INF3580 - Semantic Technologies - Spring 2011

Lecture 5: Mathematical Foundations

Martin Giese

22nd February 2011

Department of Informatics

University of Oslo

Today's Plan

(1) Basic Set Algebra
(2) Pairs and Relations
(3) Propositional Logic

Outline

(1) Basic Set Algebra

(2) Pairs and Relations

(3) Propositional Logic

Motivation

- The great thing about Semantic Technologies is...

Motivation

- The great thing about Semantic Technologies is...
- ... Semantics!

Motivation

- The great thing about Semantic Technologies is...
- ... Semantics!
- "The study of meaning"

Motivation

- The great thing about Semantic Technologies is...
- ... Semantics!
- "The study of meaning"

Motivation

- The great thing about Semantic Technologies is...
- ... Semantics!
- "The study of meaning"
- RDF has a precisely defined semantics (=meaning)

Motivation

- The great thing about Semantic Technologies is...
- ... Semantics!
- "The study of meaning"
- RDF has a precisely defined semantics (=meaning)
- Mathematics is best at precise definitions

Motivation

- The great thing about Semantic Technologies is...
- ... Semantics!
- "The study of meaning"
- RDF has a precisely defined semantics (=meaning)
- Mathematics is best at precise definitions
- RDF has a mathematically defined semantics

Sets: Cantor's Definition

- From the inventor of Set Theory, Georg Cantor (1845-1918):

Sets: Cantor's Definition

- From the inventor of Set Theory, Georg Cantor (1845-1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

Sets: Cantor's Definition

- From the inventor of Set Theory, Georg Cantor (1845-1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

- Translated:

Sets: Cantor's Definition

- From the inventor of Set Theory, Georg Cantor (1845-1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung
M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

- Translated:

A "set" is any collection M of definite, distinguishable objects m of our intuition or intellect (called the "elements" of M) to be conceived as a whole.

Sets: Cantor's Definition

- From the inventor of Set Theory, Georg Cantor (1845-1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung
M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

- Translated:

A "set" is any collection M of definite, distinguishable objects m of our intuition or intellect (called the "elements" of M) to be conceived as a whole.

- There are some problems with this, but it's good enough for us!

Sets

- A set is a mathematical object like a number, a function, etc.

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
- knowing what is in it

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
- knowing what is in it
- knowing what is not

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
- knowing what is in it
- knowing what is not
- There is no order between elements

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
- knowing what is in it
- knowing what is not
- There is no order between elements
- Nothing can be in a set several times

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
- knowing what is in it
- knowing what is not
- There is no order between elements
- Nothing can be in a set several times
- To sets A and B are equal if they contain the same elements

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
- knowing what is in it
- knowing what is not
- There is no order between elements
- Nothing can be in a set several times
- To sets A and B are equal if they contain the same elements
- everything that is in A is also in B

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
- knowing what is in it
- knowing what is not
- There is no order between elements
- Nothing can be in a set several times
- To sets A and B are equal if they contain the same elements
- everything that is in A is also in B
- everything that is in B is also in A

Elements, Set Equality

- Notation for finite sets:

$$
\left\{\mathrm{c}^{\prime}, 1, \triangle\right\}
$$

Elements, Set Equality

- Notation for finite sets:

$$
\left\{\mathrm{c}^{\prime}, 1, \triangle\right\}
$$

- Contains ' a ', 1 , and \triangle, and nothing else.

Elements, Set Equality

- Notation for finite sets:

$$
\left\{\mathrm{c}^{\prime}, 1, \triangle\right\}
$$

- Contains ' a ', 1 , and \triangle, and nothing else.
- There is no order between elements

$$
\{1, \Delta\}=\{\triangle, 1\}
$$

Elements, Set Equality

- Notation for finite sets:

$$
\left\{\mathrm{c}^{\prime}, 1, \triangle\right\}
$$

- Contains ' a ', 1 , and \triangle, and nothing else.
- There is no order between elements

$$
\{1, \Delta\}=\{\triangle, 1\}
$$

- Nothing can be in a set several times

$$
\{1, \triangle, \triangle\}=\{1, \triangle\}
$$

Elements, Set Equality

- Notation for finite sets:

$$
\left\{\mathrm{c}^{\prime}, 1, \triangle\right\}
$$

- Contains ' a ', 1 , and \triangle, and nothing else.
- There is no order between elements

$$
\{1, \triangle\}=\{\triangle, 1\}
$$

- Nothing can be in a set several times

$$
\{1, \triangle, \triangle\}=\{1, \triangle\}
$$

- The notation $\{\cdots\}$ allows to write things several times! \Rightarrow different ways of writing the same thing!

Elements, Set Equality

- Notation for finite sets:

$$
\left\{\mathrm{c}^{\prime}, 1, \triangle\right\}
$$

- Contains ' a ', 1 , and \triangle, and nothing else.
- There is no order between elements

$$
\{1, \triangle\}=\{\triangle, 1\}
$$

- Nothing can be in a set several times

$$
\{1, \triangle, \triangle\}=\{1, \triangle\}
$$

- The notation $\{\cdots\}$ allows to write things several times! \Rightarrow different ways of writing the same thing!
- We use \in to say that something is element of a set:

$$
\begin{aligned}
& 1 \in\left\{'^{\prime} a^{\prime}, 1, \triangle\right\} \\
& { }^{\prime} b^{\prime} \notin\left\{\text { 'a' }^{\prime}, 1, \triangle\right\}
\end{aligned}
$$

Set Examples

- $\{3,7,12\}$: a set of numbers

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element - $0 \in\{0\}, 1 \notin\{0\}$

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element
- $0 \in\{0\}, 1 \notin\{0\}$
- $\left\{{ }^{\prime} a^{\prime}, \quad\right.$ 'b',\ldots, 'z' $\}:$ a set of letters

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element
- $0 \in\{0\}, 1 \notin\{0\}$
- \{'a', 'b', ..., 'z'\}: a set of letters

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element
- $0 \in\{0\}, 1 \notin\{0\}$
- \{'a', 'b', ..., 'z'\}: a set of letters

- The set P_{3580} of people in the lecture room right now

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element
- $0 \in\{0\}, 1 \notin\{0\}$
- \{'a', 'b', ..., 'z'\}: a set of letters

- The set P_{3580} of people in the lecture room right now
- Martin $\in P_{3580}$, Albert Einstein $\notin P_{3580}$.

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element
- $0 \in\{0\}, 1 \notin\{0\}$
- \{'a', 'b', ..., 'z'\}: a set of letters

- The set P_{3580} of people in the lecture room right now
- Martin $\in P_{3580}$, Albert Einstein $\notin P_{3580}$.
- $\mathbb{N}=\{1,2,3, \ldots\}$: the set of all natural numbers

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element
- $0 \in\{0\}, 1 \notin\{0\}$
- \{'a', 'b', ..., 'z'\}: a set of letters

- The set P_{3580} of people in the lecture room right now
- Martin $\in P_{3580}$, Albert Einstein $\notin P_{3580}$.
- $\mathbb{N}=\{1,2,3, \ldots\}$: the set of all natural numbers
- $3580 \in \mathbb{N}, \pi \notin \mathbb{N}$.

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element
- $0 \in\{0\}, 1 \notin\{0\}$
- \{'a', 'b', ..., 'z'\}: a set of letters

- The set P_{3580} of people in the lecture room right now
- Martin $\in P_{3580}$, Albert Einstein $\notin P_{3580}$.
- $\mathbb{N}=\{1,2,3, \ldots\}$: the set of all natural numbers
- $3580 \in \mathbb{N}, \pi \notin \mathbb{N}$.
- $\mathbb{P}=\{2,3,5,7,11,13,17, \ldots\}$: the set of all prime numbers

Set Examples

- $\{3,7,12\}$: a set of numbers
- $3 \in\{3,7,12\}, 0 \notin\{3,7,12\}$
- $\{0\}$: a set with only one element
- $0 \in\{0\}, 1 \notin\{0\}$
- \{'a', 'b', ..., 'z'\}: a set of letters

- The set P_{3580} of people in the lecture room right now
- Martin $\in P_{3580}$, Albert Einstein $\notin P_{3580}$.
- $\mathbb{N}=\{1,2,3, \ldots\}$: the set of all natural numbers
- $3580 \in \mathbb{N}, \pi \notin \mathbb{N}$.
- $\mathbb{P}=\{2,3,5,7,11,13,17, \ldots\}$: the set of all prime numbers
- $257 \in \mathbb{P}, 91 \notin \mathbb{P}$.

Know Your Elements!

- Sets with different elements are different:

$$
\{1,2\} \neq\{2,3\}
$$

Know Your Elements!

- Sets with different elements are different:

$$
\{1,2\} \neq\{2,3\}
$$

- What about

$$
\{a, b\} \text { and }\{b, c\} ?
$$

Know Your Elements!

- Sets with different elements are different:

$$
\{1,2\} \neq\{2,3\}
$$

- What about

$$
\{a, b\} \text { and }\{b, c\} ?
$$

- If a, b, c are variables, maybe

$$
a=1, \quad b=2, \quad c=1
$$

Know Your Elements!

- Sets with different elements are different:

$$
\{1,2\} \neq\{2,3\}
$$

- What about

$$
\{a, b\} \text { and }\{b, c\} ?
$$

- If a, b, c are variables, maybe

$$
a=1, \quad b=2, \quad c=1
$$

- Then

$$
\{a, b\}=\{1,2\}=\{2,1\}=\{b, c\}
$$

Know Your Elements!

- Sets with different elements are different:

$$
\{1,2\} \neq\{2,3\}
$$

- What about

$$
\{a, b\} \text { and }\{b, c\} ?
$$

- If a, b, c are variables, maybe

$$
a=1, \quad b=2, \quad c=1
$$

- Then

$$
\{a, b\}=\{1,2\}=\{2,1\}=\{b, c\}
$$

- $\{1,2,3\}$ has 3 elements, what about $\{a, b, c\}$?

Sets as Properties

- Sets are used a lot in mathematical notation

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."
- In mathematics: $n \in \mathbb{P}$

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being".

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being".
- In mathematics, $m \in H$, where

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being".
- In mathematics, $m \in H$, where
- H is the set of all human beings

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being".
- In mathematics, $m \in H$, where
- H is the set of all human beings
- m is Martin

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being".
- In mathematics, $m \in H$, where
- H is the set of all human beings
- m is Martin
- One could define Prime(n), Human(m), etc. but that is not usual

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being".
- In mathematics, $m \in H$, where
- H is the set of all human beings
- m is Martin
- One could define Prime(n), Human(m), etc. but that is not usual
- Instead of writing "x has property $X Y Z$ " or " $X Y Z(x)$ ",

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being".
- In mathematics, $m \in H$, where
- H is the set of all human beings
- m is Martin
- One could define Prime(n), Human(m), etc. but that is not usual
- Instead of writing " x has property $X Y Z$ " or " $X Y Z(x)$ ",
- let P be the set of all objects with property $X Y Z$

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. " n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being".
- In mathematics, $m \in H$, where
- H is the set of all human beings
- m is Martin
- One could define Prime(n), Human(m), etc. but that is not usual
- Instead of writing " x has property $X Y Z$ " or " $X Y Z(x)$ ",
- let P be the set of all objects with property $X Y Z$
- write $x \in P$.

The Empty Set

- Sometimes, you need a set that has no elements.

The Empty Set

- Sometimes, you need a set that has no elements.
- This is called the empty set

The Empty Set

- Sometimes, you need a set that has no elements.
- This is called the empty set
- Notation: \emptyset or $\}$

The Empty Set

- Sometimes, you need a set that has no elements.
- This is called the empty set
- Notation: \emptyset or $\}$
- $x \notin \emptyset$, whatever x is!

Subsets

- Let A and B be sets

Subsets

- Let A and B be sets
- if every element of A is also in B

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

$$
A \subseteq B
$$

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

$$
A \subseteq B
$$

- Examples

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

$$
A \subseteq B
$$

- Examples
- $\{1\} \subseteq\left\{1,{ }^{\prime} a^{\prime}, \Delta\right\}$

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

$$
A \subseteq B
$$

- Examples
- $\{1\} \subseteq\left\{1,{ }^{\prime} a^{\prime}, \triangle\right\}$
- $\{1,3\} \nsubseteq\{1,2\}$

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

$$
A \subseteq B
$$

- Examples
- $\{1\} \subseteq\left\{1,{ }^{\prime} a^{\prime}, \Delta\right\}$
- $\{1,3\} \nsubseteq\{1,2\}$
- $\mathbb{P} \subseteq \mathbb{N}$

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

$$
A \subseteq B
$$

- Examples
- $\{1\} \subseteq\left\{1,{ }^{\prime} a^{\prime}, \Delta\right\}$
- $\{1,3\} \nsubseteq\{1,2\}$
- $\mathbb{P} \subseteq \mathbb{N}$
- $\emptyset \subseteq A$ for any set A

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

$$
A \subseteq B
$$

- Examples
- $\{1\} \subseteq\left\{1,{ }^{\prime} a^{\prime}, \Delta\right\}$
- $\{1,3\} \nsubseteq\{1,2\}$
- $\mathbb{P} \subseteq \mathbb{N}$
- $\emptyset \subseteq A$ for any set A
- $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$

Set Union

- The union of A and B contains

Set Union

- The union of A and B contains
- all elements of A

Set Union

- The union of A and B contains
- all elements of A
- all elements of B

Set Union

- The union of A and B contains
- all elements of A
- all elements of B
- also those in both A and B

Set Union

- The union of A and B contains
- all elements of A
- all elements of B
- also those in both A and B
- and nothing more.

Set Union

- The union of A and B contains
- all elements of A
- all elements of B
- also those in both A and B
- and nothing more.

- It is written
$A \cup B$

Set Union

- The union of A and B contains
- all elements of A
- all elements of B
- also those in both A and B
- and nothing more.

- It is written

$$
A \cup B
$$

- (A cup which you pour everything into)

Set Union

- The union of A and B contains
- all elements of A
- all elements of B
- also those in both A and B
- and nothing more.

- It is written

$$
A \cup B
$$

- (A cup which you pour everything into)
- Examples

Set Union

- The union of A and B contains
- all elements of A
- all elements of B
- also those in both A and B
- and nothing more.

- It is written

$A \cup B$

- (A cup which you pour everything into)
- Examples
- $\{1,2\} \cup\{2,3\}=\{1,2,3\}$

Set Union

- The union of A and B contains
- all elements of A
- all elements of B
- also those in both A and B
- and nothing more.

- It is written

$A \cup B$

- (A cup which you pour everything into)
- Examples
- $\{1,2\} \cup\{2,3\}=\{1,2,3\}$
- $\{1,3,5,7,9, \ldots\} \cup\{2,4,6,8,10, \ldots\}=\mathbb{N}$

Set Union

- The union of A and B contains
- all elements of A
- all elements of B
- also those in both A and B
- and nothing more.

- It is written

$A \cup B$

- (A cup which you pour everything into)
- Examples
- $\{1,2\} \cup\{2,3\}=\{1,2,3\}$
- $\{1,3,5,7,9, \ldots\} \cup\{2,4,6,8,10, \ldots\}=\mathbb{N}$
- $\emptyset \cup\{1,2\}=\{1,2\}$

Set Intersection

- The intersection of A and B contains

Set Intersection

- The intersection of A and B contains
- those elements of A

Set Intersection

- The intersection of A and B contains
- those elements of A
- that are also in B

Set Intersection

- The intersection of A and B contains
- those elements of A
- that are also in B
- and nothing more.

Set Intersection

- The intersection of A and B contains
- those elements of A
- that are also in B
- and nothing more.
- It is written

$$
A \cap B
$$

Set Intersection

- The intersection of A and B contains
- those elements of A
- that are also in B
- and nothing more.
- It is written

$$
A \cap B
$$

- Examples

Set Intersection

- The intersection of A and B contains
- those elements of A
- that are also in B
- and nothing more.
- It is written

$$
A \cap B
$$

- Examples
- $\{1,2\} \cap\{2,3\}=\{2\}$

Set Intersection

- The intersection of A and B contains
- those elements of A
- that are also in B
- and nothing more.
- It is written

$$
A \cap B
$$

- Examples
- $\{1,2\} \cap\{2,3\}=\{2\}$
- $\mathbb{P} \cap\{2,4,6,8,10, \ldots\}=\{2\}$

Set Intersection

- The intersection of A and B contains
- those elements of A
- that are also in B
- and nothing more.
- It is written

$$
A \cap B
$$

- Examples
- $\{1,2\} \cap\{2,3\}=\{2\}$
- $\mathbb{P} \cap\{2,4,6,8,10, \ldots\}=\{2\}$
- $\emptyset \cap\{1,2\}=\emptyset$

Set Difference

- The set difference of A and B contains

Set Difference

- The set difference of A and B contains
- those elements of A

Set Difference

- The set difference of A and B contains
- those elements of A
- that are not in B

Set Difference

- The set difference of A and B contains
- those elements of A
- that are not in B
- and nothing more.

Set Difference

- The set difference of A and B contains
- those elements of A
- that are not in B
- and nothing more.
- It is written

$A \backslash B$

Set Difference

- The set difference of A and B contains
- those elements of A
- that are not in B
- and nothing more.
- It is written

- Examples

Set Difference

- The set difference of A and B contains
- those elements of A
- that are not in B
- and nothing more.
- It is written

$A \backslash B$
- Examples
- $\{1,2\} \backslash\{2,3\}=\{1\}$

Set Difference

- The set difference of A and B contains
- those elements of A
- that are not in B
- and nothing more.
- It is written

$$
A \backslash B
$$

- Examples
- $\{1,2\} \backslash\{2,3\}=\{1\}$
- $\mathbb{N} \backslash \mathbb{P}=\{1,4,6,8,9,10,12, \ldots\}$

Set Difference

- The set difference of A and B contains
- those elements of A
- that are not in B
- and nothing more.
- It is written

$A \backslash B$
- Examples
- $\{1,2\} \backslash\{2,3\}=\{1\}$
- $\mathbb{N} \backslash \mathbb{P}=\{1,4,6,8,9,10,12, \ldots\}$
- $\emptyset \backslash\{1,2\}=\emptyset$

Set Difference

- The set difference of A and B contains
- those elements of A
- that are not in B
- and nothing more.
- It is written

$A \backslash B$
- Examples
- $\{1,2\} \backslash\{2,3\}=\{1\}$
- $\mathbb{N} \backslash \mathbb{P}=\{1,4,6,8,9,10,12, \ldots\}$
- $\emptyset \backslash\{1,2\}=\emptyset$
- $\{1,2\} \backslash \emptyset=\{1,2\}$

Set Comprehensions

- Sometimes enumerating all elements is not good enough

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and ". .." is too vague

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and ". .." is too vague
- Special notation:

$$
\{x \in A \mid x \text { has some property }\}
$$

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and ". .." is too vague
- Special notation:

$$
\{x \in A \mid x \text { has some property }\}
$$

- The set of those elements of A which have the property.

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and ". .." is too vague
- Special notation:

$$
\{x \in A \mid x \text { has some property }\}
$$

- The set of those elements of A which have the property.
- Examples:

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and ". .." is too vague
- Special notation:

$$
\{x \in A \mid x \text { has some property }\}
$$

- The set of those elements of A which have the property.
- Examples:
- $\{n \in \mathbb{N} \mid n=2 k$ for some $k\}$: the even numbers

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and ". .." is too vague
- Special notation:

$$
\{x \in A \mid x \text { has some property }\}
$$

- The set of those elements of A which have the property.
- Examples:
- $\{n \in \mathbb{N} \mid n=2 k$ for some $k\}$: the even numbers
- $\{n \in \mathbb{N} \mid n<5\}=\{1,2,3,4\}$

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and ". .." is too vague
- Special notation:

$$
\{x \in A \mid x \text { has some property }\}
$$

- The set of those elements of A which have the property.
- Examples:
- $\{n \in \mathbb{N} \mid n=2 k$ for some $k\}$: the even numbers
- $\{n \in \mathbb{N} \mid n<5\}=\{1,2,3,4\}$
- $\{x \in A \mid x \notin B\}=A \backslash B$

Outline

(1) Basic Set Algebra

(2) Pairs and Relations

(3) Propositional Logic

Motivation

- RDF is all about

Motivation

- RDF is all about
- Resources (objects)

Motivation

- RDF is all about
- Resources (objects)
- Their properties (rdf:type)

Motivation

- RDF is all about
- Resources (objects)
- Their properties (rdf:type)
- Their relations amongst each other

Motivation

- RDF is all about
- Resources (objects)
- Their properties (rdf:type)
- Their relations amongst each other
- Sets are good to group objects with some properties!

Motivation

- RDF is all about
- Resources (objects)
- Their properties (rdf:type)
- Their relations amongst each other
- Sets are good to group objects with some properties!
- How do we talk about relations between objects?

Pairs

- A pair is an ordered collection of two objects

Pairs

- A pair is an ordered collection of two objects
- Written

$$
\langle x, y\rangle
$$

Pairs

- A pair is an ordered collection of two objects
- Written

$$
\langle x, y\rangle
$$

- Equal if components are equal:

$$
\langle a, b\rangle=\langle x, y\rangle \quad \text { if and only if } \quad a=x \quad \text { and } \quad b=y
$$

Pairs

- A pair is an ordered collection of two objects
- Written

$$
\langle x, y\rangle
$$

- Equal if components are equal:

$$
\langle a, b\rangle=\langle x, y\rangle \quad \text { if and only if } \quad a=x \quad \text { and } \quad b=y
$$

- Order matters:

$$
\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle \neq\left\langle{ }^{\prime} a^{\prime}, 1\right\rangle
$$

Pairs

- A pair is an ordered collection of two objects
- Written

$$
\langle x, y\rangle
$$

- Equal if components are equal:

$$
\langle a, b\rangle=\langle x, y\rangle \quad \text { if and only if } \quad a=x \quad \text { and } \quad b=y
$$

- Order matters:

$$
\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle \neq\left\langle{ }^{\prime} a^{\prime}, 1\right\rangle
$$

- An object can be twice in a pair:

$$
\langle 1,1\rangle
$$

Pairs

- A pair is an ordered collection of two objects
- Written

$$
\langle x, y\rangle
$$

- Equal if components are equal:

$$
\langle a, b\rangle=\langle x, y\rangle \quad \text { if and only if } \quad a=x \quad \text { and } \quad b=y
$$

- Order matters:

$$
\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle \neq\left\langle{ }^{\prime} a^{\prime}, 1\right\rangle
$$

- An object can be twice in a pair:

$$
\langle 1,1\rangle
$$

- $\langle x, y\rangle$ is a pair, no matter if $x=y$ or not.

The Cross Product

- Let A and B be sets.

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b\rangle$ with $a \in A$ and $b \in B$.

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b\rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$
A \times B
$$

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b\rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$
A \times B
$$

- Example:

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b\rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$
A \times B
$$

- Example:
- $A=\{1,2,3\}, B=\left\{{ }^{\prime} a^{\prime}, \quad\right.$ ' b ' $\}$.

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b\rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$
A \times B
$$

- Example:
- $A=\{1,2,3\}, B=\left\{{ }^{\prime} a^{\prime}\right.$, 'b' $\}$.
- $A \times B=\left\{\begin{array}{lll}\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle, & \left\langle 2,{ }^{\prime} a^{\prime}\right\rangle, & \left\langle 3,{ }^{\prime} a^{\prime}\right\rangle, \\ \left\langle 1, b^{\prime}\right\rangle, & \left\langle 2, b^{\prime}\right\rangle, & \left\langle 3, b^{\prime}\right\rangle\end{array}\right\}$

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b\rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$
A \times B
$$

- Example:
- $A=\{1,2,3\}, B=\left\{{ }^{\prime} a^{\prime}\right.$, 'b' $\}$.
- $A \times B=\left\{\begin{array}{lll}\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle, & \left\langle 2,{ }^{\prime} a^{\prime}\right\rangle, & \left\langle 3, a^{\prime} a^{\prime}\right\rangle, \\ \left\langle 1, b^{\prime}\right\rangle, & \left\langle 2, b^{\prime}\right\rangle, & \left\langle 3, b^{\prime}\right\rangle\end{array}\right\}$
- Why bother?

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b\rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$
A \times B
$$

- Example:
- $A=\{1,2,3\}, B=\left\{{ }^{\prime} a^{\prime}\right.$, 'b' $\}$.
- $A \times B=\left\{\begin{array}{lll}\left\langle 1, a^{\prime}\right\rangle, & \left\langle 2,{ }^{\prime} a^{\prime}\right\rangle, & \left\langle 3,{ }^{\prime} a^{\prime}\right\rangle, \\ \left\langle 1, b^{\prime}\right\rangle, & \left\langle 2, b^{\prime}\right\rangle, & \left\langle 3, b^{\prime}\right\rangle\end{array}\right\}$
- Why bother?
- Instead of " $\langle a, b\rangle$ is a pair of a natural number and a person in this room"...

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b\rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$
A \times B
$$

- Example:
- $A=\{1,2,3\}, B=\left\{{ }^{\prime} a^{\prime}, \quad\right.$ ' b ' $\}$.
- $\left.A \times B=\left\{\begin{array}{lll}\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle, & \left\langle 2,{ }^{\prime} a^{\prime}\right\rangle, & \left\langle 3, a^{\prime} a^{\prime}\right\rangle, \\ & \left\langle 1, b^{\prime}\right\rangle, & \left\langle 2, b^{\prime}\right\rangle,\end{array}\right\rangle\left\langle 3, b^{\prime}\right\rangle,\right\}$
- Why bother?
- Instead of " $\langle a, b\rangle$ is a pair of a natural number and a person in this room"...
- $\ldots\langle a, b\rangle \in \mathbb{N} \times P_{3580}$

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b\rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$
A \times B
$$

- Example:
- $A=\{1,2,3\}, B=\left\{{ }^{\prime} a^{\prime}, \quad\right.$ ' b ' $\}$.
- $A \times B=\left\{\begin{array}{lll}\left\langle 1, a^{\prime}\right\rangle, & \left\langle 2,{ }^{\prime} a^{\prime}\right\rangle, & \left\langle 3, a^{\prime} a^{\prime}\right\rangle, \\ \left\langle 1, b^{\prime}\right\rangle, & \left\langle 2, b^{\prime}\right\rangle, & \left\langle 3, b^{\prime}\right\rangle\end{array}\right\}$
- Why bother?
- Instead of " $\langle a, b\rangle$ is a pair of a natural number and a person in this room"...
- $\ldots\langle a, b\rangle \in \mathbb{N} \times P_{3580}$
- But most of all, there are subsets of cross products...

Relations

- A relation R between two sets A and B is...

Relations

- A relation R between two sets A and B is...
- ... a set of pairs $\langle a, b\rangle \in A \times B$

$$
R \subseteq A \times B
$$

Relations

- A relation R between two sets A and B is. . .
- ... a set of pairs $\langle a, b\rangle \in A \times B$

$$
R \subseteq A \times B
$$

- We often write $a R b$ to say that $\langle a, b\rangle \in R$

Relations

- A relation R between two sets A and B is...
- ... a set of pairs $\langle a, b\rangle \in A \times B$

$$
R \subseteq A \times B
$$

- We often write $a R b$ to say that $\langle a, b\rangle \in R$
- Example:

Relations

- A relation R between two sets A and B is...
- ... a set of pairs $\langle a, b\rangle \in A \times B$

$$
R \subseteq A \times B
$$

- We often write $a R b$ to say that $\langle a, b\rangle \in R$
- Example:
- Let $L=\left\{{ }^{\prime} a^{\prime},{ }^{\prime} b ’, \ldots,{ }^{\prime}\right.$ ' $\}$

Relations

- A relation R between two sets A and B is...
- ... a set of pairs $\langle a, b\rangle \in A \times B$

$$
R \subseteq A \times B
$$

- We often write $a R b$ to say that $\langle a, b\rangle \in R$
- Example:
- Let $L=\left\{{ }^{\prime}{ }^{\prime}\right.$ ', 'b', \ldots, , ${ }^{\prime}$ ' $\}$
- Let \triangleright relate each number between 1 and 26 to the corresponding letter in the alphabet:

$$
1 \triangleright^{\prime} a^{\prime} \quad 2 \triangleright^{\prime} b^{\prime} \quad \ldots \quad 26 \triangleright^{\prime} z^{\prime}
$$

Relations

- A relation R between two sets A and B is...
- ... a set of pairs $\langle a, b\rangle \in A \times B$

$$
R \subseteq A \times B
$$

- We often write $a R b$ to say that $\langle a, b\rangle \in R$
- Example:
- Let $L=\left\{{ }^{\prime}{ }^{\prime}\right.$ ', 'b', \ldots, 'z' $\}$
- Let \triangleright relate each number between 1 and 26 to the corresponding letter in the alphabet:

$$
1 \triangleright{ }^{\prime} a^{\prime} \quad 2 \triangleright^{\prime} b^{\prime} \quad \ldots \quad 26 \triangleright^{\prime} z^{\prime}
$$

- Then $\triangleright \subseteq \mathbb{N} \times L$:

$$
\triangleright=\left\{\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle,\left\langle 2,{ }^{\prime} b^{\prime}\right\rangle, \ldots,\left\langle 26,{ }^{\prime} z^{\prime}\right\rangle\right\}
$$

Relations

- A relation R between two sets A and B is...
- ... a set of pairs $\langle a, b\rangle \in A \times B$

$$
R \subseteq A \times B
$$

- We often write $a R b$ to say that $\langle a, b\rangle \in R$
- Example:
- Let $L=\left\{{ }^{\prime}{ }^{\prime}\right.$ ', 'b', \ldots, 'z' $\}$
- Let \triangleright relate each number between 1 and 26 to the corresponding letter in the alphabet:

$$
1 \triangleright{ }^{\prime} a^{\prime} \quad 2 \triangleright^{\prime} b^{\prime} \quad \ldots \quad 26 \triangleright^{\prime} z^{\prime}
$$

- Then $\triangleright \subseteq \mathbb{N} \times L$:

$$
\triangleright=\left\{\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle,\left\langle 2,{ }^{\prime} b^{\prime}\right\rangle, \ldots,\left\langle 26,{ }^{\prime} z^{\prime}\right\rangle\right\}
$$

- And we can write:

$$
\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle \in \triangleright \quad\left\langle 2,{ }^{\prime} b^{\prime}\right\rangle \in \triangleright \quad \ldots \quad\left\langle 26,{ }^{\prime} z^{\prime}\right\rangle \in \triangleright
$$

More Relations

- A relation R on some set A is a relation from A to A :

$$
R \subseteq A \times A=A^{2}
$$

More Relations

- A relation R on some set A is a relation from A to A :

$$
R \subseteq A \times A=A^{2}
$$

- Example: <

More Relations

- A relation R on some set A is a relation from A to A :

$$
R \subseteq A \times A=A^{2}
$$

- Example: <
- Consider the $<$ order on natural numbers:

$$
1<2 \quad 1<3 \quad 1<4 \quad \ldots \quad 2<3 \quad 2<4 \quad \ldots
$$

More Relations

- A relation R on some set A is a relation from A to A :

$$
R \subseteq A \times A=A^{2}
$$

- Example: <
- Consider the < order on natural numbers:

$$
1<2 \quad 1<3 \quad 1<4 \quad \ldots \quad 2<3 \quad 2<4 \quad \ldots
$$

- $<\subseteq \mathbb{N} \times \mathbb{N}$:

$$
\begin{array}{cccc}
<=\{ & \langle 1,2\rangle & \langle 1,3\rangle & \langle 1,4\rangle \\
& & \ldots \\
& & & \ldots, 3\rangle \\
& & \langle 3,4\rangle & \ldots \\
& & \langle 3,4\rangle & \ldots
\end{array}
$$

More Relations

- A relation R on some set A is a relation from A to A :

$$
R \subseteq A \times A=A^{2}
$$

- Example: <
- Consider the < order on natural numbers:

$$
1<2 \quad 1<3 \quad 1<4 \quad \ldots \quad 2<3 \quad 2<4
$$

- $<\subseteq \mathbb{N} \times \mathbb{N}$:

$$
\begin{array}{cccc}
<=\{ & \langle 1,2\rangle & \langle 1,3\rangle & \langle 1,4\rangle \\
& & \ldots \\
& & & \ldots, 3\rangle \\
& & \langle 3,4\rangle & \ldots \\
& & \langle 3,4\rangle & \ldots
\end{array}
$$

- $<=\left\{\langle x, y\rangle \in \mathbb{N}^{2} \mid x<y\right\}$

Family Relations

- Consider the set $S=\{$ Homer, Marge, Bart, Lisa, Maggie $\}$.

Family Relations

- Consider the set $S=\{$ Homer, Marge, Bart, Lisa, Maggie $\}$.
- Define a relation P on S such that

$$
x P y \text { iff } x \text { is parent of } y
$$

Family Relations

- Consider the set $S=\{$ Homer, Marge, Bart, Lisa, Maggie $\}$.
- Define a relation P on S such that

$$
x P y \text { iff } x \text { is parent of } y
$$

- For instance:

Homer P Bart \quad Marge P Maggie

Family Relations

- Consider the set $S=\{$ Homer, Marge, Bart, Lisa, Maggie $\}$.
- Define a relation P on S such that

$$
x P y \text { iff } x \text { is parent of } y
$$

- For instance:

$$
\text { Homer } P \text { Bart } \quad \text { Marge } P \text { Maggie }
$$

- As a set of pairs:

$$
P=\left\{\begin{array}{llll}
\{ & \langle\text { Homer, } \text { Bart }\rangle, & \langle\text { Homer, Lisa }\rangle, & \langle\text { Homer, Maggie }\rangle, \\
& \langle\text { Marge, } \text { Bart }\rangle, & \langle\text { Marge, Lisa }\rangle, & \langle\text { Marge, Maggie }\rangle
\end{array}\right\} \subseteq S^{2}
$$

Family Relations

- Consider the set $S=\{$ Homer, Marge, Bart, Lisa, Maggie $\}$.
- Define a relation P on S such that

$$
x P y \text { iff } x \text { is parent of } y
$$

- For instance:

$$
\text { Homer } P \text { Bart } \quad \text { Marge } P \text { Maggie }
$$

- As a set of pairs:

$$
\left.\begin{array}{rlll}
P=\{ & \langle\text { Homer, } \text { Bart }\rangle, & \langle\text { Homer, Lisa }\rangle, & \langle\text { Homer, Maggie }\rangle, \\
& \langle\text { Marge, Bart }\rangle, & \langle\text { Marge, Lisa }\rangle, & \langle\text { Marge, Maggie }\rangle
\end{array}\right\} \subseteq S^{2}
$$

- For instance:

$$
\langle\text { Homer, Bart }\rangle \in P \quad\langle\text { Marge, Maggie }\rangle \in P
$$

Special Kinds of Relations

- Certain properties of relations occur in many applications

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive

2

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive
- $x R x$ for all $x \in A$.

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive
- $x R x$ for all $x \in A$.
- E.g. "=", " \leq " in mathematics, "has same color as", etc.

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive
- $x R x$ for all $x \in A$.
- E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^{2}$ is symmetric

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive
- $x R x$ for all $x \in A$.
- E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^{2}$ is symmetric
- If $x R y$ then $y R x$.

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive
- $x R x$ for all $x \in A$.
- E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^{2}$ is symmetric
- If $x R y$ then $y R x$.

- E.g. " $=$ " in mathematics, friendship in facebook, etc.

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive
- $x R x$ for all $x \in A$.
- E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^{2}$ is symmetric
- If $x R y$ then $y R x$.

- E.g. "=" in mathematics, friendship in facebook, etc.
- $R \subseteq A^{2}$ is transitive

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive
- $x R x$ for all $x \in A$.
- E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^{2}$ is symmetric
- If $x R y$ then $y R x$.

- E.g. "=" in mathematics, friendship in facebook, etc.
- $R \subseteq A^{2}$ is transitive
- If $x R y$ and $y R z$, then $x R z$

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive
- $x R x$ for all $x \in A$.
- E.g. " $=$ ", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^{2}$ is symmetric
- If $x R y$ then $y R x$.

- E.g. "=" in mathematics, friendship in facebook, etc.
- $R \subseteq A^{2}$ is transitive
- If $x R y$ and $y R z$, then $x R z$

- E.g. "=", " \leq ", " $<$ " in mathematics, "is ancestor of", etc.

Outline

(1) Basic Set Algebra

(2) Pairs and Relations

(3) Propositional Logic

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered - propositional logic (and, or, not)

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that. . .)

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that. . .)
- first-order logic (For all. . . . for some. . .)

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that...)
- first-order logic (For all. . . . for some. . .)
- All of them formalizing different aspects of reasoning

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that...)
- first-order logic (For all. .. . for some. . .)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that...)
- first-order logic (For all. .. . for some. . .)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
- Syntax (\approx grammar. What is a formula?)

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that...)
- first-order logic (For all. .. . for some. . .)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
- Syntax (\approx grammar. What is a formula?)
- Semantics (What is the meaning?)

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that...)
- first-order logic (For all. .. . for some. ..)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
- Syntax (\approx grammar. What is a formula?)
- Semantics (What is the meaning?)
- proof theory: what is legal reasoning?

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that...)
- first-order logic (For all. . . . for some. . .)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
- Syntax (\approx grammar. What is a formula?)
- Semantics (What is the meaning?)
- proof theory: what is legal reasoning?
- model semantics: declarative using set theory.

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that. . .)
- first-order logic (For all. . . . for some. . .)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
- Syntax (\approx grammar. What is a formula?)
- Semantics (What is the meaning?)
- proof theory: what is legal reasoning?
- model semantics: declarative using set theory.
- For semantic technologies, description logic (DL) is most interesting

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that. . .)
- first-order logic (For all. . . , for some. . .)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
- Syntax (\approx grammar. What is a formula?)
- Semantics (What is the meaning?)
- proof theory: what is legal reasoning?
- model semantics: declarative using set theory.
- For semantic technologies, description logic (DL) is most interesting
- talks about sets and relations

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that...)
- first-order logic (For all. . . . for some. . .)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
- Syntax (\approx grammar. What is a formula?)
- Semantics (What is the meaning?)
- proof theory: what is legal reasoning?
- model semantics: declarative using set theory.
- For semantic technologies, description logic (DL) is most interesting
- talks about sets and relations
- Basic concepts can be explained using predicate logic

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":

1 Any letter p, q, r, \ldots is a formula

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":

1 Any letter p, q, r, \ldots is a formula
2 if A and B are formulas, then

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":

1 Any letter p, q, r, \ldots is a formula
2 if A and B are formulas, then

- $(A \wedge B)$ is also a formula (read: " A and B ")

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":

1 Any letter p, q, r, \ldots is a formula
2 if A and B are formulas, then

- $(A \wedge B)$ is also a formula (read: " A and B ")
- $(A \vee B)$ is also a formula (read: " A or B ")

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":

1 Any letter p, q, r, \ldots is a formula
2 if A and B are formulas, then

- $(A \wedge B)$ is also a formula (read: " A and B ")
- $(A \vee B)$ is also a formula (read: " A or $B^{\prime \prime}$)
- $\neg A$ is also a formula (read: "not A ")

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":

1 Any letter p, q, r, \ldots is a formula
2 if A and B are formulas, then

- $(A \wedge B)$ is also a formula (read: " A and B ")
- $(A \vee B)$ is also a formula (read: " A or B ")
- $\neg A$ is also a formula (read: "not A ")
- Nothing else is. Only what rules [1] and [2] say is a formula.

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":

1 Any letter p, q, r, \ldots is a formula
2 if A and B are formulas, then

- $(A \wedge B)$ is also a formula (read: " A and B ")
- $(A \vee B)$ is also a formula (read: " A or B ")
- $\neg A$ is also a formula (read: "not A ")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples for formulae:

$$
p \quad(p \wedge \neg r) \quad(q \wedge q) \quad(q \wedge \neg q) \quad((p \vee \neg q) \wedge(\neg p \wedge q))
$$

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":

1 Any letter p, q, r, \ldots is a formula
2 if A and B are formulas, then

- $(A \wedge B)$ is also a formula (read: " A and B ")
- $(A \vee B)$ is also a formula (read: " A or B ")
- $\neg A$ is also a formula (read: "not A ")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples for formulae:

$$
p \quad(p \wedge \neg r) \quad(q \wedge q) \quad(q \wedge \neg q) \quad((p \vee \neg q) \wedge(\neg p \wedge q))
$$

- Examples for non-formulas:

$$
p q r \quad p \neg q \wedge(p
$$

Propositional Formulas, Using Sets

- Definition using sets:

Propositional Formulas, Using Sets

- Definition using sets:
- The set of all formulas Φ is the least set such that

Propositional Formulas, Using Sets

- Definition using sets:
- The set of all formulas Φ is the least set such that 1 All letters $p, q, r, \ldots \in \Phi$

Propositional Formulas, Using Sets

- Definition using sets:
- The set of all formulas Φ is the least set such that

1 All letters $p, q, r, \ldots \in \Phi$
2 if $A, B \in \Phi$, then

Propositional Formulas, Using Sets

- Definition using sets:
- The set of all formulas Φ is the least set such that

1 All letters $p, q, r, \ldots \in \Phi$
2 if $A, B \in \Phi$, then

- $(A \wedge B) \in \Phi$

Propositional Formulas, Using Sets

- Definition using sets:
- The set of all formulas Φ is the least set such that

1 All letters $p, q, r, \ldots \in \Phi$
2 if $A, B \in \Phi$, then

- $(A \wedge B) \in \Phi$
- $(A \vee B) \in \Phi$

Propositional Formulas, Using Sets

- Definition using sets:
- The set of all formulas Φ is the least set such that

1 All letters $p, q, r, \ldots \in \Phi$
2 if $A, B \in \Phi$, then

- $(A \wedge B) \in \Phi$
- $(A \vee B) \in \Phi$
- $\neg A \in \Phi$

Propositional Formulas, Using Sets

- Definition using sets:
- The set of all formulas Φ is the least set such that

1 All letters $p, q, r, \ldots \in \Phi$
2 if $A, B \in \Phi$, then

- $(A \wedge B) \in \Phi$
- $(A \vee B) \in \Phi$
- $\neg A \in \Phi$
- Formulas are just a kind of strings until now:

Propositional Formulas, Using Sets

- Definition using sets:
- The set of all formulas Φ is the least set such that

1 All letters $p, q, r, \ldots \in \Phi$
2 if $A, B \in \Phi$, then

- $(A \wedge B) \in \Phi$
- $(A \vee B) \in \Phi$
- $\neg A \in \Phi$
- Formulas are just a kind of strings until now:
- no meaning

Propositional Formulas, Using Sets

- Definition using sets:
- The set of all formulas Φ is the least set such that

1 All letters $p, q, r, \ldots \in \Phi$
2 if $A, B \in \Phi$, then

- $(A \wedge B) \in \Phi$
- $(A \vee B) \in \Phi$
- $\neg A \in \Phi$
- Formulas are just a kind of strings until now:
- no meaning
- but every formula can be "parsed" uniquely.

$$
((q \wedge p) \vee(p \wedge q))
$$

Truth

- Logic is about things being true or false, right?

Truth

- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?

Truth

- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?
- That depends on whether p and q are true!

Truth

- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $p \wedge q$ is true

Truth

- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $p \wedge q$ is true
- Otherwise, $(p \wedge q)$ is false.

Truth

- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $p \wedge q$ is true
- Otherwise, $(p \wedge q)$ is false.
- So truth of a formula depends on the truth of the letters

Truth

- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $p \wedge q$ is true
- Otherwise, $(p \wedge q)$ is false.
- So truth of a formula depends on the truth of the letters
- We also say the "interpretation" of the letters

Truth

- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $p \wedge q$ is true
- Otherwise, $(p \wedge q)$ is false.
- So truth of a formula depends on the truth of the letters
- We also say the "interpretation" of the letters
- In other words, in general, truth depends on the context

Truth

- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $p \wedge q$ is true
- Otherwise, $(p \wedge q)$ is false.
- So truth of a formula depends on the truth of the letters
- We also say the "interpretation" of the letters
- In other words, in general, truth depends on the context
- Let's formalize this context, a.k.a. interpretation

Interpretations

- Idea: put all letters that are "true" into a set!

Interpretations

- Idea: put all letters that are "true" into a set!
- Define: An interpretation \mathcal{I} is a set of letters.

Interpretations

- Idea: put all letters that are "true" into a set!
- Define: An interpretation \mathcal{I} is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.

Interpretations

- Idea: put all letters that are "true" into a set!
- Define: An interpretation \mathcal{I} is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.
- E.g., in $\mathcal{I}_{1}=\{p, q\}, p$ is true, but r is false.

Interpretations

- Idea: put all letters that are "true" into a set!
- Define: An interpretation \mathcal{I} is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.
- E.g., in $\mathcal{I}_{1}=\{p, q\}, p$ is true, but r is false.

- But in $\mathcal{I}_{2}=\{q, r\}, p$ is false, but r is true.

Semantic Validity \models

- To say that p is true in \mathcal{I}, write

$$
\mathcal{I} \models p
$$

Semantic Validity \models

- To say that p is true in \mathcal{I}, write

$$
\mathcal{I} \models p
$$

- For instance

Semantic Validity \models

- To say that p is true in \mathcal{I}, write

$$
\mathcal{I} \models p
$$

- For instance

$$
\mathcal{I}_{1} \models p \quad \mathcal{I}_{2} \not \models p
$$

- In other words, for all letters p :

$$
\mathcal{I} \models p \quad \text { if and only if } \quad p \in \mathcal{I}
$$

Validity of Compound Formulas

- So, is $(p \wedge q)$ true?

Validity of Compound Formulas

- So, is $(p \wedge q)$ true?
- That depends on whether p and q are true!

Validity of Compound Formulas

- So, is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.

Validity of Compound Formulas

- So, is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I}, is $(p \wedge q)$ true?

Validity of Compound Formulas

- So, is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I}, is $(p \wedge q)$ true?
- Yes, if $\mathcal{I} \models p$ and $\mathcal{I} \models q$

Validity of Compound Formulas

- So, is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I}, is $(p \wedge q)$ true?
- Yes, if $\mathcal{I} \models p$ and $\mathcal{I} \models q$
- No, otherwise

Validity of Compound Formulas

- So, is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I}, is $(p \wedge q)$ true?
- Yes, if $\mathcal{I} \models p$ and $\mathcal{I} \models q$
- No, otherwise
- For instance

$$
\mathcal{I}_{1} \models p \wedge q \quad \mathcal{I}_{2} \not \vDash p \wedge q
$$

Validity of Compound Formulas, cont.

- That was easy, p and q are only letters...

Validity of Compound Formulas, cont.

- That was easy, p and q are only letters...
- ...so, is $((q \wedge r) \wedge(p \wedge q))$ true in \mathcal{I} ?

Validity of Compound Formulas, cont.

- That was easy, p and q are only letters...
- ...so, is $((q \wedge r) \wedge(p \wedge q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively

Validity of Compound Formulas, cont.

- That was easy, p and q are only letters...
- ...so, is $((q \wedge r) \wedge(p \wedge q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B, \ldots

Validity of Compound Formulas, cont.

- That was easy, p and q are only letters...
- ...so, is $((q \wedge r) \wedge(p \wedge q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B, \ldots
- . . . and any interpretation \mathcal{I}, \ldots

Validity of Compound Formulas, cont.

- That was easy, p and q are only letters...
- ...so, is $((q \wedge r) \wedge(p \wedge q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B, \ldots
- ... and any interpretation \mathcal{I}, \ldots
- ... $\mathcal{I} \models A \wedge B$ if and only if $\mathcal{I} \models A$ and $\mathcal{I} \models B$

Validity of Compound Formulas, cont.

- That was easy, p and q are only letters...
- ...so, is $((q \wedge r) \wedge(p \wedge q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B, \ldots
- ... and any interpretation \mathcal{I}, \ldots
- ... $\mathcal{I} \models A \wedge B$ if and only if $\mathcal{I} \models A$ and $\mathcal{I} \models B$
- For instance

Semantics for \neg and \vee

- The complete definition of \models is as follows:
- For any interpretation \mathcal{I}, letter p, formulas A, B :
- $\mathcal{I} \models p$ iff $p \in \mathcal{I}$
- $\mathcal{I} \vDash \neg A$ iff $\mathcal{I} \not \vDash A$
- $\mathcal{I} \models(A \wedge B)$ iff $\mathcal{I} \models A$ and $\mathcal{I} \models B$
- $\mathcal{I} \models(A \vee B)$ iff $\mathcal{I} \models A$ or $\mathcal{I} \models B$ (or both)
- Semantics of \neg, \wedge, \vee often given as truth table:

A	B	$\neg A$	$A \wedge B$	$A \vee B$
f	f	t	f	f
f	t	t	f	t
t	f	f	f	t
t	t	f	t	t

Some Formulas Are Truer Than Others

- Is $(p \vee \neg p)$ true?

Some Formulas Are Truer Than Others

- Is $(p \vee \neg p)$ true?
- Only two interesting interpretations:

$$
\mathcal{I}_{1}=\emptyset \quad \mathcal{I}_{2}=\{p\}
$$

Some Formulas Are Truer Than Others

- Is $(p \vee \neg p)$ true?
- Only two interesting interpretations:

$$
\mathcal{I}_{1}=\emptyset
$$

$$
\mathcal{I}_{2}=\{p\}
$$

- Recursive Evaluation:

Some Formulas Are Truer Than Others

- Is $(p \vee \neg p)$ true?
- Only two interesting interpretations:

$$
\mathcal{I}_{1}=\emptyset \quad \mathcal{I}_{2}=\{p\}
$$

- Recursive Evaluation:

- $(p \vee \neg p)$ is true in all interpretations!

Tautologies

- A formula A that is true in all interpretations is called a tautology

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

$$
\models A
$$

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

$$
\vDash A
$$

- $(p \vee \neg p)$ is a tautology

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

$$
\vDash A
$$

- $(p \vee \neg p)$ is a tautology
- True whatever p means:

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

$$
\vDash A
$$

- $(p \vee \neg p)$ is a tautology
- True whatever p means:
- The sky is blue or the sky is not blue.

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

$$
\vDash A
$$

- $(p \vee \neg p)$ is a tautology
- True whatever p means:
- The sky is blue or the sky is not blue.
- Petter N. will win the race or Peter N. will not win the race.

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

$$
\vDash A
$$

- $(p \vee \neg p)$ is a tautology
- True whatever p means:
- The sky is blue or the sky is not blue.
- Petter N. will win the race or Peter N. will not win the race.
- The slithy toves gyre or the slithy toves do not gyre.

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

$$
\vDash A
$$

- $(p \vee \neg p)$ is a tautology
- True whatever p means:
- The sky is blue or the sky is not blue.
- Petter N. will win the race or Peter N. will not win the race.
- The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

$$
\vDash A
$$

- $(p \vee \neg p)$ is a tautology
- True whatever p means:
- The sky is blue or the sky is not blue.
- Petter N. will win the race or Peter N. will not win the race.
- The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...
- ... without understanding their meaning!

Checking Tautologies

- Checking whether $\models A$ is the task of SAT-solving
- (co-)NP-complete in general (i.e. in practice exponential time)
- Small instances can be checked with a truth table:

$$
\vDash(\neg p \vee(\neg q \vee(p \wedge q))) \quad ?
$$

p	q	$\neg p$	$\neg q$	$(p \wedge q)$	$(\neg q \vee(p \wedge q))$	$(\neg p \vee(\neg q \vee(p \wedge q)))$
f	f	t	t	f	t	t
f	t	t	f	f	f	t
t	f	f	t	f	t	t
t	t	f	f	t	t	t

- Therefore: $(\neg p \vee(\neg q \vee(p \wedge q)))$ is a tautology!

Entailment

- Tautologies are true in all interpretations

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$
\mathcal{I} \models B
$$

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if
$\mathcal{I} \models B$
for all interpretations \mathcal{I} with $\mathcal{I} \models A$

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$
\mathcal{I} \models B
$$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: " B is a logical consequence of A "

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$
\mathcal{I} \models B
$$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: " B is a logical consequence of A "
- Whenever A holds, also B holds

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$
\mathcal{I} \models B
$$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: " B is a logical consequence of A "
- Whenever A holds, also B holds
- For instance:

$$
p \wedge q \models p
$$

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$
\mathcal{I} \models B
$$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: " B is a logical consequence of A "
- Whenever A holds, also B holds
- For instance:

$$
p \wedge q \models p
$$

- Independent of meaning of p and q :

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$
\begin{aligned}
& \mathcal{I} \models B \\
& \text { for all interpretations } \mathcal{I} \text { with } \mathcal{I} \models A
\end{aligned}
$$

- Also: " B is a logical consequence of A "
- Whenever A holds, also B holds
- For instance:

$$
p \wedge q \models p
$$

- Independent of meaning of p and q :
- If it rains and the sky is blue, then it rains

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$
\begin{aligned}
& \mathcal{I} \models B \\
& \text { for all interpretations } \mathcal{I} \text { with } \mathcal{I} \models A
\end{aligned}
$$

- Also: " B is a logical consequence of A "
- Whenever A holds, also B holds
- For instance:

$$
p \wedge q \models p
$$

- Independent of meaning of p and q :
- If it rains and the sky is blue, then it rains
- If P.N. wins the race and the world ends, then P.N. wins the race

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$
\begin{aligned}
& \mathcal{I} \models B \\
& \text { for all interpretations } \mathcal{I} \text { with } \mathcal{I} \models A
\end{aligned}
$$

- Also: " B is a logical consequence of A "
- Whenever A holds, also B holds
- For instance:

$$
p \wedge q \models p
$$

- Independent of meaning of p and q :
- If it rains and the sky is blue, then it rains
- If P.N. wins the race and the world ends, then P.N. wins the race
- It 'tis brillig and the slythy toves do gyre, then 'tis brillig

Checking Entailment

- SAT solvers can be used to check entailment:

$$
A \models B \quad \text { if and only if } \quad \models(\neg A \vee B)
$$

Checking Entailment

- SAT solvers can be used to check entailment:

$$
A \models B \quad \text { if and only if } \quad \models(\neg A \vee B)
$$

- We can check simple cases with a truth table:

$$
(p \wedge \neg q) \models \neg(\neg p \vee q) \quad ?
$$

p	q	$\neg p$	$\neg q$	$(p \wedge \neg q)$	$(\neg p \vee q)$	$\neg(\neg p \vee q)$
f	f	t	t	f	t	f
f	t	t	f	f	t	f
t	f	f	t	t	f	t
t	t	f	f	f	t	f

Checking Entailment

- SAT solvers can be used to check entailment:

$$
A \models B \quad \text { if and only if } \quad \models(\neg A \vee B)
$$

- We can check simple cases with a truth table:

$$
(p \wedge \neg q) \models \neg(\neg p \vee q) \quad ?
$$

p	q	$\neg p$	$\neg q$	$(p \wedge \neg q)$	$(\neg p \vee q)$	$\neg(\neg p \vee q)$
f	f	t	t	f	t	f
f	t	t	f	f	t	f
t	f	f	t	t	f	t
t	t	f	f	f	t	f

- So $(p \wedge \neg q) \models \neg(\neg p \vee q)$

Checking Entailment

- SAT solvers can be used to check entailment:

$$
A \models B \quad \text { if and only if } \quad \models(\neg A \vee B)
$$

- We can check simple cases with a truth table:

$$
(p \wedge \neg q) \models \neg(\neg p \vee q) \quad ?
$$

p	q	$\neg p$	$\neg q$	$(p \wedge \neg q)$	$(\neg p \vee q)$	$\neg(\neg p \vee q)$
f	f	t	t	f	t	f
f	t	t	f	f	t	f
t	f	f	t	t	f	t
t	t	f	f	f	t	f

- So $(p \wedge \neg q) \models \neg(\neg p \vee q)$
- And $\neg(\neg p \vee q) \vDash(p \wedge \neg q)$

Recap

- Sets

Recap

- Sets
- are collections of objects without order or multiplicity

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can be (any combination of) symmetric, reflexive, transitive

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can be (any combination of) symmetric, reflexive, transitive
- Predicate Logic

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can be (any combination of) symmetric, reflexive, transitive
- Predicate Logic
- has formulas built from letters, $\wedge, \vee, \neg(s y n t a x)$

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can be (any combination of) symmetric, reflexive, transitive
- Predicate Logic
- has formulas built from letters, \wedge, \vee, \neg (syntax)
- which can be evaluated in an interpretation (semantics)

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can be (any combination of) symmetric, reflexive, transitive
- Predicate Logic
- has formulas built from letters, \wedge, \vee, \neg (syntax)
- which can be evaluated in an interpretation (semantics)
- interpretations are sets of letters

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can be (any combination of) symmetric, reflexive, transitive
- Predicate Logic
- has formulas built from letters, \wedge, \vee, \neg (syntax)
- which can be evaluated in an interpretation (semantics)
- interpretations are sets of letters
- recursive definition for semantics of \wedge, \vee, \neg

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can be (any combination of) symmetric, reflexive, transitive
- Predicate Logic
- has formulas built from letters, \wedge, \vee, \neg (syntax)
- which can be evaluated in an interpretation (semantics)
- interpretations are sets of letters
- recursive definition for semantics of \wedge, \vee, \neg
- $\models A$ if $\mathcal{I} \models A$ for all \mathcal{I} (tautology)

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can be (any combination of) symmetric, reflexive, transitive
- Predicate Logic
- has formulas built from letters, \wedge, \vee, \neg (syntax)
- which can be evaluated in an interpretation (semantics)
- interpretations are sets of letters
- recursive definition for semantics of \wedge, \vee, \neg
- $\models A$ if $\mathcal{I} \models A$ for all \mathcal{I} (tautology)
- $A \models B$ if $\mathcal{I} \models B$ for all \mathcal{I} with $\mathcal{I} \models A$ (entailment)

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can be (any combination of) symmetric, reflexive, transitive
- Predicate Logic
- has formulas built from letters, \wedge, \vee, \neg (syntax)
- which can be evaluated in an interpretation (semantics)
- interpretations are sets of letters
- recursive definition for semantics of \wedge, \vee, \neg
- $\models A$ if $\mathcal{I} \models A$ for all \mathcal{I} (tautology)
- $A \models B$ if $\mathcal{I} \models B$ for all \mathcal{I} with $\mathcal{I} \models A$ (entailment)
- truth tables can be used for checking

