV has a FrontAxle?
- Is it consistent to assume that a front driven car may lack a drive axle?

Outline

(1) Basic notions

- Sets
- Relations
- Functions
(2) Semantics
(3) Walkthroughs
(4) Recalling soundness and completeness

Does Ax1 entail that any $T w o C V$ is a CAR?

- Fix any domain of objects $\Delta^{\mathcal{I}}$,
- Fix a set $T w o C V^{\mathcal{I}}$
- Fix a set $C A R^{\mathcal{I}}$
- Check what the axioms require
- In this case $T w o C V^{\mathcal{I}} \subseteq C A R^{\mathcal{I}}$ (A×1)
- Adjust the model accordingly
- TwoCVs are CARs in this model
- The model was chosen arbitrarily
- So TwoCVs ar CARs in all models

Does being a TwoCV entail having a FrontAxle?

- Let's start with a particular TwoCV a
- assume it has a driveAxle b
- which is a FrontAxle
- Ax1 is still satisfied
- Ax2 requires
- that TwoCVs only have front axles
- in this case it requires driveAxle ${ }^{\mathcal{I}}(a) \subseteq$ FrontAxle ${ }^{\mathcal{I}}$
- now driveAxle ${ }^{\mathcal{I}}(a)=b \in$ Frontaxle $^{\mathcal{I}}$
- hence both $A x 1$ and $A x 2$ are satisfied
- and a has a FrontAxle

NF3580 :: Spring 2010

Hang on a little longer!

- In the second example we chose an intended model, i.e.
- we chose a model according to our intutitions about cars and axles
- in so doing, we made certain assumptions beyond the axioms,
- notably, that the only TwoCV in the model has a FrontAxel
- clearly, this is just an assumption
- it says nothing about other TwoCVs in other models
- Truth in a model and validity in a class of models is not the same
- Truth in one model does not rule out falsity in another
- Let's see if we can find a countermodel ...

Hang on !?

- This does not in fact answer our question
- Entailment is truth in all models
- Truth in one model does not necessarily generalize to all models
- But this is what we did in the first example, what is the difference?
- In the first example we chose the model arbitrarily, i. e.:
- We did not make any particular assumptions about it
- except of course, that it satisfies the axioms,
- therefore whatever properties that that model has all models have
- again, given that they satisfy the axioms

| A Countermodel |
| :--- | :--- |
| - Let's start with the same TwoCV |
| - only this time it has no driveAxle |
| - are Ax1 and Ax2 still satisfied? |
| - Flearly Ax1 is |
| For Ax2 we need to calculate a little: |
| INF3580 :: Spring 2010 |

Is $A \times 2$ satisfied?

- We recall that $\mathrm{A} \times 2$ is $T w o C V \sqsubseteq \forall d r i v e A x l e$. FrontAxle
- This axioms is satisfied if $T w o C V^{\mathcal{I}} \subseteq(\forall \text { driveAxle. FrontAxle })^{\mathcal{I}}$
- Now, $a \in T w o C V^{\mathcal{I}}$ so we must put $a \in(\forall d r i v e A x l e \text {.FrontAxle })^{\mathcal{I}}$
- According to $\mathcal{A L C}$ semantics we have
$(\forall d r i v e A x l e . F r o n t A x l e)^{\mathcal{I}}=\left\{a \in \Delta:\right.$ if driveAxle $e^{\mathcal{I}}(a, b)$ then $b \in$ FrontAxle $\left.{ }^{\mathcal{I}}\right\}$
- or
$(\forall d r i v e A x l e . \text { FrontAxle })^{\mathcal{I}}=\left\{a \in \Delta:\right.$ driveAxle $^{\mathcal{I}}(a) \subseteq$ FrontAxle $\left.e^{\mathcal{I}}\right\}$
- Hence we must show that driveAxle ${ }^{\mathcal{I}}(a) \subseteq$ FrontAxle $e^{\mathcal{I}}$
- But driveAxle ${ }^{\mathcal{I}}(a)=\emptyset$; a has no drive axle at all
- Since the emptyset is a subset of every other set we thus have
- $\emptyset \subseteq$ FrontAxle ${ }^{\mathcal{I}}$, whence
- drive $A x l e^{\mathcal{I}}(a)=\emptyset \subseteq$ FrontAxle $e^{\mathcal{I}}$
- In other words, A×2 is satisfied (vacuously), whence \mathcal{I} is a countermodel.

Outine
Basic notions - Sets - Relations - Function
(3) Semantics
- Walkthrough
- Recaling soundness and completeness

Recalling a few RDFS rules

We have seen that RDFS can be characterised by rules that includes:
Membership abstraction:

$$
\frac{u \text { rdfs:subClassOf x . } \quad \text { v rdf:type u . }}{\mathrm{v} \text { rdff:type } \mathrm{x} .}
$$

Transitivity of subsumption:

$$
\frac{u \text { rdfs:subClassOf v. v rdfs:subClassOf x . }}{\text { u rdfs:subClassOf x } .} \text { rdfs }
$$

Domain reasoning:

$$
\frac{\text { p rdfs:domain u . } \quad \text { x p y . }}{\text { x rdf:type u . }} \text { rdfs2 }
$$

The complementarity of semantics and calculus

A proof system provides

- a finite means of reasoning as if we could run through an infinite number of models
- that is, a finite means of checking entailment

A semantics provides

- An intuitive justification for logical properties
- and a way to prove that properties do not hold (countermodels)

When semantics and proof system coincides

- We have a powerful way of checking positive and negative properties
- a finite representation of an infinite number of models,
- and a semantic justification for the inference rules in the proof system

Soundness and completeness

Semantics and calculus are typically made to work like chopsticks:

- One proves that,
I. every conclusion derivable in the calculus from a set of premises A, is true in all models that satisfy A
II. and conversely that every statement entailed by A-models is derivable in the calculus when the elements of A are used as premises.
We say that the calculus is
- sound wrt the semantics, if (I) holds, and
- complete wrt the semantics, if (II) holds.

Next time

David Norheim talks about Computas' RDF development projects:

(1) Mediasone:

- An RDF-based navigation application for Deichmanske Bibliotek:
- Uses OWL with the Pellet reasoner, Virtuoso triple store and SPARQL
- Collects data from dbpedia
(2) Sublima:
- Uses the OWL vocabulary SKOS (Simple Knowledge Oragnisation System)
- Together with a Web interface for manual annotation of data

