INF3580 – Semantic Technologies – Spring 2010 Lecture 11: Foundations, repetition

Audun Stolpe

20th April 2010

UNIVERSITY OF OSLO

Today's Plan

3 Walkthroughs

Outline

- Sets
- Relations
- Functions
- 2 Semantics
- 3 Walkthroughs
- 4 Recalling soundness and completeness

Sets

Definition

- A set is a finite or infinite collection of objects called elements of the set, considered exclusively in terms of membership. That is:
 - the ordering of elements doesn't matter
 - the number of occurrences of an element doesn't matter

Sets

Definition

- A set is a finite or infinite collection of objects called elements of the set, considered exclusively in terms of membership. That is:
 - the ordering of elements doesn't matter
 - the number of occurrences of an element doesn't matter

Extensionality

• Two sets A and B are equal, A = B, if and only if they contain the same elements (in any order, any number of times)

Sets

Definition

- A set is a finite or infinite collection of objects called *elements* of the set, considered exclusively in terms of membership. That is:
 - the ordering of elements doesn't matter
 - the number of occurrences of an element doesn't matter

Extensionality

• Two sets A and B are equal, A = B, if and only if they contain the same elements (in any order, any number of times)

Notation

- The object *a* is/is not an element in *A*: $a \in A$, $a \notin A$
- E. g. the set of natural numbers from 1 to 4 inclusive: $\{1, 2, 3, 4\}$

Set-builder notation, cardinality

Set-builders

- Construct sets by restricting other sets
- Correspond to definitions "the set of all elements $a \in A$ such that ..."
- Is usually written $\{a \in A | \text{ restriction on } a\}$ (expect variation)
- Example: $\{i \in \mathbb{Z} | i < 0\} = \{\dots, -2, -3, -1\}$

Set-builder notation, cardinality

Set-builders

- Construct sets by restricting other sets
- Correspond to definitions "the set of all elements $a \in A$ such that ..."
- Is usually written $\{a \in A | \text{ restriction on } a\}$ (expect variation)
- Example: $\{i \in \mathbb{Z} | i < 0\} = \{\dots, -2, -3, -1\}$

Cardinality

The size of a set A is called its cardinality. It is usually denoted |A| or #A. For instance

•
$$\sharp\{a, b, c\} = |\{a, b, c\}| = 3$$

• $\sharp\{a, b, d, a, c, b\} = \sharp\{d, c, b, b, a\} = \sharp\{a, b, c, d\} = 4$

The inclusion exclusion principle: $|A \cup B| = |A| + |B| - |A \cap B|$

Families of sets, singleton sets, the empty set

Families of sets

Sets can be elements of other sets (given that its not the very same set):

•
$$\{\{\ldots, -3, -2, -1\}, \{0\}, \{1, 2, 3, \ldots\}\}$$

•
$$\{\{1,3,5\ldots\},\{2,4,6,\ldots\}\}$$

Singletons

A set that contains exactly one element is called a singleton

- $\{a\}$ is a singleton
- $\{\{a\}\}$ is a singleton
- $\{b, b\}$ is a singleton

Two distinguished sets

The universal set

The *universal set* is the sum total of objects that are assumed to exist relative to a given problem. We shall denote it Δ . The assumption is that:

• $A \subseteq \Delta$ for all sets A

The empty set

The empty set is the unique set without elements. It is denoted \emptyset or simple {}. The empty set *is* a set, and

• $\emptyset \subseteq A$ for all A

Some examples

Equalities and non-equalities

• Some basic equalities:

$${a, b, c} = {a, a, b, c}$$

= {b, c, a}
= {c, a, b, b}

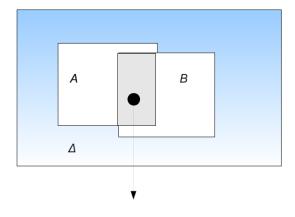
- Equalities involving set-builders:
 - $\{2k+1 | k \in \mathbb{N}\} = \{3, 5, 7, 9, 11 \ldots\}$
 - $\{\{0\},\{1\},\{2\},\ldots\} = \{\{n\} | n \in \mathbb{N}\}.$
 - {{0}, {0,1}, {0,1,2}, ...} = {{m | 0 \le m \le n} | n \in \mathbb{N}}.

• Non-equalities:

•
$$\{a, b, c\} \neq \{a, b\} \neq \{a, b, d\}$$

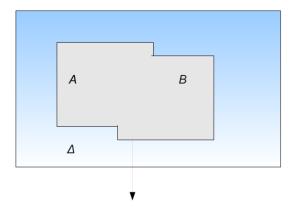
- $\emptyset \neq \{\emptyset\}$
- $\{b, b\} \neq \{\{b\}\}$

Operations on sets: Intersection



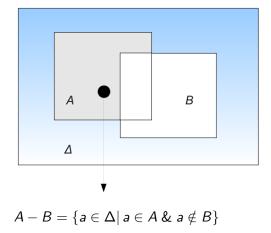
 $A \cap B = \{a \in \Delta | a \in A \& a \in B\}$

Operations on sets: Union

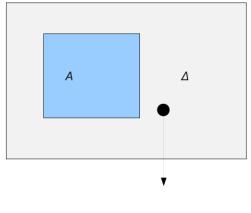


$A \cup B = \{a \in \Delta | a \in A \text{ or } a \in B\}$

Operations on sets: Relative complement/difference

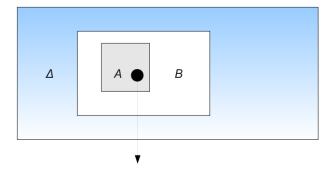


Operations on sets: Absolute complement



 $-A = \{a \in \Delta | a \notin A\}$

Relations between sets: Subsumption



 $A \subseteq B$ iff $a \in A$ implies $a \in B$

The algebra of sets

Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 $A \cap (B \cap C) = (A \cap B) \cap C$

Commutativity:

 $A \cup B = B \cup A$ $A \cap B = B \cap A$

Units and zeros:

$$A \cup \emptyset = A$$
 $A \cup \Delta = \Delta$ $A \cap \Delta = A$ $A \cap \emptyset = \emptyset$

Idempotence:

$$A \cup A = A$$
 $A \cap A = A$

Distribution:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Complementation:

$$A \cup -A = \Delta$$
 $-\Delta = \emptyset$ $-(-A) = A$
 $A \cap -A = \emptyset$ $-\emptyset = \Delta$

De Morgan's Laws:

$$-(A \cup B) = -A \cap -B$$
 $-(A \cap B) = -A \cup -B$

From this meager framework comes very surprising things, e.g.

• That infinity comes in different sizes

- That infinity comes in different sizes
- that an infinite set can have a proper subset of equal size

- That infinity comes in different sizes
- that an infinite set can have a proper subset of equal size
- that there are just as many points along a line as in a plane

- That infinity comes in different sizes
- that an infinite set can have a proper subset of equal size
- that there are just as many points along a line as in a plane
- that some sets cannot be counted, even in principle

- That infinity comes in different sizes
- that an infinite set can have a proper subset of equal size
- that there are just as many points along a line as in a plane
- that some sets cannot be counted, even in principle
- anyway back to topic

Pairs and products

Ordered pair

An ordered pair is an object of the form (a, b) where a is an element of some set A and b is an element of some set B.

- The pair is ordered in the sense that $(a, b) \neq (b, a)$ unless a = b.
- It follows that $(a, b) \neq \{a, b\}$

Cartesian product

The set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ is called the *Cartesian product* of A and B. It is written $A \times B$.

•
$$A \times B = \{(a, b) | a \in A \& b \in B\}$$

Relations

Binary relation

A binary relation R between two sets A and B is a subset of the Cartesian product $A \times B$. In the special case that A = B we say that R is a relation on A.

Notation

That x is R-related to y may be written

1
$$(x, y) \in R$$

- 2 R(x, y)
- 3 xRy

We may regard 2 and 3 as syntactical sugar for 1.

Properties of relations

Some very common properties

A relation R on a set A is

Reflexive when $(x, x) \in R$ for all $x \in A$.

Symmetric if $(x, y) \in R$ whenever $(y, x) \in R$ for all $x, y \in A$

Transitive if $(x, z) \in R$ whenever $(x, y), (y, z) \in R$ for all $x, y, z \in A$

Asymmetric if $(y, x) \in R$ and $(x, y) \in R$ is true of no $x, y \in A$.

... there are many more

A comprehensive list of OWL-supported properties was given in lecture 9.

Some operations on relations

Inverse

Let *R* be a binary relation on Δ . The *inverse of R* is:

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

Composition

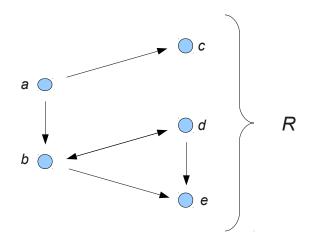
Let R and S be binary relations on Δ . The composition of R and S is:

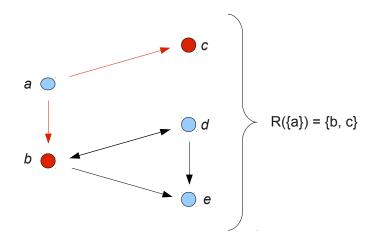
$$R \circ S = \{(a, c) : (a, b) \in R \text{ and } (b, c) \in S \text{ for some } b \in \Delta\}$$

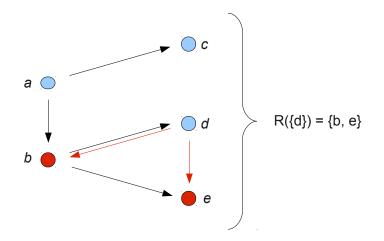
Image formation

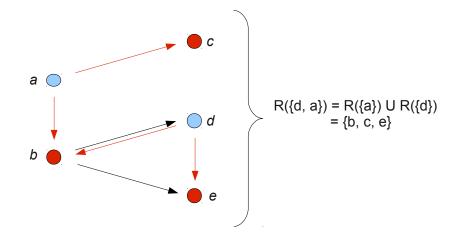
Let R a binary relation on Δ and $A \subseteq \Delta$. The *image* of R under A, is:

$$R(A) = \{b \in \Delta : (a, b) \in R \text{ and } a \in A\}$$









Functions

Definition

A function f from a set A to a set B is a special kind of binary relation in which every element of A is associated with a unique element of B. In other words:

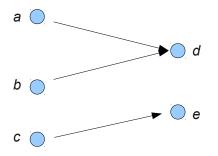
- For every $a \in A$ there is precisely one pair of the form $(a, b) \in f$
- stated differently, if $(a, b) \in f$ and $(a, c) \in f$ then b = c

Notation

It is common to write $(a, b) \in f$ as

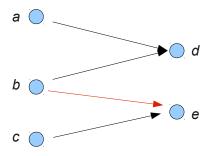
We think of f as being *applied* to the argument a.

A function and a non-function



A function *f* from {*a*, *b*, *c*} to {*d*, *e*}

A function and a non-function



A relation but not a function from {a, b, c} to {d, e}

The function of functions

Functions may be said to describe processes (broadly conceived) whereby

The function of functions

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are *transformed* into those of another

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are *transformed* into those of another

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are *transformed* into those of another

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are transformed into those of another

The models of model-theoretic semantics are functions

• they are also called *interpretations*

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are *transformed* into those of another

- they are also called *interpretations*
- they *interpret* a formal language in terms of objects, sets and relations

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are transformed into those of another

- they are also called *interpretations*
- they *interpret* a formal language in terms of objects, sets and relations
- that is, interpretations assign meanings to linguistic entities, e.g.:

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are transformed into those of another

- they are also called *interpretations*
- they *interpret* a formal language in terms of objects, sets and relations
- that is, interpretations assign meanings to linguistic entities, e.g.:
 - objects to names

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are transformed into those of another

- they are also called *interpretations*
- they *interpret* a formal language in terms of objects, sets and relations
- that is, interpretations assign meanings to linguistic entities, e.g.:
 - objects to names
 - sets of objects to concepts

Functions may be said to describe processes (broadly conceived) whereby

• the elements of one set are *transformed* into those of another

- they are also called interpretations
- they interpret a formal language in terms of objects, sets and relations
- that is, interpretations assign *meanings* to linguistic entities, e.g.:
 - objects to names
 - sets of objects to concepts
 - relations to predicates

Outline

- Sets
- Relations
- Functions

- 3 Walkthroughs
- 4 Recalling soundness and completeness

Interpretation

An interpretation $\mathcal I$ fixes a set $\Delta^{\mathcal I}$, the *domain*, and

- $A^{\mathcal{I}} \subseteq \Delta$ for each atomic concept A,
- $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role R, and
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each name a.

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, and

- $A^{\mathcal{I}} \subseteq \Delta$ for each atomic concept A,
- $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role R, and
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each name a.

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, and

- $A^{\mathcal{I}} \subseteq \Delta$ for each atomic concept A,
- $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role R, and
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each name a.

Interpretations thus assign a meaning to all simple non-logical symbols

• however, there are also complex relations and classes as well

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, and

- $A^{\mathcal{I}} \subseteq \Delta$ for each atomic concept A,
- $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role R, and
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each name a.

- however, there are also complex relations and classes as well
- so this does not in general suffice to interpret arbitrary formulae

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, and

- $A^{\mathcal{I}} \subseteq \Delta$ for each atomic concept A,
- $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role R, and
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each name a.

- however, there are also complex relations and classes as well
- so this does not in general suffice to interpret arbitrary formulae
- we need in addition to say

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, and

- $A^{\mathcal{I}} \subseteq \Delta$ for each atomic concept A,
- $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role R, and
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each name a.

- however, there are also complex relations and classes as well
- so this does not in general suffice to interpret arbitrary formulae
- we need in addition to say
 - how the meaning of a complex expression

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, and

- $A^{\mathcal{I}} \subseteq \Delta$ for each atomic concept A,
- $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ for each role R, and
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each name a.

- however, there are also complex relations and classes as well
- so this does not in general suffice to interpret arbitrary formulae
- we need in addition to say
 - how the meaning of a complex expression
 - depends on the meaning of its simple parts

Semantics

Interpretation of complex \mathcal{ALCQ} concepts

Interpretation of concept descriptions

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\forall R. C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid if(a, b) \in R^{\mathcal{I}} then \ b \in C^{\mathcal{I}}\} \\ (\exists R. C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid there \ is \ a \ b \in \Delta^{\mathcal{I}} s.t.(a, b) \in R^{\mathcal{I}} and \ b \in C^{\mathcal{I}}\} \\ (\geq_{n} R. C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \sharp\{b \mid (a, b) \in R^{\mathcal{I}} and \ b \in C^{\mathcal{I}}\} \} \end{array}$$

Notational variants

$$\begin{array}{rcl} (\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid R^{\mathcal{I}}(a) \subseteq C^{\mathcal{I}}\}\\ (\exists R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid R^{\mathcal{I}}(a) \cap C^{\mathcal{I}} \neq \emptyset\}\\ (\geq_n R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid |R^{\mathcal{I}}(a) \cap C^{\mathcal{I}}\}| \geq n\} \end{array}$$

The form of DL/OWL ontologies

TBox and ABox formulae

An \mathcal{ALCQ} knowledge base consists of two kinds of formulae Subsumption axioms:

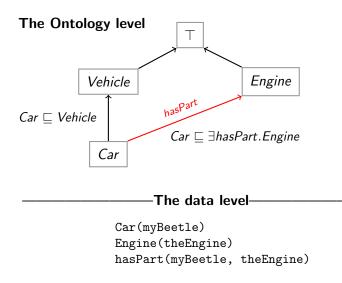
- Are of the form $C \sqsubseteq D$ (where C and D are concepts)
- model general relationships
- belong to the ontological level or the TBox

Assertions:

- Are of the form C(a) or R(a, b)
- where C is a concept, and R a role
- describe facts
- belong to the dataset or the ABox

Semantics.

Connection with OWL ontologies



Semantics

Satisfation/truth

Satisfaction/truth

Subsumption axioms: $C \sqsubseteq D$ is true in an interpretation \mathcal{I} :

• Written
$$\mathcal{I} \vDash C \sqsubseteq D$$
,

- holds if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- alternatively, if and only if $\mathcal{I}(C) \subseteq \mathcal{I}(D)$

Assertions: C(a) or R(a, b) is true in \mathcal{I} :

• Written $\mathcal{I} \vDash C(a)$ or $\mathcal{I} \vDash R(a, b)$, • $\mathcal{I} \vDash C(a)$ iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$ • $\mathcal{I} \vDash R(a, b)$ iff $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$

We say that \mathcal{I} satisfies a set of sentences S, written $\mathcal{I} \vDash S$ iff

• $\mathcal{I} \vDash s$ for all $s \in S$.

Semantics

Taking stock

- \bullet Interpretations/models ${\cal I}$ are functions
- $C^{\mathcal{I}}$ might have been written $\mathcal{I}(C)$
- \bullet Interpretations fix reference/meaning in a set or domain $\Delta^{\mathcal{I}}$, e. g.:

•
$$\Delta^{\mathcal{I}} = \{a, b, c, d, e\}$$

• $C^{\mathcal{I}} = \{c, d, e\}$
• $R^{\mathcal{I}} = \{(a, d), (a, e), (b, c)\}$

$$(\exists R.C)^{\mathcal{I}} = \{ a \in \Delta^{\mathcal{I}} | R^{\mathcal{I}}(a) \cap C^{\mathcal{I}} \neq \emptyset \}$$
$$= \{ a, b \}$$

- Truth is in turn defined in terms of reference ...
- \bullet to yield a complex notion of a statement's being true in a model ${\cal I}$

- Semantic technology is about computable descriptions of data
 - where the data descriptions are declarative,

- Semantic technology is about computable descriptions of data
 - where the data descriptions are declarative,
 - give the intended interpretation of the data,

- Semantic technology is about computable descriptions of data
 - where the data descriptions are declarative,
 - give the intended interpretation of the data,
 - and of the relationship between data items

- Semantic technology is about computable descriptions of data
 - where the data descriptions are declarative,
 - give the intended interpretation of the data,
 - and of the relationship between data items
- The descriptions enable computers to reason logically, e.g. to

- Semantic technology is about computable descriptions of data
 - where the data descriptions are declarative,
 - give the intended interpretation of the data,
 - and of the relationship between data items
- The descriptions enable computers to reason logically, e.g. to
 - check for consistency

- where the data descriptions are declarative,
- give the intended interpretation of the data,
- and of the relationship between data items
- The descriptions enable computers to reason logically, e.g. to
 - check for consistency
 - add implicit information

- where the data descriptions are declarative,
- give the intended interpretation of the data,
- and of the relationship between data items
- The descriptions enable computers to reason logically, e.g. to
 - check for consistency
 - add implicit information
 - answer complex queries

- where the data descriptions are declarative,
- give the intended interpretation of the data,
- and of the relationship between data items
- The descriptions enable computers to reason logically, e.g. to
 - check for consistency
 - add implicit information
 - answer complex queries
- Automated inference is based on logical entailment

- where the data descriptions are declarative,
- give the intended interpretation of the data,
- and of the relationship between data items
- The descriptions enable computers to reason logically, e.g. to
 - check for consistency
 - add implicit information
 - answer complex queries
- Automated inference is based on logical entailment
 - which is defined in terms of truth in a class of models

- where the data descriptions are declarative,
- give the intended interpretation of the data,
- and of the relationship between data items
- The descriptions enable computers to reason logically, e.g. to
 - check for consistency
 - add implicit information
 - answer complex queries
- Automated inference is based on logical entailment
 - which is defined in terms of truth in a class of models
 - hence we need a precise definition of what truth in a model is

Semantics

Entailment, countermodels and consistency in general

Entailment, countermodels and consistency in general

Validity

A set of sentences *S* entails a formula ψ , written $S \vDash \psi$, iff $\mathcal{I} \vDash \psi$ whenever $\mathcal{I} \vDash S$ for all interpretations \mathcal{I} of the given class.

Entailment, countermodels and consistency in general

Validity

A set of sentences *S* entails a formula ψ , written $S \vDash \psi$, iff $\mathcal{I} \vDash \psi$ whenever $\mathcal{I} \vDash S$ for all interpretations \mathcal{I} of the given class.

Consistency

A set of sentences S is consistent iff it has a model. That is, if and only if there is a model \mathcal{I} such that $\mathcal{I} \models S$.

Entailment, countermodels and consistency in general

Validity

A set of sentences *S* entails a formula ψ , written $S \vDash \psi$, iff $\mathcal{I} \vDash \psi$ whenever $\mathcal{I} \vDash S$ for all interpretations \mathcal{I} of the given class.

Consistency

A set of sentences S is consistent iff it has a model. That is, if and only if there is a model \mathcal{I} such that $\mathcal{I} \models S$.

Countermodels

A set of sentences S does not entail a formula ψ if there is a model \mathcal{I} such that $\mathcal{I} \vDash S$ but $\mathcal{I} \nvDash \psi$. We say that \mathcal{I} is a countermodel for the entailment $S \Rightarrow \psi$

... and in \mathcal{ALCQ} TBoxes

Validity

A subsumption axiom $C \sqsubseteq D$ is entailed by an ontology \mathcal{O} iff $\mathcal{O} \vDash C \sqsubseteq D$, that is, iff $\mathcal{I} \vDash C \sqsubseteq D$ whenever $\mathcal{I} \vDash \mathcal{O}$ for all \mathcal{ALCQ} models \mathcal{I}

Countermodels

An ontology \mathcal{O} does not entail a subsumption axiom $C \sqsubseteq D$ if there is an \mathcal{ALCQ} model \mathcal{I} such that $\mathcal{I} \models \mathcal{O} \cup \{C\}$ but $\mathcal{I} \nvDash D$.

Outline

Basic notions

- Sets
- Relations
- Functions
- 2 Semantics

4 Recalling soundness and completeness

Revisiting some examples from lecture 8

Ax1 TwoCV \sqsubseteq Car

Revisiting some examples from lecture 8

Ax1 $TwoCV \sqsubseteq Car$ • Any TwoCV is a car

Ax1 $TwoCV \sqsubseteq Car$ • Any TwoCV is a car Ax2 $TwoCV \sqsubset \forall driveAxle.FrontAxle$

Ax1 $TwoCV \sqsubseteq Car$ • Any TwoCV is a car Ax2 $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$

• All drive axles of *TwoCV*s are front axles

Ax1 TwoCV ⊑ Car
Any TwoCV is a car
Ax2 TwoCV ⊑ ∀driveAxle.FrontAxle
All drive axles of TwoCVs are front axles

Ax3 FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle

Ax1 TwoCV ⊑ Car
Any TwoCV is a car
Ax2 TwoCV ⊑ ∀driveAxle.FrontAxle
All drive axles of TwoCVs are front axles

Ax3 FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle

• A front driven car is one where all drive axles are front axles

Ax1 TwoCV ⊑ Car
Any TwoCV is a car
Ax2 TwoCV ⊑ ∀driveAxle.FrontAxle

• All drive axles of *TwoCV*s are front axles

Ax3 FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle

• A front driven car is one where all drive axles are front axles Now let's ask some questions:

Ax1 TwoCV \sqsubseteq Car

- Any *TwoCV* is a car
- Ax2 $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of *TwoCV*s are front axles

Ax3 FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle

- A front driven car is one where all drive axles are front axles Now let's ask some questions:
 - Does Ax1 entail that any *TwoCV* is a *Car*?

Ax1 TwoCV \sqsubseteq Car

- Any *TwoCV* is a car
- Ax2 $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of *TwoCV*s are front axles

Ax3 FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle

- A front driven car is one where all drive axles are front axles Now let's ask some questions:
 - Does Ax1 entail that any *TwoCV* is a *Car*?
 - Does Ax1 and Ax2 entail that any TwoCV has a FrontAxle?

Ax1 TwoCV \sqsubseteq Car

- Any *TwoCV* is a car
- Ax2 $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - All drive axles of *TwoCV*s are front axles

Ax3 FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle

• A front driven car is one where all drive axles are front axles

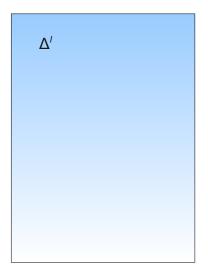
Now let's ask some questions:

- Does Ax1 entail that any *TwoCV* is a *Car*?
- Does Ax1 and Ax2 entail that any TwoCV has a FrontAxle?
- Is it consistent to assume that a front driven car may lack a drive axle?

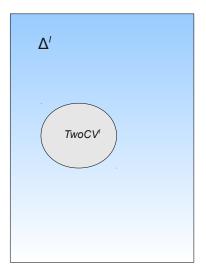
• Fix any domain of objects $\Delta^{\mathcal{I}}$,

Does Ax1 entail that any TwoCV is a CAR?

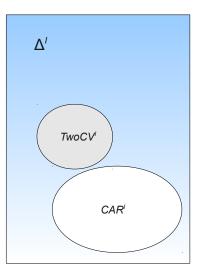
• Fix any domain of objects $\Delta^{\mathcal{I}}$,



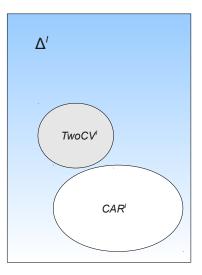
- Fix any domain of objects $\Delta^{\mathcal{I}}$,
- Fix a set $TwoCV^{\mathcal{I}}$



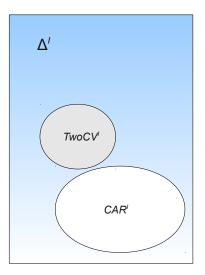
- Fix any domain of objects $\Delta^{\mathcal{I}}$,
- Fix a set $TwoCV^{\mathcal{I}}$
- Fix a set $CAR^{\mathcal{I}}$



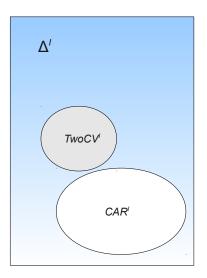
- Fix any domain of objects $\Delta^{\mathcal{I}}$,
- Fix a set *TwoCV^I*
- Fix a set $CAR^{\mathcal{I}}$
- Check what the axioms require



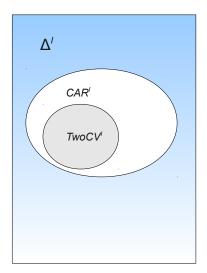
- Fix any domain of objects $\Delta^{\mathcal{I}}$,
- Fix a set *TwoCV^I*
- Fix a set $CAR^{\mathcal{I}}$
- Check what the axioms require
- In this case $TwoCV^{\mathcal{I}} \subseteq CAR^{\mathcal{I}}$ (Ax1)



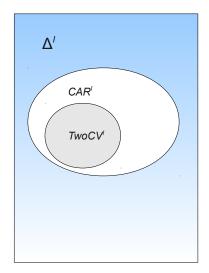
- Fix any domain of objects $\Delta^{\mathcal{I}}$,
- Fix a set *TwoCV^I*
- Fix a set $CAR^{\mathcal{I}}$
- Check what the axioms require
- In this case $TwoCV^{\mathcal{I}} \subseteq CAR^{\mathcal{I}}$ (Ax1)
- Adjust the model accordingly



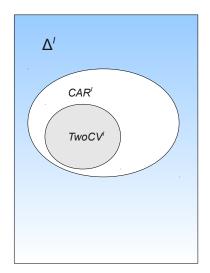
- Fix any domain of objects $\Delta^{\mathcal{I}}$,
- Fix a set *TwoCV^I*
- Fix a set $CAR^{\mathcal{I}}$
- Check what the axioms require
- In this case $TwoCV^{\mathcal{I}} \subseteq CAR^{\mathcal{I}}$ (Ax1)
- Adjust the model accordingly
- TwoCVs are CARs in this model



- Fix any domain of objects $\Delta^{\mathcal{I}}$,
- Fix a set *TwoCV^I*
- Fix a set $CAR^{\mathcal{I}}$
- Check what the axioms require
- In this case $TwoCV^{\mathcal{I}} \subseteq CAR^{\mathcal{I}}$ (Ax1)
- Adjust the model accordingly
- TwoCVs are CARs in this model
- The model was chosen arbitrarily



- Fix any domain of objects $\Delta^{\mathcal{I}}$,
- Fix a set *TwoCV^I*
- Fix a set $CAR^{\mathcal{I}}$
- Check what the axioms require
- In this case $TwoCV^{\mathcal{I}} \subseteq CAR^{\mathcal{I}}$ (Ax1)
- Adjust the model accordingly
- TwoCVs are CARs in this model
- The model was chosen arbitrarily
- So TwoCVs ar CARs in all models

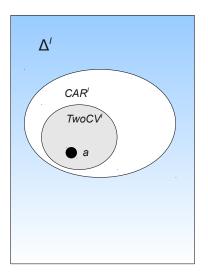


Does being a TwoCV entail having a FrontAxle?

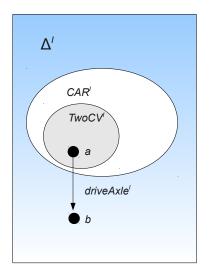
• Let's start with a particular TwoCV a

Does being a TwoCV entail having a FrontAxle?

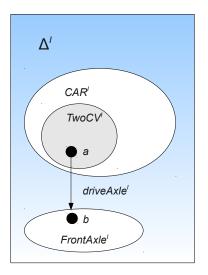
• Let's start with a particular TwoCV a



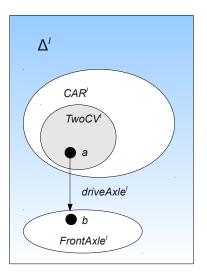
- Let's start with a particular TwoCV a
- assume it has a *driveAxle b*



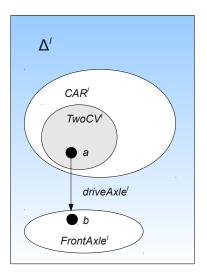
- Let's start with a particular TwoCV a
- assume it has a *driveAxle b*
- which is a FrontAxle



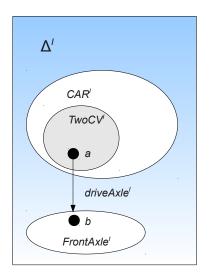
- Let's start with a particular TwoCV a
- assume it has a *driveAxle b*
- which is a FrontAxle
- Ax1 is still satisfied



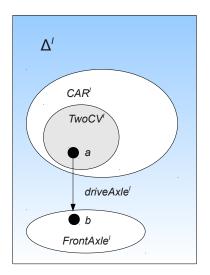
- Let's start with a particular TwoCV a
- assume it has a *driveAxle b*
- which is a FrontAxle
- Ax1 is still satisfied
- Ax2 requires



- Let's start with a particular TwoCV a
- assume it has a driveAxle b
- which is a FrontAxle
- Ax1 is still satisfied
- Ax2 requires
 - that *TwoCV*s only have front axles

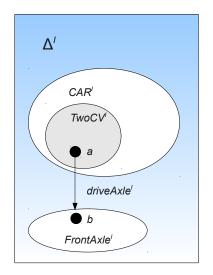


- Let's start with a particular TwoCV a
- assume it has a driveAxle b
- which is a FrontAxle
- Ax1 is still satisfied
- Ax2 requires
 - that *TwoCV*s only have front axles
 - in this case it requires *driveAxle^I(a)* ⊆ *FrontAxle^I*

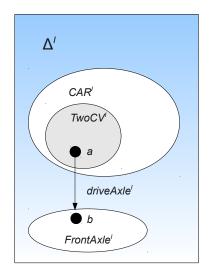


- Let's start with a particular TwoCV a
- assume it has a driveAxle b
- which is a FrontAxle
- Ax1 is still satisfied
- Ax2 requires
 - that *TwoCV*s only have front axles
 - in this case it requires *driveAxle^I(a)* ⊆ *FrontAxle^I*

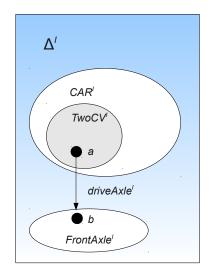
• now
$$\mathit{driveAxle}^\mathcal{I}(\mathit{a}) = \mathit{b} \in \mathit{Frontaxle}^\mathcal{I}$$



- Let's start with a particular TwoCV a
- assume it has a driveAxle b
- which is a FrontAxle
- Ax1 is still satisfied
- Ax2 requires
 - that *TwoCV*s only have front axles
 - in this case it requires *driveAxle^I(a)* ⊆ *FrontAxle^I*
- now $driveAxle^{\mathcal{I}}(a) = b \in Frontaxle^{\mathcal{I}}$
- hence both Ax1 and Ax2 are satisfied



- Let's start with a particular TwoCV a
- assume it has a driveAxle b
- which is a FrontAxle
- Ax1 is still satisfied
- Ax2 requires
 - that *TwoCV*s only have front axles
 - in this case it requires *driveAxle^I(a)* ⊆ *FrontAxle^I*
- now $\textit{driveAxle}^\mathcal{I}(a) = b \in \textit{Frontaxle}^\mathcal{I}$
- hence both Ax1 and Ax2 are satisfied
- and a has a FrontAxle



Hang on !?

• This does not in fact answer our question

- This does not in fact answer our question
- Entailment is truth in *all* models

- This does not in fact answer our question
- Entailment is truth in all models
- Truth in one model does not necessarily generalize to all models

- This does not in fact answer our question
- Entailment is truth in all models
- Truth in one model does not necessarily generalize to all models
- But this is what we did in the first example, what is the difference?

- This does not in fact answer our question
- Entailment is truth in all models
- Truth in one model does not necessarily generalize to all models
- But this is what we did in the first example, what is the difference?
- In the first example we chose the model arbitrarily, i. e.:

- This does not in fact answer our question
- Entailment is truth in all models
- Truth in one model does not necessarily generalize to all models
- But this is what we did in the first example, what is the difference?
- In the first example we chose the model arbitrarily, i. e.:
 - We did not make any particular assumptions about it

- This does not in fact answer our question
- Entailment is truth in all models
- Truth in one model does not necessarily generalize to all models
- But this is what we did in the first example, what is the difference?
- In the first example we chose the model arbitrarily, i. e.:
 - We did not make any particular assumptions about it
 - except of course, that it satisfies the axioms,

- This does not in fact answer our question
- Entailment is truth in all models
- Truth in one model does not necessarily generalize to all models
- But this is what we did in the first example, what is the difference?
- In the first example we chose the model arbitrarily, i. e.:
 - We did not make any particular assumptions about it
 - except of course, that it satisfies the axioms,
 - therefore whatever properties that that model has all models have

- This does not in fact answer our question
- Entailment is truth in all models
- Truth in one model does not necessarily generalize to all models
- But this is what we did in the first example, what is the difference?
- In the first example we chose the model arbitrarily, i. e.:
 - We did not make any particular assumptions about it
 - except of course, that it satisfies the axioms,
 - therefore whatever properties that that model has all models have
 - again, given that they satisfy the axioms

• In the second example we chose an intended model, i.e.

- In the second example we chose an intended model, i.e.
 - we chose a model according to our intutitions about cars and axles

- In the second example we chose an intended model, i.e.
 - we chose a model according to our intutitions about cars and axles
 - in so doing, we made certain assumptions beyond the axioms,

- In the second example we chose an intended model, i.e.
 - we chose a model according to our intutitions about cars and axles
 - in so doing, we made certain assumptions beyond the axioms,
 - notably, that the only *TwoCV* in the model has a *FrontAxel*

- In the second example we chose an intended model, i.e.
 - we chose a model according to our intutitions about cars and axles
 - in so doing, we made certain assumptions beyond the axioms,
 - notably, that the only *TwoCV* in the model has a *FrontAxel*
 - clearly, this is just an assumption

• In the second example we chose an intended model, i.e.

- we chose a model according to our intutitions about cars and axles
- in so doing, we made certain assumptions beyond the axioms,
- notably, that the only *TwoCV* in the model has a *FrontAxel*
- clearly, this is just an assumption
- it says nothing about other *TwoCV*s in other models

• In the second example we chose an intended model, i.e.

- we chose a model according to our intutitions about cars and axles
- in so doing, we made certain assumptions beyond the axioms,
- notably, that the only TwoCV in the model has a FrontAxel
- clearly, this is just an assumption
- it says nothing about other *TwoCV*s in other models

• Truth in a model and validity in a class of models is not the same

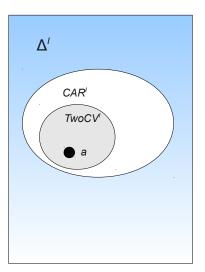
• In the second example we chose an intended model, i.e.

- we chose a model according to our intutitions about cars and axles
- in so doing, we made certain assumptions beyond the axioms,
- notably, that the only TwoCV in the model has a FrontAxel
- clearly, this is just an assumption
- it says nothing about other *TwoCV*s in other models
- Truth in a model and validity in a class of models is not the same
- Truth in one model does not rule out falsity in another

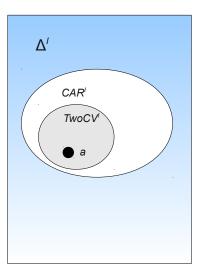
- In the second example we chose an intended model, i.e.
 - we chose a model according to our intutitions about cars and axles
 - in so doing, we made certain assumptions beyond the axioms,
 - notably, that the only *TwoCV* in the model has a *FrontAxel*
 - clearly, this is just an assumption
 - it says nothing about other *TwoCV*s in other models
- Truth in a model and validity in a class of models is not the same
- Truth in one model does not rule out falsity in another
- Let's see if we can find a countermodel ...

• Let's start with the same *TwoCV*

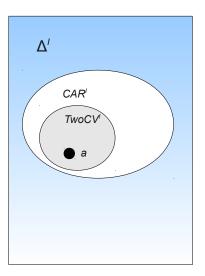
• Let's start with the same *TwoCV*



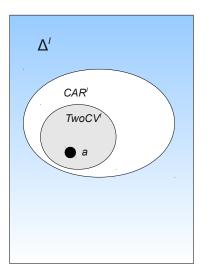
- Let's start with the same *TwoCV*
- only this time it has no *driveAxle*



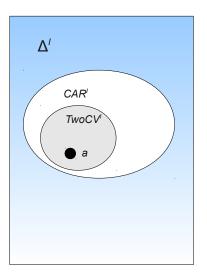
- Let's start with the same *TwoCV*
- only this time it has no *driveAxle*
- are Ax1 and Ax2 still satisfied?



- Let's start with the same *TwoCV*
- only this time it has no *driveAxle*
- are Ax1 and Ax2 still satisfied?
- Clearly Ax1 is



- Let's start with the same *TwoCV*
- only this time it has no *driveAxle*
- are Ax1 and Ax2 still satisfied?
- Clearly Ax1 is
- For Ax2 we need to calculate a little:



Is Ax2 satisfied?

• We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- \bullet According to \mathcal{ALC} semantics we have

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : if driveAxle^{\mathcal{I}}(a, b) then \ b \in FrontAxle^{\mathcal{I}}\}$

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- \bullet According to \mathcal{ALC} semantics we have

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : if driveAxle^{\mathcal{I}}(a, b) then b \in FrontAxle^{\mathcal{I}}\}$

or

$$(\forall \textit{driveAxle}.\textit{FrontAxle})^{\mathcal{I}} = \{ a \in \Delta : \textit{driveAxle}^{\mathcal{I}}(a) \subseteq \textit{FrontAxle}^{\mathcal{I}} \}$$

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- \bullet According to \mathcal{ALC} semantics we have

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : if driveAxle^{\mathcal{I}}(a, b) then b \in FrontAxle^{\mathcal{I}}\}$ • or

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}\}$

• Hence we must show that $driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}$

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- \bullet According to \mathcal{ALC} semantics we have

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : if driveAxle^{\mathcal{I}}(a, b) then b \in FrontAxle^{\mathcal{I}}\}$ • or

$$(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}\}$$

- Hence we must show that $driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}$
- But $driveAxle^{\mathcal{I}}(a) = \emptyset$; a has no drive axle at all

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- \bullet According to \mathcal{ALC} semantics we have

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : if driveAxle^{\mathcal{I}}(a, b) then b \in FrontAxle^{\mathcal{I}}\}$ • or

$$(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}\}$$

- Hence we must show that $driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}$
- But $driveAxle^{\mathcal{I}}(a) = \emptyset$; a has no drive axle at all
- Since the emptyset is a subset of every other set we thus have

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- \bullet According to \mathcal{ALC} semantics we have

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : if driveAxle^{\mathcal{I}}(a, b) then b \in FrontAxle^{\mathcal{I}}\}$

or

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}\}$

- Hence we must show that $driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}$
- But $driveAxle^{\mathcal{I}}(a) = \emptyset$; a has no drive axle at all
- Since the emptyset is a subset of every other set we thus have
- $\emptyset \subseteq FrontAxle^{\mathcal{I}}$, whence

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- According to ALC semantics we have

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : if driveAxle^{\mathcal{I}}(a, b) then b \in FrontAxle^{\mathcal{I}}\}$

or

 $(\forall \textit{driveAxle.FrontAxle})^{\mathcal{I}} = \{ a \in \Delta : \textit{driveAxle}^{\mathcal{I}}(a) \subseteq \textit{FrontAxle}^{\mathcal{I}} \}$

- Hence we must show that $driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}$
- But $driveAxle^{\mathcal{I}}(a) = \emptyset$; a has no drive axle at all
- Since the emptyset is a subset of every other set we thus have
- $\emptyset \subseteq FrontAxle^{\mathcal{I}}$, whence
- $driveAxle^{\mathcal{I}}(a) = \emptyset \subseteq FrontAxle^{\mathcal{I}}$

Is Ax2 satisfied?

- We recall that Ax2 is $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
- This axioms is satisfied if $TwoCV^{\mathcal{I}} \subseteq (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- Now, $a \in TwoCV^{\mathcal{I}}$ so we must put $a \in (\forall driveAxle.FrontAxle)^{\mathcal{I}}$
- \bullet According to \mathcal{ALC} semantics we have

 $(\forall driveAxle.FrontAxle)^{\mathcal{I}} = \{a \in \Delta : if driveAxle^{\mathcal{I}}(a, b) then \ b \in FrontAxle^{\mathcal{I}}\}$

or

 $(\forall \textit{driveAxle.FrontAxle})^{\mathcal{I}} = \{ a \in \Delta : \textit{driveAxle}^{\mathcal{I}}(a) \subseteq \textit{FrontAxle}^{\mathcal{I}} \}$

- Hence we must show that $driveAxle^{\mathcal{I}}(a) \subseteq FrontAxle^{\mathcal{I}}$
- But $driveAxle^{\mathcal{I}}(a) = \emptyset$; a has no drive axle at all
- Since the emptyset is a subset of every other set we thus have
- $\emptyset \subseteq FrontAxle^{\mathcal{I}}$, whence
- $driveAxle^{\mathcal{I}}(a) = \emptyset \subseteq FrontAxle^{\mathcal{I}}$
- \bullet In other words, Ax2 is satisfied (vacuously), whence ${\cal I}$ is a countermodel.

Can a front driven car lack a drive axle?

• Let's try to answer it affirmatively:

- Let's try to answer it affirmatively:
- We need to construct a model

- Let's try to answer it affirmatively:
- We need to construct a model
- in which there is an object *a* s.t.:

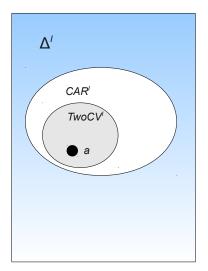
- Let's try to answer it affirmatively:
- We need to construct a model
- in which there is an object *a* s.t.:
 - a is a Car

- Let's try to answer it affirmatively:
- We need to construct a model
- in which there is an object *a* s.t.:
 - a is a Car
 - a has either no axle or

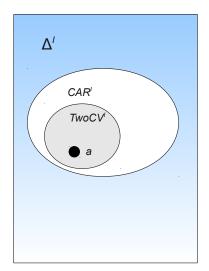
- Let's try to answer it affirmatively:
- We need to construct a model
- in which there is an object *a* s.t.:
 - a is a Car
 - a has either no axle or
 - only (one or more) front axles

- Let's try to answer it affirmatively:
- We need to construct a model
- in which there is an object *a* s.t.:
 - a is a Car
 - a has either no axle or
 - only (one or more) front axles
- we already have such a model, namely

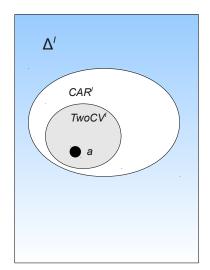
- Let's try to answer it affirmatively:
- We need to construct a model
- in which there is an object a s.t.:
 - a is a Car
 - a has either no axle or
 - only (one or more) front axles
- we already have such a model, namely



- Let's try to answer it affirmatively:
- We need to construct a model
- in which there is an object a s.t.:
 - a is a Car
 - a has either no axle or
 - only (one or more) front axles
- we already have such a model, namely
- Ax1-3 entail that *TwoCV*s are front driven cars



- Let's try to answer it affirmatively:
- We need to construct a model
- in which there is an object a s.t.:
 - a is a Car
 - a has either no axle or
 - only (one or more) front axles
- we already have such a model, namely
- Ax1-3 entail that *TwoCV*s are front driven cars
- and we have already proved the property for *TwoCV*'s



Outline

Basic notions

- Sets
- Relations
- Functions
- 2 Semantics
- 3 Walkthroughs

Model-theoretic semantics yields an unambigous notion of entailment,

• But does not lend itself naturally to implementation

- But does not lend itself naturally to implementation
- The problem is that

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check
 - but an algorithm is a finite object

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check
 - but an algorithm is a finite object
 - so entailment cannot be checked directly

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check
 - but an algorithm is a finite object
 - so entailment cannot be checked directly

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check
 - but an algorithm is a finite object
 - so entailment cannot be checked directly

Model-theoretic semantics yields an unambigous notion of entailment,

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check
 - but an algorithm is a finite object
 - so entailment cannot be checked directly

It is therefore common to supplement a semantics with a proof system

Model-theoretic semantics yields an unambigous notion of entailment,

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check
 - but an algorithm is a finite object
 - so entailment cannot be checked directly

It is therefore common to supplement a semantics with a proof system

• which is a system of *inference rules*

Model-theoretic semantics yields an unambigous notion of entailment,

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check
 - but an algorithm is a finite object
 - so entailment cannot be checked directly

It is therefore common to supplement a semantics with a proof system

- which is a system of *inference rules*
- in which each step of a derivation is determined by *syntactical form alone*

Model-theoretic semantics yields an unambigous notion of entailment,

- But does not lend itself naturally to implementation
- The problem is that
 - There are always infinitely many models to check
 - but an algorithm is a finite object
 - so entailment cannot be checked directly

It is therefore common to supplement a semantics with a proof system

- which is a system of *inference rules*
- in which each step of a derivation is determined by *syntactical form alone*
- and every derivation terminates

Recalling a few RDFS rules

We have seen that RDFS can be characterised by rules that includes:

Membership abstraction:

<u>u rdfs:subClassOf x . v rdf:type u .</u> v rdf:type x . rdfs9

Transitivity of subsumption:

<u>u rdfs:subClassOf v . v rdfs:subClassOf x .</u> u rdfs:subClassOf x . rdfs11

Domain reasoning:

Semantics and calculus are typically made to work like chopsticks:

Semantics and calculus are typically made to work like chopsticks:

• One proves that,

Semantics and calculus are typically made to work like chopsticks:

- One proves that,
 - I. every conclusion derivable in the calculus from a set of premises A, is true in all models that satisfy A

Semantics and calculus are typically made to work like chopsticks:

- One proves that,
 - I. every conclusion derivable in the calculus from a set of premises A, is true in all models that satisfy A
 - II. and conversely that every statement entailed by *A*-models is derivable in the calculus when the elements of *A* are used as premises.

Semantics and calculus are typically made to work like chopsticks:

- One proves that,
 - I. every conclusion derivable in the calculus from a set of premises A, is true in all models that satisfy A
 - II. and conversely that every statement entailed by *A*-models is derivable in the calculus when the elements of *A* are used as premises.

We say that the calculus is

Semantics and calculus are typically made to work like chopsticks:

- One proves that,
 - I. every conclusion derivable in the calculus from a set of premises A, is true in all models that satisfy A
 - II. and conversely that every statement entailed by *A*-models is derivable in the calculus when the elements of *A* are used as premises.

We say that the calculus is

• sound wrt the semantics, if (I) holds, and

Semantics and calculus are typically made to work like chopsticks:

- One proves that,
 - I. every conclusion derivable in the calculus from a set of premises A, is true in all models that satisfy A
 - II. and conversely that every statement entailed by *A*-models is derivable in the calculus when the elements of *A* are used as premises.

We say that the calculus is

- sound wrt the semantics, if (I) holds, and
- complete wrt the semantics, if (II) holds.

The complementarity of semantics and calculus

A proof system provides

- a finite means of reasoning *as if* we could run through an infinite number of models
- that is, a finite means of checking entailment
- A semantics provides
 - An intuitive justification for logical properties
 - and a way to prove that properties *do not* hold (countermodels)

When semantics and proof system coincides

- We have a powerful way of checking positive and negative properties
- a finite representation of an infinite number of models,
- and a semantic justification for the inference rules in the proof system

Next time

David Norheim talks about Computas' RDF development projects:

- Mediasone:
 - An RDF-based navigation application for Deichmanske Bibliotek:
 - Uses OWL with the Pellet reasoner, Virtuoso triple store and SPARQL
 - Collects data from dbpedia
- Ø Sublima:
 - Uses the OWL vocabulary SKOS (Simple Knowledge Oragnisation System)
 - Together with a Web interface for manual annotation of data