

Basic notions	
Outline	
 Basic notions Sets Relations Functions 	
2 Semantics	
3 Walkthroughs	
Recalling soundness and completeness	
INF3580 :: Spring 2010 Lecture 11 :: 20th April	3 / 52

Today's Plan		
1 Basic notions		
2 Semantics		
3 Walkthroughs		
4 Recalling soundness	and completeness	
INF3580 :: Spring 2010	Lecture 11 :: 20th April	2 / 4

Sets

Definition

- A set is a finite or infinite collection of objects called elements of the set, considered exclusively in terms of membership. That is:
 - the ordering of elements doesn't matter
 - the number of occurrences of an element doesn't matter

Basic notions Sets

Extensionality

• Two sets A and B are equal, A = B, if and only if they contain the same elements (in any order, any number of times)

Notation

- The object *a* is/is not an element in *A*: $a \in A$, $a \notin A$
- E. g. the set of natural numbers from 1 to 4 inclusive: $\{1, 2, 3, 4\}$

Basic notions Sets

Set-builder notation, cardinality

Set-builders

- Construct sets by restricting other sets
- Correspond to definitions "the set of all elements $a \in A$ such that"
- Is usually written $\{a \in A | \text{ restriction on } a\}$ (expect variation)
- Example: $\{i \in \mathbb{Z} | i < 0\} = \{\dots, -2, -3, -1\}$

Cardinality

The size of a set A is called its cardinality. It is usually denoted |A| or $\sharp A$. For instance

- $\sharp\{a, b, c\} = |\{a, b, c\}| = 3$
- $\sharp\{a, b, d, a, c, b\} = \sharp\{d, c, b, b, a\} = \sharp\{a, b, c, d\} = 4$

The inclusion exclusion principle: $|A \cup B| = |A| + |B| - |A \cap B|$

VF3580 :: Spring 2010

ture 11 :: 20th Apri

5 / 52

Basic notions Sets

Two distinguished sets

The universal set

The *universal set* is the sum total of objects that are assumed to exist relative to a given problem. We shall denote it Δ . The assumption is that:

• $A \subseteq \Delta$ for all sets A

The empty set

The empty set is the unique set without elements. It is denoted \emptyset or simple {}. The empty set *is* a set, and

• $\emptyset \subseteq A$ for all A

Basic notions

Families of sets, singleton sets, the empty set

Families of sets

Sets can be elements of other sets (given that its not the very same set):

- $\{\{\ldots, -3, -2, -1\}, \{0\}, \{1, 2, 3, \ldots\}\}$
- $\{\{1,3,5\ldots\},\{2,4,6,\ldots\}\}$

Singletons

A set that contains exactly one element is called a singleton

- {*a*} is a singleton
- $\{\{a\}\}$ is a singleton
- $\{b, b\}$ is a singleton

F3580 :: Spring 201

Lecture 11 :: 20th A

Basic notions Sets

Some examples

Equalities and non-equalities

• Some basic equalities:

$${a, b, c} = {a, a, b, c}$$

= ${b, c, a}$
= ${c, a, b, b}$

• Equalities involving set-builders:

- $\{2k+1 | k \in \mathbb{N}\} = \{3, 5, 7, 9, 11 \dots\}$
- $\{\{0\}, \{1\}, \{2\}, \ldots\} = \{\{n\} | n \in \mathbb{N}\}.$
- {{0}, {0,1}, {0,1,2},...} = {{m | 0 \le m \le n} | n \in \mathbb{N}}.
- Non-equalities:
 - $\{a, b, c\} \neq \{a, b\} \neq \{a, b, d\}$
 - $\emptyset \neq \{\emptyset\}$
 - $\{b, b\} \neq \{\{b\}\}$

Basic notions Sets
Go figure
From this meager framework comes very surprising things, e.g.
That infinity comes in different sizes
that an infinite set can have a *proper* subset of equal size
that there are just as many points along a line as in a plane
that some sets cannot be counted, even in principle
anyway back to topic

The algebra of sets Associativity: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$ Commutativity: $A \cup B = B \cup A$ $A \cap B = B \cap A$ Units and zeros: $A \cup \emptyset = A$ $A \cup \Delta = \Delta$ $A \cap \Delta = A$ $A \cap \emptyset = \emptyset$ Idempotence: $A \cup A = A$ $A \cap A = A$ Distribution: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \land (B \cup C) = (A \cap B) \cup (A \cap C)$ Complementation: $A \cup -A = \Delta$ $-\Delta = \emptyset$ -(-A) = A $A \cap -A = \emptyset$ $-\emptyset = \Delta$ De Morgan's Laws: $-(A\cup B)=-A\cap -B$ $-(A \cap B) = -A \cup -B$ 3580 :: Spring 2010 Lecture 11 :: 20th Apri

Basic notions

Basic notions Relations

Pairs and products

Ordered pair

An ordered pair is an object of the form (a, b) where a is an element of some set A and b is an element of some set B.

- The pair is ordered in the sense that $(a, b) \neq (b, a)$ unless a = b.
- It follows that $(a, b) \neq \{a, b\}$

Cartesian product

The set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ is called the *Cartesian product* of A and B. It is written $A \times B$.

• $A \times B = \{(a, b) | a \in A \& b \in B\}$

Basic notions Relation

Relations

Binary relation

A binary relation R between two sets A and B is a subset of the Cartesian product $A \times B$. In the special case that A = B we say that R is a relation on A.

Notation

That x is *R*-related to y may be written

- 1 $(x, y) \in R$
- 2 R(x, y)
- 3 x R y

We may regard 2 and 3 as syntactical sugar for 1.

NF3580 :: Spring 2010

Lecture 11 :: 20th Apri

Basic notions Relations

Properties of relations Some very common properties A relation R on a set A is **Reflexive** when $(x, x) \in R$ for all $x \in A$. **Symmetric** if $(x, y) \in R$ whenever $(y, x) \in R$ for all $x, y \in A$ **Transitive** if $(x, z) \in R$ whenever $(x, y), (y, z) \in R$ for all $x, y, z \in A$ **Asymmetric** if $(y, x) \in R$ and $(x, y) \in R$ is true of no $x, y \in A$ there are many more A comprehensive list of OWL-supported properties was given in lecture 9.

Lecture 11 ·· 20th An

Basic notions Functions

Functions

Definition

A function f from a set A to a set B is a special kind of binary relation in which every element of A is associated with a unique element of B. In other words:

- For every $a \in A$ there is precisely one pair of the form $(a, b) \in f$
- stated differently, if $(a, b) \in f$ and $(a, c) \in f$ then b = c

Notation

It is common to write $(a, b) \in f$ as

- f(a) = b, or
- $a^f = b$

We think of f as being *applied* to the argument a.

Lecture 11 :: 20th Apr

Basic notions Functions

The function of functions

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are *transformed* into those of another

The models of model-theoretic semantics are functions

- they are also called *interpretations*
- they *interpret* a formal language in terms of objects, sets and relations
- that is, interpretations assign *meanings* to linguistic entities, e.g.:
 - objects to names
 - sets of objects to concepts
 - ${\ensuremath{\, \bullet }}$ relations to predicates

Revisiting \mathcal{ALCQ} semantics

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, and

- $A^{\mathcal{I}} \subset \Delta$ for each atomic concept A.
- $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role *R*, and
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each name *a*.

Interpretations thus assign a meaning to all simple non-logical symbols

- however, there are also *complex* relations and classes as well
- so this does not in general suffice to interpret *arbitrary formulae*
- we need in addition to say
 - how the meaning of a complex expression
 - depends on the meaning of its simple parts

Semantics

The form of DL/OWL ontologies TBox and ABox formulae An \mathcal{ALCQ} knowledge base consists of two kinds of formulae Subsumption axioms: • Are of the form $C \sqsubset D$ (where C and D are concepts) • model general relationships • belong to the ontological level or the TBox Assertions: • Are of the form C(a) or R(a, b)• where C is a concept, and R a role describe facts • belong to the dataset or the ABox

Interpretation of complex ALCQ concepts

Interpretation of concept descriptions

$\top^{\mathcal{I}}$	=	$\Delta^{\mathcal{I}}$
$\bot^{\mathcal{I}}$	=	Ø
$(\neg C)^{\mathcal{I}}$	=	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
$(C \sqcap D)^{\mathcal{I}}$	=	$\mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}}$
$(C \sqcup D)^{\mathcal{I}}$	=	$\mathcal{C}^{\mathcal{I}} \cup \mathcal{D}^{\mathcal{I}}$
$(\forall R.C)^{\mathcal{I}}$	=	$\{a\in\Delta^{\mathcal{I}}\mid \textit{if}~(a,b)\in R^{\mathcal{I}}~\textit{then}~b\in C^{\mathcal{I}}\}$
$(\exists R.C)^{\mathcal{I}}$	=	$\{a\in\Delta^{\mathcal{I}}\mid \textit{there is a }b\in\Delta^{\mathcal{I}}\textit{s.t.}(a,b)\in R^{\mathcal{I}}\textit{and }b\in C^{\mathcal{I}}\}$
$(\geq_n R.C)^{\mathcal{I}}$	=	$\{a\in\Delta^\mathcal{I}\mid \sharp\{b\mid (a,b)\in R^\mathcal{I} ext{ and } b\in C^\mathcal{I}\}\geq n\}$

Notational variants

$\begin{array}{lll} (\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid R^{\mathcal{I}}(a) \subseteq C^{\mathcal{I}} \} \\ (\exists R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid R^{\mathcal{I}}(a) \cap C^{\mathcal{I}} \neq \emptyset \} \\ (\geq_n R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid |R^{\mathcal{I}}(a) \cap C^{\mathcal{I}} \}| \geq n \} \end{array}$

Semantics Connection with OWL ontologies The Ontology level Т Engine Vehicle $Car \sqsubseteq Vehicle$ $Car \sqsubseteq \exists hasPart.Engine$ Car -The data level— Car(myBeetle) Engine(theEngine) hasPart(myBeetle, theEngine) Lecture 11 20th Ap

Semantics

Satisfation/truth

INF3580 :: Spring 2010 Lecture 11 :: 20th April	33 / 5				
• $\mathcal{I} \vDash s$ for all $s \in S$.					
We say that $\mathcal I$ satisfies a set of sentences S , written $\mathcal I \vDash S$ iff					
• $\mathcal{I} \vDash \mathcal{C}(a) \text{ iff } a \in \mathcal{C}$ • $\mathcal{I} \vDash \mathcal{R}(a, b) \text{ iff } (a^{\mathcal{I}}, b^{\mathcal{I}}) \in \mathcal{R}^{\mathcal{I}}$					
• Written $\mathcal{I} \vDash C(a)$ or $\mathcal{I} \vDash R(a, b)$, • $\mathcal{I} \vDash C(a)$ iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$					
Assertions: $C(a)$ or $R(a, b)$ is true in \mathcal{I} :					
$ullet$ alternatively, if and only if $\mathcal{I}(\mathcal{C})\subseteq\mathcal{I}(D)$					
• holds if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$					
• Written $\mathcal{I} \vDash C \sqsubseteq D$,					
Subsumption axioms: $C \sqsubseteq D$ is true in an interpretation \mathcal{I} :					
Satisfaction/truth					

What's the point?

• Semantic technology is about computable descriptions of data

Semantics

- where the data descriptions are declarative,
- give the intended interpretation of the data,
- and of the relationship between data items
- The descriptions enable computers to reason logically, e.g. to
 - check for consistency
 - add implicit information
 - answer complex queries
- Automated inference is based on logical entailment
 - which is defined in terms of truth in a class of models
 - hence we need a precise definition of what truth in a model is

Semantics Taking stock • Interpretations/models \mathcal{I} are functions • $C^{\mathcal{I}}$ might have been written $\mathcal{I}(C)$ • Interpretations fix reference/meaning in a set or domain $\Delta^{\mathcal{I}}$, e. g.: • $\Delta^{\mathcal{I}} = \{a, b, c, d, e\}$ • $C^{\mathcal{I}} = \{c, d, e\}$ • $R^{\mathcal{I}} = \{(a, d), (a, e), (b, c)\}$

$$(\exists R.C)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} | R^{\mathcal{I}}(a) \cap C^{\mathcal{I}} \neq \emptyset\}$$
$$= \{a, b\}$$

- Truth is in turn defined in terms of reference ...
- \bullet to yield a complex notion of a statement's being true in a model ${\cal I}$

```
3580 :: Spring 201
```

Lecture 11 :: 20th April

34 / 52

Semantics

Entailment, countermodels and consistency in general

Validity

A set of sentences *S* entails a formula ψ , written $S \vDash \psi$, iff $\mathcal{I} \vDash \psi$ whenever $\mathcal{I} \vDash S$ for all interpretations \mathcal{I} of the given class.

Consistency

A set of sentences S is consistent iff it has a model. That is, if and only if there is a model \mathcal{I} such that $\mathcal{I} \models S$.

Countermodels

A set of sentences S does not entail a formula ψ if there is a model \mathcal{I} such that $\mathcal{I} \vDash S$ but $\mathcal{I} \nvDash \psi$. We say that \mathcal{I} is a countermodel for the entailment $S \Rightarrow \psi$

... and in \mathcal{ALCQ} TBoxes

Validity

A subsumption axiom $C \sqsubseteq D$ is entailed by an ontology \mathcal{O} iff $\mathcal{O} \vDash C \sqsubseteq D$, that is, iff $\mathcal{I} \vDash C \sqsubseteq D$ whenever $\mathcal{I} \vDash \mathcal{O}$ for all \mathcal{ALCQ} models \mathcal{I}

Countermodels

An ontology \mathcal{O} does not entail a subsumption axiom $C \sqsubseteq D$ if there is an \mathcal{ALCQ} model \mathcal{I} such that $\mathcal{I} \vDash \mathcal{O} \cup \{C\}$ but $\mathcal{I} \nvDash D$.

NF3580 :: Spring 2010

Lecture 11 :: 20th A

37 / 52

Walkthroughs

Revisiting some examples from lecture 8

Ax1 TwoCV \sqsubseteq Car

• Any *TwoCV* is a car

Ax2 TwoCV $\sqsubseteq \forall driveAxle.FrontAxle$

• All drive axles of *TwoCV*s are front axles

Ax3 FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle

• A front driven car is one where all drive axles are front axles

Now let's ask some questions:

- Does Ax1 entail that any *TwoCV* is a *Car*?
- Does Ax1 and Ax2 entail that any *TwoCV* has a *FrontAxle*?
- Is it consistent to assume that a front driven car may lack a drive axle?

Walkthroughs

Does Ax1 entail that any *TwoCV* is a *CAR*? • Fix any domain of objects $\Delta^{\mathcal{I}}$, • Fix a set $TwoCV^{\mathcal{I}}$ • Fix a set $CAR^{\mathcal{I}}$ • Check what the axioms require • In this case $TwoCV^{\mathcal{I}} \subseteq CAR^{\mathcal{I}}$ (Ax1) • Adjust the model accordingly • *TwoCV*s are *CAR*s in *this model* • The model was chosen arbitrarily • So *TwoCV*s ar *CAR*s in *all models*

Walkthroughs

Does being a *TwoCV* entail having a *FrontAxle*?

- Let's start with a particular TwoCV a
- assume it has a *driveAxle b*
- which is a *FrontAxle*
- Ax1 is still satisfied
- Ax2 requires
 - that *TwoCV*s only have front axles
 - in this case it requires *driveAxle^I(a)* ⊆ *FrontAxle^I*
- now $driveAxle^{\mathcal{I}}(a) = b \in Frontaxle^{\mathcal{I}}$
- hence both Ax1 and Ax2 are satisfied
- and *a* has a *FrontAxle*

NF3580 :: Spring 2010

Walkthroughs

Hang on a little longer!

• In the second example we chose an intended model, i.e.

Lecture 11 :

- we chose a model according to our intutitions about cars and axles
- in so doing, we made certain assumptions beyond the axioms,
- notably, that the only *TwoCV* in the model has a *FrontAxel*
- clearly, this is just an assumption
- it says nothing about other *TwoCV*s in other models
- Truth in a model and validity in a class of models is not the same
- Truth in one model does not rule out falsity in another
- Let's see if we can find a countermodel ...

- This does not in fact answer our question
- Entailment is truth in all models
- Truth in one model does not necessarily generalize to all models
- But this is what we did in the first example, what is the difference?
- In the first example we chose the model arbitrarily, i. e.:

Walkthroug

- We did not make any particular assumptions about it
- except of course, that it satisfies the axioms,
- therefore whatever properties that *that* model has *all* models have
- again, given that they satisfy the axioms

=3580 :: Spring 2010

ecture 11 :: 20th April.

12 / 52

Walkthroughs

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- \bullet According to \mathcal{ALC} semantics we have

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : if driveAxle^{\mathcal{I}}(a, b) then b \in FrontAxle^{\mathcal{I}}\}$

• or

```
(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}\}
```

- Hence we must show that $driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}$
- But $driveAxle^{\mathcal{I}}(a) = \emptyset$; a has no drive axle at all
- Since the emptyset is a subset of every other set we thus have
- $\emptyset \subseteq FrontAxle^{\mathcal{I}}$, whence
- $driveAxle^{\mathcal{I}}(a) = \emptyset \subseteq FrontAxle^{\mathcal{I}}$
- In other words, Ax2 is satisfied (vacuously), whence \mathcal{I} is a countermodel.
- NF3580 :: Spring 2010

:: 20th April

45 / 53

Recalling soundness and completeness

Semantics and calculi

Model-theoretic semantics yields an unambigous notion of entailment,

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check
 - but an algorithm is a finite object
 - so entailment cannot be checked directly

It is therefore common to supplement a semantics with a proof system

- which is a system of *inference rules*
- in which each step of a derivation is determined by *syntactical form alone*
- and every derivation terminates

Recalling soundness and completenes

Recalling a few RDFS rules We have seen that RDFS can be characterised by rules that includes: Membership abstraction: u rdfs:subClassOf x . v rdf:type u . rdfs9 v rdf:type x . Transitivity of subsumption: v r<u>dfs:subClassOf x .</u>rdfs11 u rdfs:subClassOf v . u rdfs:subClassOf x . Domain reasoning: p rdfs:domain u . хру. - rdfs2 x rdf:type u . NF3580 :: Spring 2010 20th ∆nr

Recalling soundness and completeness

The complementarity of semantics and calculus

A proof system provides

- a finite means of reasoning *as if* we could run through an infinite number of models
- that is, a finite means of checking entailment

A semantics provides

- An intuitive justification for logical properties
- and a way to prove that properties *do not* hold (countermodels)

When semantics and proof system coincides

- We have a powerful way of checking positive and negative properties
- a finite representation of an infinite number of models,
- ${\ensuremath{\bullet}}$ and a semantic justification for the inference rules in the proof system

- Mediasone:
 - An RDF-based navigation application for Deichmanske Bibliotek:
 - Uses OWL with the Pellet reasoner, Virtuoso triple store and SPARQL
 - Collects data from dbpedia
- Sublima:
 - Uses the OWL vocabulary SKOS (Simple Knowledge Oragnisation System)
 - Together with a Web interface for manual annotation of data