
INF3580 – Semantic Technologies – Spring 2010
Lecture 14: Presenting Relational Databases as RDF

Martin Giese

25th May 2010

Department of
Informatics

University of
Oslo

Today’s Plan

1 From Relational DBs to RDF

2 The D2R/D2RQ System

3 Customizing Mappings

4 Reasoning about Databases

5 Conclusion

INF3580 :: Spring 2010 Lecture 14 :: 25th May 2 / 34

From Relational DBs to RDF

Outline

1 From Relational DBs to RDF

2 The D2R/D2RQ System

3 Customizing Mappings

4 Reasoning about Databases

5 Conclusion

INF3580 :: Spring 2010 Lecture 14 :: 25th May 3 / 34

From Relational DBs to RDF

Relational Database Management Systems

“Relational” databases introduced in 1970

Replaced navigational and hierarchical systems

Mostly used with query language SQL

Most of the world’s business data today is stored in relational
databases

Several freely available systems:

PostgreSQL
MySQL
SQLite
. . .

Many commercial systems:

Oracle
IBM DB2
Microsoft Access, SQL Server
. . .

INF3580 :: Spring 2010 Lecture 14 :: 25th May 4 / 34



From Relational DBs to RDF

RDBMS to RDF

Need a way to make data in RDBMS available as RDF

First idea: RDF export

Read all records, export RDF
Bad idea: data replication. . .
Probably won’t switch whole enterprise to RDF store
Need to convert to RDF regularly

Often a better idea: RDF view

SPARQL endpoint translates incoming queries to SQL
Translates result to SPARQL SELECT result or RDF
Data remains where it is, no duplication
Drawback: need to keep “old-fashioned” DB backend

INF3580 :: Spring 2010 Lecture 14 :: 25th May 5 / 34

The D2R/D2RQ System

Outline

1 From Relational DBs to RDF

2 The D2R/D2RQ System

3 Customizing Mappings

4 Reasoning about Databases

5 Conclusion

INF3580 :: Spring 2010 Lecture 14 :: 25th May 6 / 34

The D2R/D2RQ System

D2R/D2RQ

Allows to treat relational
databases as RDF

Developed by FU Berlin

Mapping describes relation
between DB and RDF

Can create SPARQL endpoint
without transforming the whole
database: Virtual RDF graph.

Also on-demand RDF/HTML
pages following LOD protocol

INF3580 :: Spring 2010 Lecture 14 :: 25th May 7 / 34

The D2R/D2RQ System

D2RQ Engine

Reads a “Mapping File”

Table → Class
Row → Resource
Column → Property
RDF-encoded

Translates SPARQL to SQL

Can also act as Jena Graph

Or the Sesame equivalent

Can also export whole DB

INF3580 :: Spring 2010 Lecture 14 :: 25th May 8 / 34



The D2R/D2RQ System

D2R Server

Provides WWW-frontend

SPARQL Endpoint

Serves RDF as linked open data

Pages of data for HTTP
browsers

All requests translated to
SPARQL

INF3580 :: Spring 2010 Lecture 14 :: 25th May 9 / 34

The D2R/D2RQ System

Example: World Database

An example database from MySQL distribution

Table City:

ID (key): a unique number
Name: the city’s name
CountryCode: Code for the country the city lies in
. . .

Table Country:

Code (key): the code for a country
Name: the Country’s name
Continent: the Continent the country lies in
Capital: the City ID of the country’s capital
. . .

INF3580 :: Spring 2010 Lecture 14 :: 25th May 10 / 34

The D2R/D2RQ System

Example: World Database (cont.)

Table City:

ID Name CountryCode . . .

. . .
2806 Kingston NFK . . .
2807 Oslo NOR . . .
2808 Bergen NOR . . .

. . .

Table Country:

Code Name Continent Capital . . .

. . .
NLD Netherlands Europe 5 . . .
NOR Norway Europe 2807 . . .
NPL Nepal Asia 2729 . . .

. . .

INF3580 :: Spring 2010 Lecture 14 :: 25th May 11 / 34

The D2R/D2RQ System

Automatic Mapping

Call D2R program generate-mapping

(Requires access information for database)

Generates a mapping file for:

one rdfs:Class for each table
one resource per DB row
one data-property per column (ie. literal objects)
plus one rdfs:label for every resource

Uses automatically generated class and property names

INF3580 :: Spring 2010 Lecture 14 :: 25th May 12 / 34



The D2R/D2RQ System

Generated RDF for Automatic Mapping

<http://.../City/2807> a vocab:City ;

rdfs:label "City #2807" ;

vocab:City_Name "Oslo" ;

vocab:City_CountryCode "NOR" .

<http://.../Country/NOR> a vocab:Country ;

rdfs:label "Country #NOR" ;

vocab:Country_Name "Norway" ;

vocab:Country_Continent "Europe" ;

vocab:Country_Capital "2807"

Only literals, no URI-links between Oslo and Norway

No attempt to introduce a class for continents

Solution: refine the generated mapping file manually

INF3580 :: Spring 2010 Lecture 14 :: 25th May 13 / 34

Customizing Mappings

Outline

1 From Relational DBs to RDF

2 The D2R/D2RQ System

3 Customizing Mappings

4 Reasoning about Databases

5 Conclusion

INF3580 :: Spring 2010 Lecture 14 :: 25th May 14 / 34

Customizing Mappings

Where Classes Come From

From the generated mapping file:

map:City a d2rq:ClassMap ;

d2rq:dataStorage map:database ;

d2rq:uriPattern "City/@@City.ID@@" ;

d2rq:class vocab:City ;

d2rq:classDefinitionLabel "City" .

identify a “class mapping”

link to a resource describing the DB connection

give the pattern for resources of this class

contains placeholder with DB table and column

give the RDFS class for those resources

give the label for that class.

INF3580 :: Spring 2010 Lecture 14 :: 25th May 15 / 34

Customizing Mappings

Resources for Continents

Add to mapping file:

map:Continent a d2rq:ClassMap ;

d2rq:dataStorage map:database ;

d2rq:uriPattern "Continent/@@Country.Continent|urlify@@";

d2rq:class vocab:Continent ;

d2rq:classDefinitionLabel "Continent" .

For everything in the Continent column of Country. . .

. . . generate a resource with URI .../Continent/...

. . . removing spaces from “North America”, etc.

E.g. http://.../resource/Continent/North_America

INF3580 :: Spring 2010 Lecture 14 :: 25th May 16 / 34



Customizing Mappings

Where Properties Go To

In original mapping file:

map:City_CountryCode a d2rq:PropertyBridge ;

d2rq:belongsToClassMap map:City ;

d2rq:property vocab:City_CountryCode ;

d2rq:propertyDefinitionLabel "City CountryCode" ;

d2rq:column "City.CountryCode" .

Identify a “property bridge”

that adds properties to the resources described in map:City

give the predicate

give a label to the predicate

the object is a literal taken from this column

Also possible to define literals with patterns containing columns

INF3580 :: Spring 2010 Lecture 14 :: 25th May 17 / 34

Customizing Mappings

Linking Cities to Countries

Replace the previous property bridge with:

map:City_CountryCode a d2rq:PropertyBridge ;

d2rq:belongsToClassMap map:City ;

d2rq:property vocab:City_Country ;

d2rq:propertyDefinitionLabel "City Country" ;

d2rq:refersToClassMap map:Country ;

d2rq:join "City.CountryCode=>Country.Code" .

Foreign key: link to resource from another class map

Say how columns for map:City correspond to those for map:Country

INF3580 :: Spring 2010 Lecture 14 :: 25th May 18 / 34

Customizing Mappings

Linking Countries to Capitals

Replace:

map:Country_Capital a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Country;

d2rq:property vocab:Country_Capital;

d2rq:propertyDefinitionLabel "Country Capital";

d2rq:column "Country.Capital" .

By:

map:Country_Capital a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Country;

d2rq:property vocab:capital;

d2rq:propertyDefinitionLabel "Country Capital";

d2rq:refersToClassMap map:City;

d2rq:join "Country.Capital=>City.ID";

INF3580 :: Spring 2010 Lecture 14 :: 25th May 19 / 34

Customizing Mappings

Resulting Graph

<http://.../City/2807> a vocab:City ;

rdfs:label "City #2807" ;

vocab:City_Name "Oslo" ;

vocab:City_Country <http://.../Country/NOR> .

<http://.../Country/NOR> a vocab:Country ;

rdfs:label "Country #NOR" ;

vocab:Country_Name "Norway" ;

vocab:Country_Continent "Europe" ;

vocab:Country_Capital <http://.../City/2807> .

INF3580 :: Spring 2010 Lecture 14 :: 25th May 20 / 34



Customizing Mappings

Linking to DBpedia

Add property bridge:

map:Country_DBpedia a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Country;

d2rq:property owl:sameAs;

d2rq:uriPattern

"http://dbpedia.org/resource/@@Country.Name|urlify@@" .

No problem to use “external” properties or classes

No problem to link to “external” URIs.

Careful: Generating links like this often fails for some cases:

World DB country name: Sao Tome and Principe

DBpedia URI: http://.../S~ao_Tomé_and_Prı́ncipe

Better in general to have a DB table with corresponding URIs

INF3580 :: Spring 2010 Lecture 14 :: 25th May 21 / 34

Reasoning about Databases

Outline

1 From Relational DBs to RDF

2 The D2R/D2RQ System

3 Customizing Mappings

4 Reasoning about Databases

5 Conclusion

INF3580 :: Spring 2010 Lecture 14 :: 25th May 22 / 34

Reasoning about Databases

The Jena Adapter

No direct way of adding
reasoning to D2R

An RDF view of a database can
be made available as a Jena
Model

Requires mapping file and
d2rq.jar

Add reasoning to that model

INF3580 :: Spring 2010 Lecture 14 :: 25th May 23 / 34

Reasoning about Databases

The Jena Adapter: Example

Model m = new ModelD2RQ("file:mapping.n3");

Create a model backed by a DB through D2R
No data is read into memory

OntModel om = ModelFactory.createOntologyModel();

om.read("file:world.owl");

Create model with ontology, e.g.
vocab:City rdfs:subClassOf vocab:Place

vocab:Country rdfs:subClassOf vocab:Place

Model infm = ModelFactory.createRDFSModel(om, m);

Asking infm for all objects of type vocab:Place. . .
. . . gives all cities. . .
. . . and all countries!
Can use Jena query engine for SPARQL queries with reasoning
But does it still not read data into memory?

INF3580 :: Spring 2010 Lecture 14 :: 25th May 24 / 34



Reasoning about Databases

Forward Chaining vs. Backward Chaining

Given: reasoning rules, like e.g.:

x rdf:type C
C rdfs:subClassOf D

x rdf:type D

Forward Chaining:

Add all consequences of rules to the model
Queries can be answered using the expanded model

Backward Chaining:

Leave model as it is
Answer queries by applying rules “backwards”
A bit like Prolog!

INF3580 :: Spring 2010 Lecture 14 :: 25th May 25 / 34

Reasoning about Databases

Example for Forward Chaining

Given triples:

:City rdfs:subClassOf :Place

:Oslo rdf:type :City

Inferred triples:

:Oslo rdf:type :Place

:Place rdf:type rdfs:Class

:Place rdfs:subClassOf rdfs:Resource

...

To answer x rdf:type :Place:

Simply look in model:
x → :Oslo

INF3580 :: Spring 2010 Lecture 14 :: 25th May 26 / 34

Reasoning about Databases

Example for Backward Chaining

Given triples:

:City rdfs:subClassOf :Place

:Oslo rdf:type :City

To answer x rdf:type :Place:

Look for direct occurrences: none
Look for instances of:

C rdf:subClassOf :Place

x rdf:type C

E.g. C → :City, x → :Oslo

In general, need to backward-chain over many rules!

E.g. C rdf:subClassOf :Place could come from other rules

INF3580 :: Spring 2010 Lecture 14 :: 25th May 27 / 34

Reasoning about Databases

Forward Chaining vs. Backward Chaining

Forward Backward
reason once repeated computation

diffuse goal-oriented

adds to data data unchanged

much space little space

expensive up-front cheap up-front

fast queries slow queries

possibly non-terminating possibly non-terminating
expansion backward chaining

“Hybrid” approaches possible, e.g. Jena RDFS reasoner
Forward chaining for sub-class/prop. hierarchy, ranges, domains
Backward chaining for rdf:type

Forward chaining difficult for data in databases
RDFS reasoner OK for databases
Pellet etc. in general not

INF3580 :: Spring 2010 Lecture 14 :: 25th May 28 / 34



Reasoning about Databases

OWL 2 Profiles

OWL QL Based on “DL-LiteA”. Allows query answering by “query
rewriting”, i.e. backward chaining. Same data-efficiency as
SQL.

OWL RL Based on “pD∗” semantics for OWL. Allows terminating
exhaustive forward chaining.

OWL EL Based on “EL++”. Shown to allow query answering by
query rewriting after some amount of preprocessing.

QL and RL “maximal” with these properties. EL originally defined for
efficient classification.

Query processors for these profiles still academic.

Google for “QuOnto” for work on OWL QL/DL-Lite.

INF3580 :: Spring 2010 Lecture 14 :: 25th May 29 / 34

Conclusion

Outline

1 From Relational DBs to RDF

2 The D2R/D2RQ System

3 Customizing Mappings

4 Reasoning about Databases

5 Conclusion

INF3580 :: Spring 2010 Lecture 14 :: 25th May 30 / 34

Conclusion

Topics Covered

RDF, principles, Turtle syntax

The Jena API for RDF

The SPARQL Query Language

Basics of the RDFS and OWL ontology languages

Basics of model semantics and reasoning

Linked Open Data, RDFa

Publishing Databases as RDF

INF3580 :: Spring 2010 Lecture 14 :: 25th May 31 / 34

Conclusion

Topics Not Covered

Rule Languages (SWRL, RIF, Jena rules, etc.)

SW application structures

Semantic Web Services

Details of RDF/RDFS model semantics

Some details of OWL

Details of OWL 2 profiles

Logical theory: Soundness, Completeness,. . .

(You ain’t seen nothing yet :-)

And many more!

INF3580 :: Spring 2010 Lecture 14 :: 25th May 32 / 34



Conclusion

Help! I Can’t Get Enough!

For more information on theory:

Book on Foundations of SW Technologies
Take a course in logic or automated reasoning

For more information on practical questions:

Book on Semantic Web Programming
Standards texts on W3C Web pages
Google

Still not enough?

Contact us for possible MSc topics!

INF3580 :: Spring 2010 Lecture 14 :: 25th May 33 / 34

Conclusion

INF3580 :: Spring 2010 Lecture 14 :: 25th May 34 / 34


	From Relational DBs to RDF
	The D2R/D2RQ System
	Customizing Mappings
	Reasoning about Databases
	Conclusion

