INF3580 — Semantic Technologies — Spring 2011

Lecture 6: Introduction to Reasoning with RDF

Martin Giese

1st March 2010

UNIVERSITY OF
OsLo

DEPARTMENT OF

[
c INFORMATICS

Inference rules

Outline

@ Inference rules

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Today's Plan

c Inference rules
© RDFS Basics

© Domains, ranges and open worlds

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for
Propositional Logic:
@ we specified in a mathematically precise way
e when a formula is true in an interpretation,

e when a formula is a “tautology” (true in all interps.)
e and when one formula entails another

Model-theoretic semantics is well-suited for
@ studying the behaviour of a logic, since

@ it is specified in terms of familiar mathematical objects, such as

o sets of letters

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks

Interpretations will consist of
o A set D of resources (possibly infinite)
e A function mapping each URI to an object in D
e relations on D giving meaning for each property

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in
truth tables.

e Only 2" possibilities for n letters.
Not possible for RDF:

e oo many different interpretations

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

@ Syntactic methods operate only on the form of a statement, that is
@ on its concrete grammatical structure,
@ without recurring to interpretations,

@ syntactic reasoning is, in other words, calculation.
Interpretations still figure as the theoretical backdrop, as one typically

@ strives to define syntactical methods that are provably equivalent to
checking all interpretations

Syntactic reasoning easier to understand and use than model semantics

@ we will show that first!

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,
@ But it isn't easy to read off from it what exactly
is to be implemented.
@ Much less does it provide an algorithmic means for
computing it, that is
e for actually doing the reasoning,
@ In order to directly use the model-theoretic semantics,

e in principle all interpretations would have to be considered.
e But as there are always infinitely many such interpretations,
e and an algorithm must terminate in finite time
e this is impossible.

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work like chopsticks:

@ One proves that,

|. every conclusion derivable in the calculus from a set of premises A, is
true in all interpretations that satisfy A

[I. and conversely that every statement entailed by A-interpretations is
derivable in the calculus when the elements of A are used as premises.

We say that the calculus is

@ sound wrt the semantics, if (1) holds, and

@ complete wrt the semantics, if (II) holds.

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Inference rules Inference for RDF

A calculus is usually formulated in terms of))
In a Semantic Web context, inference always means,

@ a set of axioms which are tautologies, e adding triples,

@ and a set of inference rules for generating new statements. More specifically it means

The general form of an inference rule is: @ adding new triples to an RDF store (broadly construed),

Pi....P, @ on the basis of the triples already in it.
P From this point of view a rule
@ the P; are premises Pi,..., P,
@ and P is the conclusion. P
An inference rule may have, may be read as an instruction;
@ any number of premises (typically one or two), @ "If P1,..., P, are all in the store, add P to the store”

@ but only one conclusion (obviously).

INF3580 :: Spring 2011 Lecture 6 :: 1st March / INF3580 :: Spring 2011 Lecture 6 :: 1st March

Outline RDF Schema
@ RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs = http://www.w3.0rg/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema

© RDFS Basics

Actually it isn't — doesn't describe “valid” RDF graphs

Comes with some inference rules
e Allows to derive new triples mechanically!

A very simple modeling language

(for our purposes) a subset of OWL

INF3580 :: Spring 2011 Lecture 6 :: 1st March INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of
resources

@ The RDFS vocabulary allows statements about classes
@ Defined resources:
e rdfs:Resource: The class of resources, everything.

e rdfs:Class: The class of classes.

e rdf:Property: The class of properties (from rdf)
@ Defined properties:
rdf :type: relate resources to classes they are members of
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClass0f: Concept inclusion.
rdfs:subProperty0f: Property inclusion.

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Example

rdfs:Class

rdf:type

Resource

rdf:type rdf:type

rdfs:subClassOf

rdf:type rdf:type rdf:type

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Intuition: Classes as Sets

@ We can think of an rdfs:Class as denoting a set of Resources
@ Not quite correct, but OK for intuition

RDFS Set Theory
A rdf:type rdfs:Class A is a set of resources
x rdf:type A x€eA
A rdfs:subClass0f B ACB

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:
e “The 2CV is a car, and a car is a motorised vehicle, so..."

[I. Property inheritance:
e “Martin lectures at Ifi, and anyone who does so is employed by Ifi,

so...
[1l. Domain and range reasoning:

e "“Everything someone has written is a document. Martin has written a
PhD thesis, therefore...”

e "All fathers of people are males. Martin is the father of Karl,
therefore. . .”

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Type propagation with rdfs:subClass0f

The type propagation rules apply

@ to combinations of rdf:type, rdfs:subClass0f and rdfs:Class,
@ and trigger recursive inheritance in a class taxonomy.

Type propagation rules:
@ Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .

rdfs9
@ Reflexivity of sub-class relation

A rdf:type rdfs:Class .
A rdfs:subClassOf A .

rdfs10
@ Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClass0f C .
A rdfs:subClassOf C .

rdfsll

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Example
RDFS/RDF knowledge base:
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .
ex:Vertebrate rdf:type rdfs:Class .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:Keiko rdf:type ex:KillerWhale .
Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)
ex:KillerWhale rdfs:subClassOf ex:Mammal . (rdfsll)
ex:Mammal rdfs:subClassOf ex:Mammal . (rdfsl0)

Set Theory Analogy

@ Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .

ACB xcA

x€B
@ Reflexivity of sub-class relation
A rdf:type rdfs:Class . A is a set
A rdfs:subClassOf A . ACA

@ Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClass0f C .
A rdfs:subClass0f C .

ACB BcC
ACC

INF3580 :: Spring 2011 Lecture 6 :: 1st March

INF3580 :: Spring 2011 Lecture 6 :: 1st March

A typical taxonomy

Vertebrate
Reptile Amphibian Mammal
Crocodilia Salamander Bat Whale

KillerWhale

Figure: A typical taxonomy

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

Multiple Inheritance

@ A set is a subset of many other sets:
{23} €{1,2,2} {2,3} C{2,3,4} {2,3}CN {2,3}CP

@ Similarly, a class is usually a subclass of many other classes.

Animal Large Thing

Mammal Aquatic Animal

\

@ This is usually not called a taxonomy, but it's no problem for RDFS!

Whale

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

Intuition: Properties as Relations

@ If an rdfs:Class is like a set of resources. ..
@ ...then an rdf :Property is like a relation on resources.

@ Remember: not quite correct, but OK for intuition

RDFS Set Theory
r rdf:type rdf:Property r is a relation on resources
X ry (x,y)er
r rdfs:subProperty0f s rCs
@ Rules:
pCq qCr p a relation pPCq (uv)Ep
pCr pCp (uv) €q

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

Second: Property transfer with rdfs:subProperty0f

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
@ rdf:type, and
@ rdf :Property

Rules for property reasoning:

@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r .

p rdfs:subProperty0f r . rdfs5

@ Reflexivity:

p rdf:type rdf:Property .
p rdfs:subProperty0f p .

rdfs6

@ Property transfer:

p rdfs:subProperty0f q . upv
uqv.

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:
@ Harmonisation of the data under a common vocabulary.
The aim is to

@ make similar data answer to the same standardised queries,

@ thus making queries independent of the terminology of the sources

For instance:
@ Suppose that a legacy bibliography system S uses :author, where
@ another system T uses :writer

And suppose we wish to integrate S and T under a common scheme,

@ For instance Dublin Core

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics RDFS Basics

Solution Consequences

From Ontology:

:writer rdf:type rdf:Property .

rauthor rdf:type rdf:Property .

Any individual for which :author or :writer is defined,
rauthor rdfs:subProperty0f dcterms:creator . y . wri

will have the same value for the dcterms:creator property.
:writer rdfs:subProperty0f dcterms:creator . property

The work of integrating the data is thus done by the reasoning engine,
And Facts:

instead of by a manual editing process.

ex:knausgard :writer ex:minKamp Legacy applications that use e.g. author can operate unmodified.

ex:hamsun :author ex:sult

Infer:
ex:knausgard dcterms:creator ex:minKamp

ex:hamsun dcterms:creator ex:sult

INF3580 :: Spring 2011 Lecture 6 :: 1st March INF3580 :: Spring 2011 Lecture 6 :: 1st March

Example II: Keeping track of employees Organising the properties
Large organizations (e.g. universities) offer different kinds of contracts; :empBy

e for tenured positions (professors, assisting professors, lecturers),

e for research associates (Post Docs), :permEmp :tempEmp
@ for PhD students,
@ for subcontracting.

i i : ‘tenA :fundB ‘conT
Employer/employee information can be read off from properties such as: tenAt Y con’o
@ :profAt (professorship at),
@ :tenAt (tenure at), :profAt :recSchol
@ :conTo (contracts to),
e :funBy (is funded by) , Figure: A hierarchy of employment relations
@ :recSchol (receives scholarship from).

@ Note: doesn't have to be tree-shaped!

INF3580 :: Spring 2011 Lecture 6 :: 1st March INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

Querying the inferred model

Formalising the tree:
:profAt rdf:type rdfs:Property .
:tenAt rdf:type rdfs:Property .
:profAt rdfs:subProperty0f :tenAt
..... and so forth.

Given a data set such as:

:Arild :profAt :UiO .
:Audun :fundBy :UiO .
:Martin :conTo :0LF .
:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of
@ rdfs:range
@ rdfs:domain
@ rdf:type
Rules for damain and range reasoning :

@ Typing first coordinates:

p rdfs:domain A . Xpy . df
x rdf:type A . rdfs2
@ Typing second coordinates:
p rdfs:range B . Xpy . ;
y rdf:type B . rdfs2

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

cont.

We may now query on different levels of abstraction :

Temporary employees

SELECT 7emp WHERE {?7emp :tempEmp _:x .}
— Audun, Martin, Trond

Permanent employees

SELECT 7emp WHERE {?7emp :permEmp _:x .}
— Arild, Jenny

All employees

SELECT 7emp WHERE {7emp :empBy _:x .}
— Arild, Jenny, Audun, Martin, Trond

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

Domain and range contd.

@ rdfs:domain and rdfs:range tell us how a property is used.
@ rdfs:domain types the possible possible subjects of these triples,
@ whereas rdfs:range types the possible objects,

@ When we assert that property p has domain C, we are saying

e that whatever is linked to anything by p
e must be an object of type C,
e wherefore an application of p suffices to type that resource.

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics RDFS Basics

Domain and Range of Relations Set intuitions for rdfs:domain and rdfs:range
@ Given a relation R from Ato B (R C A x B) @ If an rdfs:Class is like a set of resources and an rdf :Property is
@ The domain of R is the set of all x with xR ---: like a relation on resources. . .

domR = {x € A | xRy for some y € B} RDFS Set Theory
) . r rdfs:domain A domr C A
@ The range of R is the set of all y with --- Ry: r rdfs:range B rgrC B
rg R ={y € B | xRy for some x € A} @ Rules:
dompCA (x,y)€p
@ Example: xeA
L R:{<17A>a<17‘:|>a<2’<>>} I’ngB (X,y>€p
o domR = {1,2} — B
o rgR={A,0,0} Y€

INF3580 :: Spring 2011 Lecture 6 :: 1st March INF3580 :: Spring 2011 Lecture 6 :: 1st March

Example |: Combining domain, range and subClass0f Conductors and ensembles

Suppose we have a class tree that includes:

:SymphonyOrchestra rdfs:subClass0f :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:Person :Ensemble

:conductor rdfs:range :Person .
Now, if we assert
:0sloPhilharmonic :conductor :Petrenko .

we may infer;

_\ rdfs:domain
:0sloPhilharmonic rdf:type :SymphonyOrchestra . :conductor :SymphonyOrchestra

:0sloPhilharmonic rdf:type :Ensemble .

rdfs:range
rdfs:subClassOf

:Petrenko rdf:type :Person .

INF3580 :: Spring 2011 Lecture 6 :: 1st March INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

Example Il: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :Ui0D .
:Audun :fundBy :UiO .
:Martin :conTo :0LF .
:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

@ State that only freelancers :conTo an organisation,

@ i.e. introduce a class :Freelancer,
@ and declare it to be the domain of :conTo:

:freelancer rdf:type rdfs:Class .
:conTo rdfs:domain :Freelancer .

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

RDFS axiomatic triples (excerpt)

@ Only resources have types:

rdf:type rdfs:domain rdfs:Resource .
@ types are classes:

rdf :type rdfs:range rdfs:Class .

Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .
@ Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:
rdfs:subProperty0f rdfs:domain rdf:Property .

@ Only classes have subclasses:

rdfs:subClass0f rdfs:domain rdfs:Class .

@ ... (another 30 or so)

INF3580 :: Spring 2011 Lecture 6 :: 1st March

and suppose we wish to filter out everyone but the freelancers:

Some triples are axioms: they can always be added to the knowledge base.

RDFS Basics

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:conTo rdfs:domain :Freelancer . :Martin :conTo :OLF .
:Martin rdf:type :Freelancer

rdfs2

and may be used as a type in SPARQL (reasoner presupposed):

Finding the freelancers

SELECT ?7freelancer WHERE {
?freelancer rdf:type :Freelancer .

}

INF3580 :: Spring 2011 Lecture 6 :: 1st March

RDFS Basics

Using the Axiomatic Triples

@ From the statement

:conductor rdfs:range :Person
@ We can derive:
:conductor rdf:type rdf:Property
:Person rdf:type rdfs:Class
:conductor rdf:type rdfs:Resource
rdf :Property rdf:type rdfs:Class
:Person rdfs:type rdfs:Resource
rdfs:Class rdfs:type rdfs:Class

@ In OWL, there are some simplification which make this superfluous!

INF3580 :: Spring 2011 Lecture 6 :: 1st March

Outline Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

@ However, the statements in an RDFS ontology never trigger
inconsistencies.

@ l.e. no amount of reasoning will lead to a “contradiction”, “error”,
“non-valid document”
Example: Say we have the following triples;

:isRecordedBy rdfs:range :0Orchestra

:Turangalila :isRecordedBy :Boston .

@ Suppose now that Boston is not defined to be an Orchestra:
e i.e, there is no triple :Boston rdf:type :0rchestra . in the data.

© Domains, ranges and open worlds

in a standard relational database,

it would follow that :Boston is not an :0rchestra,
@ which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :0rchestra . :Turangalila :isRecordedBy :Boston .

dfs7
:Boston rdf:type :0Orchestra . "

INF3580 :: Spring 2011 Lecture 6 :: 1st March / INF3580 :: Spring 2011 Lecture 6 :: 1st March

Contd. Ramifications
This fact has two important consequences:
Instead: @ RDFS is useless for validation,
' e ... understood as sorting conformant from non-conformant documents,
@ RDFS infers a new triple. e since it never signals an inconsistency in the data,
@ More specifically it adds :Boston rdf:type :0rchestra ® It just goes'along with anything, _
o . . . e and adds triples whenever they are inferred,
@ which is precisely what rdfs7 is designed to do. e It is in this respect more like a database schema,
This is open world reasoning in action: e which declares what joins are possible,
e but makes no statement about the validity of the joined data.
@ Instead of saying “l know that :Boston is not an :0rchestra”, o Note though, that validation functionality beyond RDFS is often
e RDFS says “:Boston is an :0rchestra, | just didn’t know it.” implemented in RDFS reasoners.
RDFES will nal an i . heref @ RDFS has no notion of negation at all
° will not signal an inconsistency, therefore e For instance, the two triples
@ but rather just add the missing information ex:Martin rdf:type ex:Smoker .,
o . . . ex:Martin rdf:type ex:NonSmoker .
This is the most important difference between relational DBs and RDF! are not inconsistent.
@ (It is not possible to in RDFS to say that ex:Smoker and
ex:nonSmoker are disjoint).

INF3580 :: Spring 2011 Lecture 6 :: 1st March / INF3580 :: Spring 2011 Lecture 6 :: 1st March

Expressive limitations of RDFS Supplementary reading

Hence, @ For RDFS design patterns:

@ RDFS cannot express inconsistencies,

. . Semantic Web for the Working Ontologist.
@ so any RDFS graph is consistent. mantl r ring Lntologl SEMANTIC WEB for the

Allemang, Hendler WORKING ONTOLOGIST
! : Effectiv WL

ctive Modeling in RDFS and OV

Therefore, Morgan Kaufmann 2008 DEAN ALLEMANG

JIM HENDLER

@ RDFS supports no reasoning services that require Read chapter 6.

consistency-checking.]
) @ For RDFS semantics: Found el
@ If consistency-checks are needed, one must turn to OWL. Semantic

@ More about that in a few weeks. Read chapter 3. Web g~

Technologies

INF3580 :: Spring 2011 Lecture 6 :: 1st March / INF3580 :: Spring 2011 Lecture 6 :: 1st March

	Inference rules
	RDFS Basics
	Domains, ranges and open worlds

