INF3580 – Semantic Technologies – Spring 2011 Lecture 1: Introduction

Martin Giese

25th January 2011

Today's Plan

- Practicalities
- 2 Software
- 3 Introduction to Semantic Technologies

INF3170 – Logikk

• It has been dedicded on short notice that

INF3170 - Logikk

will be held!

- Tuesdays, 12:15-14:00 in Lille Aud. (old ifi building)
- Detailed information about theoretical background of Semantic Technologies:
 - Logic
 - Model Semantics
 - Reasoning

NF3580 :: Spring 2011

ecture 1 :: 25th Januar

Practicalities

2 / 20

Outline

Practicalities

2 Software

Introduction to Semantic Technologies

0 :: Spring 2011 Lecture 1 :: 25th January 3 / 39 INF3580 :: Spring 2011 Lecture 1 :: 25th January 4 / 39

Practicalities

When, Where, and Who

When and Where

- Lectures Tuesdays 14:15-16:00 in Prolog (2465).
- No lecture 19. April (Easter break) and 17. May
- Homepage:

http://www.uio.no/studier/emner/matnat/ifi/INF3580/

Lecturer

Martin Giese (martingi@ifi.uio.no)

NF3580 :: Spring 2011

Lecture 1 :: 25th January

5 / 30

January

Practicalities

Exercises

Exercises

- Practical exercises every week,
- Fortress (3468), Fridays 12:15–14:00, starting this week
- Exercises available on website well in advance. Come prepared!
- Consider bringing your laptop!

Teachers

Håvard M. Ottestad (haavarot@ifi.uio.no)

Martin G. Skjæveland (martige@ifi.uio.no)

Practicalitie

Additional Lecturers

Martin G. Skjæveland (martige@ifi.uio.no)

Audun Stolpe (audus@ifi.uio.no)

Kjetil Kjernsmo
(kjekje@ifi.uio.no)

INF3580 :: Spring 201:

Lecture 1 :: 25th Janua

6 / 39

Practicalities

Mandatory Assignments, Exam

Assignments

- Probably five mandatory assignments
- Corrected by teachers
- Pass/Fail
- Must have passed all assignments in order to attend exam
- First three assignments:
 - Small, one per week (first one published on 1.2.)
 - Automated correction
 - One attempt
- Fourth and Fifth assignment:
 - More substantial, timing will be announced
 - Manual correction
 - Two attempts

Exam

- Three hours written Exam
- Grades A–F

INF3580 :: Spring 2011 Lecture 1 :: 25th January 8 / 3

Reading

• For practical aspects:

Semantic Web Programming. Hebeler, Fisher, Blace, Perez-Lopez. Wiley 2009

• For theoretical aspects:

Foundations of Semantic Web Technologies. Hitzler, Krötzsch, Rudolph. CRC Press 2009

- Can buy both in Akademika
- Slides available on course homepage

NF3580 :: Spring 2011

Lecture 1 :: 25th January

9 / 30

INF3580 :: Sp

Outline

Practicalities

2 Software

cture 1 :: 25th January

10 / 30

Software

Software

- Programming-oriented course.
- With non-trivial theoretical components.
- Various off-the-shelf software required to work on exercises.
- Installation help in weekly exercises and exercise sessions.
- Most software already installed on ifi machines.

3 Introduction to Semantic Technologies

Software: Java

In principle, any programming language can be used for semantic web programming, but. . .

- Will explain Sem. Web programming using Java libraries
- The textbook concentrates on Java
- Exercises are built around Java

So: get JDK6 from

http://java.sun.com/

INF3580 :: Spring 2011 Lecture 1 :: 25th January 11 / 39 INF3580 :: Spring 2011 Lecture 1 :: 25th January

Software

Software: Eclipse

In principle, you can use any environment to develop Java programs, but...

- The Eclipse IDE is free, open source software
- It is particularly suited for Java development
- We will use the Eclipse IDE for demonstrations
- We will be able to help you with Eclipse problems

So: get the Eclipse IDE from

http://www.eclipse.org/

NF3580 :: Spring 2011

Lecture 1 :: 25th Januar

13 / 39

Software

Software: Pellet

There are several reasoning systems around, but...

- The textbook uses Pellet
- It is open source software
- It has a direct interface to Jena
- It is one of the more mature and comprehensive reasoners
- It is powerful enough for our purposes

So: get Pellet 2.2.2 from

http://clarkparsia.com/pellet/

Alternatives:

- FaCT++, http://owl.man.ac.uk/factplusplus/
- RacerPro, http://www.racer-systems.com/
- Hermit, http://hermit-reasoner.com/
- etc., http://en.wikipedia.org/wiki/Semantic_reasoner

Software: Jena

There are various Java libraries for Sem. Web programming out there, but

- The textbook uses Jena
- It is one of the most used and mature Java libraries for Sem. Web
- It is powerful enough for our purposes

So: get Jena 2.6.4 from

http://jena.sourceforge.net/

Alternatives:

• Sesame, http://www.openrdf.org/

• OWL API, http://owlapi.sourceforge.net/

- Redland RDF Libraries (C), http://librdf.org/
- etc., Google for "RDF library"...

INF3580 :: Spring 2011

Lecture 1 :: 25th January

14 / 39

Softwar

Software: Protégé

There are several ontology editors available, but...

- The textbook uses Protégé
- It is open source software
- It is the most widely used ontology editor
- Probably the best non-commercial one

So: get Protégé 4.0.2 from

http://protege.stanford.edu/

Alternatives:

• see http://en.wikipedia.org/wiki/Ontology_editor

ure 1 :: 25th January 15 / 39 INF3580 :: Spring 2011 Lecture 1 :: 25th January 16 / 39

Introduction to Semantic Technologies

Outline

Practicalities

2 Software

Introduction to Semantic Technologies

NF3580 :: Spring 201

Lecture 1 :: 25th January

17 / 30

Introduction to Semantic Technologies

Let's go to the cinema!

- Kringsjå studentby, 20:00...
- "Let's go to see *Hereafter* now!"
- Need to find out which cinema plays the movie tonight, e.g. on http://www.google.no/movies

- Need to find out which of those cinemas we can reach on time using public transport, e.g. on http://www.trafikanten.no/
- Web user needs to combine information from different sites
- Essentially a database join!

ntroduction to Semantic Technologies

The Vision of a Semantic Web

A vision

I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web—the content, links, and transactions between people and computers. A 'Semantic Web', which should make this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The 'intelligent agents' people have touted for ages will finally materialize.

Tim Berners-Lee

Quoted from: Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web. Tim Berners-Lee with Mark Fischetti. Harper San Francisco, 1999.

INF3580 :: Spring 2011

Lecture 1 :: 25th January

10 / 20

Introduction to Semantic Technologies

The Solution?

• Wait for Google to produce a Cinema+Public Transport mashup?

- But what about
 - Real estate + public transport?
 - Plane schedules and pricing + weather information?
 - Car rental + tourism?
 - Public information + private information (preferences, calendar, location, etc.)
- Can hardly wait for a separate mashup for each useful combination!

F3580 :: Spring 2011 Lecture 1 :: 25th January 19 / 39 INF3580 :: Spring 2011 Lecture 1 :: 25th January 20 / 39

Introduction to Semantic Technologies

A Web of Data!

Imagine. . .

- All those websites publish their information in a machine-readable format.
- The data published by different sources is linked
- Enough domain knowledge is available to machines to make use of the information
- User-agents can find and combine published information in appropriate ways to answer the user's information needs.

NF3580 :: Spring 201:

Lecture 1 :: 25th January

21 / 39

Introduction to Semantic Technologies

Building Models

- A *model* is a simplified representation of certain aspects of the real world.
- Made for
 - understanding
 - structuring
 - predicting
 - communicating
- Can be
 - Taxonomies (e.g. species, genus, family, etc. in biology)
 - Domain models, e.g. in UML
 - Numerical Models (Newtonian mechanics, Quantum mechanics)

Introduction to Semantic Technolog

But How?

- This sounds like a nice idea, but how can it work?
- There has been a lot of hype around the Semantic Web!
- Visions instantly transformed to promises (and \$\$\$)
- Most of this simply does not work (yet?)
- But then, a lot does!
- Current partial solutions build on traditions of
 - Modelling
 - Calculating with Knowledge
 - Information Exchange

NF3580 :: Spring 2011

cture 1 :: 25th January

22 / 39

111 3560 .. 3pring 2011

INF3580 :: Spring 2011 Lecture 1 :: 25th January 23 /

A Query

What is it we want?

- Screening(s), movie(s, HEREAFTER)
- cinema(s, k), address(k, l)
- Connection(c), from(c, KRINGSJÅ), to(c, l)
- start(c, cStart), before(20:00, cStart)
- end(c, cEnd), start(s, sStart), before(cEnd, sStart)

Find s, k, l, c, cStart, cEnd, sStart satisfying this and we have the answer!

- Maybe not the easiest way to ask, but it's a start.
- Models are an important part of a Web of Data!
- Need to connect models from different domains.

NF3580 :: Spring 2011

Lecture 1 :: 25th Janua

25 / 39

Introduction to Semantic Technologies

Calculating with Knowledge

- Can be traced back to Aristotle (384-322 BC)
- Modus Barbara:

All A are B All B are C

e.g.

All Greeks are men
All men are mortal
All Greeks are mortal

- Algorithmic manipulation of knowledge. . .
- ... where the *meaning* of the words is not needed!
- Also an abstraction!
- The topic of *formal logic*
- a.k.a. INF3170!

Introduction to Semantic Technologies

Calculating

• What is calculation?

A owns x BsA gets another y BsA now owns (x + y) Bs

e.g.

Peter owns 1 apple
Peter gets another 4 apples
Peter now owns 5 apples

- Calculation is algorithmic manipulation of numbers. . .
- ... where the *meaning* of the numbers is not needed
- ullet Can calculate 1+4=5 without knowing what is counted
- Abstraction!

INF3580 :: Spring 2011

cture 1 :: 25th January

26 / 30

Introduction to Semantic Technolog

Computing with Knowledge About Movies

- Query: find a fun event we can reach by public transport
- Knowledge base:
 - A movie screening is an event
 - 2 A movie screening is fun if the movie being shown is not a documentary
 - 3 Clint Eastwood does not direct documentaries
 - 4 Clint Eastwood directed Hereafter
 - **5** There is a screening of *Hereafter* at 19:00.

...

- Let us calculate...
 - **6** From 3 and 4: *Hereafter* is not a documentary
 - From 6 and 2: A screening of Hereafter is fun
 - **8** From 1, 5, 7: there is a fun event at 19:00

. . .

• Computing with Knowledge is an important part of a Web of Data!

27 / 39 INF3580 :: Spring 2011 Lecture 1 :: 25th January 28 / 39

Introduction to Semantic Technologie

Exchanging Information

- 1974: The Internet: Global network. Unified network addresses. TCP/IP protocol.
- 1990: The WWW: HTTP protocol. HTML markup. URLs.
- 1996: XML: more data-oriented markup.
- All these (and more) are obviously ingredients for a Web of Data!
- Semantic Web standards are being managed by W3C.

NF3580 :: Spring 2011

Lecture 1 :: 25th January

29 / 39

Introduction to Semantic Technologies

The AAA slogan

Anyone can say Anything about Anything.

- IMDB: movie:Hereafter movie:director people:ce.
- Saga Kino: movie:Hereafter movie:shownAt oslokino:Saga.
- VG: movie:Hereafter vg:terningkast 5.
- Three statements from three sources about the same subject movie: Hereafter!
- My homepage: movie:Hereafter movie:director mg:myself.

Introduction to Semantic Technologies

Bringing it together

- RDF as common knowledge format:
 - movie:Hereafter movie:director people:ce.
 - people:ce people:name "Clint Eastwood".
- URIs to avoid naming conflicts:
 - http://heim.ifi.uio.no/martingi/movies#Hereafter
- existing protocols to move data:
 - Use HTTP for queries to a semantic web server
 - Use XML for answers, to encode RDF, etc.
- OWL to express ontologies
 - Somewhat like UML class diagrams but better for Sem. Web
- Reasoners to infer new knowledge
 - Hidden from other tools by standardized interfaces

NF3580 :: Spring 2011

Lecture 1 :: 25th January

30 / 39

Introduction to Semantic Technologic

The "Home" of the Semantic Web

See the W3C pages for the Semantic Web effort:

http://www.w3.org/2001/sw/

For standards (RDF, OWL, SPARQL, etc.), see:

http://www.w3.org/2001/sw/wiki/Main_Page

3580 :: Spring 2011 Lecture 1 :: 25th January 31 / 39 INF3580 :: Spring 2011 Lecture 1 :: 25th January 32 / 39

Problems with the Semantic Web

- Relies on ontologies
 - Have to agree on and communicate ontologies
 - Have to agree on the precise meaning of ontologies
- Anyone can say Anything about Anything
 - Good, simple, necessary
 - Difficult to locate relevant information
 - Difficult to trust data sources
 - Have to deal with unreliable, inconsistent data
 - Have to deal with enormous amounts of data
- . . .
- Extent of these problems is in stark contrast to the visions that have been stated and the promises that have been made.
- Hype has brought some amount of discredit to the Semantic Web effort.

NF3580 :: Spring 2011

Lecture 1 :: 25th Januar

33 / 39

Introduction to Semantic Technologies

Data integration

- One of the foremost problems in industry today
 - within one organization
 - between organizations
- Enormous amounts of data gathered over the last decades
 - different formats, different data models
 - specialists needed to find, access, convert data when it is needed
 - large need for automated, unified data access

ntroduction to Semantic Technologie

Semantic technologies

- If Tim Berners-Lee's vision of a Semantic Web is still far away, then what is this course about?
- Let's have a look at what we do have:
 - W3C standards: RDF, SPARQL, OWL, some more
 - Technology like reasoners, ontology editors
 - Interfacing to relational databases, etc.
 - Existing ontologies for applications in medicine, industry, some of them with over 1M concepts
- Possible, and a lot easier, to use Semantic Web technologies for more closed, controlled applications
- We talk about "semantic technologies" since they make sense independent of the Web

INF3580 :: Spring 2011

ecture 1 :: 25th January

24 / 20

Introduction to Semantic Technolog

Ontology-based data access

- Use ontology to define common vocabulary
- Possibly by connecting ontologies for different sources using mediating ontologies
- Create mappings between the common vocabulary and what is in the data sources.
- Access data using queries expressed using the common vocabulary
- Background machinery gives answers as if data had always been stored according to a common data model

INF3580 :: Spring 2011 Lecture 1 :: 25th January 36 / 39

Introduction to Semantic Technologies

Semantic Technologies at ifi

- \bullet Currently 1 professor, 2 post-docs, 3 PhD-students, ${\sim}6$ MSc students directly concerned with semantic technologies in OMS group.
- Semicolon
 - Data exchange between public sector institutions in Norway
 - Publication and interlinking of public data.
 - User partners: Brønnøysundregistrene, Helsedirektoratet, Skattedirektoratet, Statistisk sentralbyrå, . . .
- IOHN (Integrated Operations in the High North)
 - Partners include two oil companies, major software vendors like IBM, SAP, Siemens
 - Data exchange and integration for the oil industry
- Great opportunities for both practically and theoretically oriented MSc theses, PhD work,... with strong connections to industry and public sector!

Introduction to Semantic Technologie

This course

The aim of this course is to teach you...

- ... enough of the semantics in semantic technologies (logic, reasoning) for you to get an idea of what this is all about, what can and cannot be done.
- ... enough of the technology in semantic technologies (standards, languages, programming interfaces) for you to be able to use them in practice.
- ... enough overview for you to know where to look and what to read when you need a deeper understanding of either side.

If you want to learn more:

• Contact us for possible MSc degree topics

F3580 :: Spring 2011 Lecture 1 :: 25th January 38 / 39