
INF3580 – Semantic Technologies – Spring 2011
Lecture 6: Introduction to Reasoning with RDF

Martin Giese

1st March 2010

Department of
Informatics

University of
Oslo

Today’s Plan

1 Inference rules

2 RDFS Basics

3 Domains, ranges and open worlds

INF3580 :: Spring 2011 Lecture 6 :: 1st March 2 / 46

Inference rules

Outline

1 Inference rules

2 RDFS Basics

3 Domains, ranges and open worlds

INF3580 :: Spring 2011 Lecture 6 :: 1st March 3 / 46

Inference rules

Model-theoretic semantics, a quick recap

The previous lecture introduced a “model-theoretic” semantics for
Propositional Logic:

we specified in a mathematically precise way

when a formula is true in an interpretation,
when a formula is a “tautology” (true in all interps.)
and when one formula entails another

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

sets of letters

INF3580 :: Spring 2011 Lecture 6 :: 1st March 4 / 46

Inference rules

Preview: Model Semantics for RDF

We will look at semantics for RDF in two weeks

Interpretations will consist of

A set D of resources (possibly infinite)
A function mapping each URI to an object in D
relations on D giving meaning for each property

Everything else will be defined in terms of these interpretations.

Entailment of RDF graphs, etc.

Remember: interpretations for Propositional Logic could be listed in
truth tables.

Only 2n possibilities for n letters.

Not possible for RDF:

∞ many different interpretations

INF3580 :: Spring 2011 Lecture 6 :: 1st March 5 / 46

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly
is to be implemented.

Much less does it provide an algorithmic means for
computing it, that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there are always infinitely many such interpretations,
and an algorithm must terminate in finite time
this is impossible.

INF3580 :: Spring 2011 Lecture 6 :: 1st March 6 / 46

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, calculation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to
checking all interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first!

INF3580 :: Spring 2011 Lecture 6 :: 1st March 7 / 46

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work like chopsticks:

One proves that,

I. every conclusion derivable in the calculus from a set of premises A, is
true in all interpretations that satisfy A

II. and conversely that every statement entailed by A-interpretations is
derivable in the calculus when the elements of A are used as premises.

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

INF3580 :: Spring 2011 Lecture 6 :: 1st March 8 / 46

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion (obviously).

INF3580 :: Spring 2011 Lecture 6 :: 1st March 9 / 46

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples,

More specifically it means,

adding new triples to an RDF store (broadly construed),

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

”If P1, . . . ,Pn are all in the store, add P to the store”

INF3580 :: Spring 2011 Lecture 6 :: 1st March 10 / 46

RDFS Basics

Outline

1 Inference rules

2 RDFS Basics

3 Domains, ranges and open worlds

INF3580 :: Spring 2011 Lecture 6 :: 1st March 11 / 46

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs ≡ http://www.w3.org/2000/01/rdf-schema#

Originally though of as a “schema language” like XML Schema

Actually it isn’t – doesn’t describe “valid” RDF graphs

Comes with some inference rules

Allows to derive new triples mechanically!

A very simple modeling language

(for our purposes) a subset of OWL

INF3580 :: Spring 2011 Lecture 6 :: 1st March 12 / 46

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of
resources

The RDFS vocabulary allows statements about classes

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf)

Defined properties:

rdf:type: relate resources to classes they are members of
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Concept inclusion.
rdfs:subPropertyOf: Property inclusion.

INF3580 :: Spring 2011 Lecture 6 :: 1st March 13 / 46

RDFS Basics

Example

rdfs:Class

rdfs:Resource

foaf:Person rdf:Property citroen:TwoCV

:owns
:me :myCar

rdf:type rdf:type rdf:type

rdf
s:s
ub
Cl
as
sO
f

rd
fs
:s
u
b
C
la
ss
O
f rdfs:subClassOf

rdf:type

rdf:type rdf:type

INF3580 :: Spring 2011 Lecture 6 :: 1st March 14 / 46

RDFS Basics

Intuition: Classes as Sets

We can think of an rdfs:Class as denoting a set of Resources

Not quite correct, but OK for intuition

RDFS Set Theory

A rdf:type rdfs:Class A is a set of resources
x rdf:type A x ∈ A

A rdfs:subClassOf B A ⊆ B

INF3580 :: Spring 2011 Lecture 6 :: 1st March 15 / 46

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and a car is a motorised vehicle, so. . . ”

II. Property inheritance:

“Martin lectures at Ifi, and anyone who does so is employed by Ifi,
so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Martin has written a
PhD thesis, therefore. . . ”
“All fathers of people are males. Martin is the father of Karl,
therefore. . . ”

INF3580 :: Spring 2011 Lecture 6 :: 1st March 16 / 46

RDFS Basics

Type propagation with rdfs:subClassOf

The type propagation rules apply

to combinations of rdf:type, rdfs:subClassOf and rdfs:Class,

and trigger recursive inheritance in a class taxonomy.

Type propagation rules:

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
rdfs9

x rdf:type B .

Reflexivity of sub-class relation

A rdf:type rdfs:Class .
rdfs10

A rdfs:subClassOf A .

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
rdfs11

A rdfs:subClassOf C .

INF3580 :: Spring 2011 Lecture 6 :: 1st March 17 / 46

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:Vertebrate rdf:type rdfs:Class .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Mammal . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)

INF3580 :: Spring 2011 Lecture 6 :: 1st March 18 / 46

RDFS Basics

Set Theory Analogy

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .

x rdf:type B .

A ⊆ B x ∈ A

x ∈ B

Reflexivity of sub-class relation

A rdf:type rdfs:Class .

A rdfs:subClassOf A .

A is a set
A ⊆ A

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
A rdfs:subClassOf C .

A ⊆ B B ⊆ C

A ⊆ C

INF3580 :: Spring 2011 Lecture 6 :: 1st March 19 / 46

RDFS Basics

A typical taxonomy

Vertebrate

Reptile

Crocodilia

Amphibian

Salamander

Mammal

Bat Whale

KillerWhale

Figure: A typical taxonomy

INF3580 :: Spring 2011 Lecture 6 :: 1st March 20 / 46

RDFS Basics

Multiple Inheritance

A set is a subset of many other sets:

{2, 3} ⊆ {1, 2, 2} {2, 3} ⊆ {2, 3, 4} {2, 3} ⊆ N {2, 3} ⊆ P

Similarly, a class is usually a subclass of many other classes.

Animal Large Thing

Mammal Aquatic Animal

Whale

This is usually not called a taxonomy, but it’s no problem for RDFS!

INF3580 :: Spring 2011 Lecture 6 :: 1st March 21 / 46

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,
rdf:type, and
rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580 :: Spring 2011 Lecture 6 :: 1st March 22 / 46

RDFS Basics

Intuition: Properties as Relations

If an rdfs:Class is like a set of resources. . .

. . . then an rdf:Property is like a relation on resources.

Remember: not quite correct, but OK for intuition

RDFS Set Theory

r rdf:type rdf:Property r is a relation on resources
x r y 〈x , y〉 ∈ r

r rdfs:subPropertyOf s r ⊆ s

Rules:

p ⊆ q q ⊆ r

p ⊆ r

p a relation

p ⊆ p

p ⊆ q 〈u, v〉 ∈ p

〈u, v〉 ∈ q

INF3580 :: Spring 2011 Lecture 6 :: 1st March 23 / 46

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer

And suppose we wish to integrate S and T under a common scheme,

For instance Dublin Core

INF3580 :: Spring 2011 Lecture 6 :: 1st March 24 / 46

RDFS Basics

Solution

From Ontology:

:writer rdf:type rdf:Property .

:author rdf:type rdf:Property .

:author rdfs:subPropertyOf dcterms:creator .

:writer rdfs:subPropertyOf dcterms:creator .

And Facts:

ex:knausgård :writer ex:minKamp

ex:hamsun :author ex:sult

Infer:

ex:knausgård dcterms:creator ex:minKamp

ex:hamsun dcterms:creator ex:sult

INF3580 :: Spring 2011 Lecture 6 :: 1st March 25 / 46

RDFS Basics

Consequences

Any individual for which :author or :writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the reasoning engine,

instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

INF3580 :: Spring 2011 Lecture 6 :: 1st March 26 / 46

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

INF3580 :: Spring 2011 Lecture 6 :: 1st March 27 / 46

RDFS Basics

Organising the properties

:empBy

:permEmp

:tenAt

:profAt

:tempEmp

:fundBy

:recSchol

:conTo

Figure: A hierarchy of employment relations

Note: doesn’t have to be tree-shaped!

INF3580 :: Spring 2011 Lecture 6 :: 1st March 28 / 46

RDFS Basics

Querying the inferred model

Formalising the tree:

:profAt rdf:type rdfs:Property .

:tenAt rdf:type rdfs:Property .

:profAt rdfs:subPropertyOf :tenAt

..... and so forth.

Given a data set such as:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Martin :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

INF3580 :: Spring 2011 Lecture 6 :: 1st March 29 / 46

RDFS Basics

cont.

We may now query on different levels of abstraction :

Temporary employees

SELECT ?emp WHERE {?emp :tempEmp :x .}

→ Audun, Martin, Trond

Permanent employees

SELECT ?emp WHERE {?emp :permEmp :x .}

→ Arild, Jenny

All employees

SELECT ?emp WHERE {?emp :empBy :x .}

→ Arild, Jenny, Audun, Martin, Trond

INF3580 :: Spring 2011 Lecture 6 :: 1st March 30 / 46

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for damain and range reasoning :

Typing first coordinates:

p rdfs:domain A . x p y .
rdfs2

x rdf:type A .

Typing second coordinates:

p rdfs:range B . x p y .
rdfs2

y rdf:type B .

INF3580 :: Spring 2011 Lecture 6 :: 1st March 31 / 46

RDFS Basics

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever is linked to anything by p

must be an object of type C,
wherefore an application of p suffices to type that resource.

INF3580 :: Spring 2011 Lecture 6 :: 1st March 32 / 46

RDFS Basics

Domain and Range of Relations

Given a relation R from A to B (R ⊆ A× B)

The domain of R is the set of all x with x R · · · :

domR = {x ∈ A | xRy for some y ∈ B}

The range of R is the set of all y with · · · R y :

rg R = {y ∈ B | xRy for some x ∈ A}

Example:

R = {〈1,4〉 , 〈1,�〉 , 〈2,♦〉}
domR = {1, 2}
rg R = {4,�,♦}

INF3580 :: Spring 2011 Lecture 6 :: 1st March 33 / 46

RDFS Basics

Set intuitions for rdfs:domain and rdfs:range

If an rdfs:Class is like a set of resources and an rdf:Property is
like a relation on resources. . .

RDFS Set Theory

r rdfs:domain A dom r ⊆ A
r rdfs:range B rg r ⊆ B

Rules:
dom p ⊆ A 〈x , y〉 ∈ p

x ∈ A

rg p ⊆ B 〈x , y〉 ∈ p

y ∈ B

INF3580 :: Spring 2011 Lecture 6 :: 1st March 34 / 46

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class tree that includes:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

:OsloPhilharmonic :conductor :Petrenko .

we may infer;

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type :Ensemble .

:Petrenko rdf:type :Person .

INF3580 :: Spring 2011 Lecture 6 :: 1st March 35 / 46

RDFS Basics

Conductors and ensembles

rdfs:Resource

:Person :Ensemble

:conductor :SymphonyOrchestra

rdf
s:s

ubC
las

sOf
rdfs:subClassOf

r
d
f
s
:
s
u
b
C
l
a
s
s
O
f

rdfs:domain

r
d
f
s
:
r
a
n
g
e

INF3580 :: Spring 2011 Lecture 6 :: 1st March 36 / 46

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:

:Arild :profAt :UiO .

:Audun :fundBy :UiO .

:Martin :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :conTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :conTo:

:freelancer rdf:type rdfs:Class .

:conTo rdfs:domain :Freelancer .

INF3580 :: Spring 2011 Lecture 6 :: 1st March 37 / 46

RDFS Basics

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:conTo rdfs:domain :Freelancer . :Martin :conTo :OLF .
rdfs2

:Martin rdf:type :Freelancer

and may be used as a type in SPARQL (reasoner presupposed):

Finding the freelancers

SELECT ?freelancer WHERE {

?freelancer rdf:type :Freelancer .

}

INF3580 :: Spring 2011 Lecture 6 :: 1st March 38 / 46

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:

rdf:type rdfs:domain rdfs:Resource .

types are classes:

rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:

rdfs:range rdfs:domain rdf:Property .

Ranges are classes:

rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:

rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:

rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

INF3580 :: Spring 2011 Lecture 6 :: 1st March 39 / 46

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous!

INF3580 :: Spring 2011 Lecture 6 :: 1st March 40 / 46

Domains, ranges and open worlds

Outline

1 Inference rules

2 RDFS Basics

3 Domains, ranges and open worlds

INF3580 :: Spring 2011 Lecture 6 :: 1st March 41 / 46

Domains, ranges and open worlds

Gentle RDFS

Recall that RDF Schema was conceived of as a schema language for RDF.

However, the statements in an RDFS ontology never trigger
inconsistencies.

I.e. no amount of reasoning will lead to a “contradiction”, “error”,
“non-valid document”
Example: Say we have the following triples;

:isRecordedBy rdfs:range :Orchestra .

:Turangalı̂la :isRecordedBy :Boston .

Suppose now that Boston is not defined to be an Orchestra:
i.e., there is no triple :Boston rdf:type :Orchestra . in the data.

in a standard relational database,

it would follow that :Boston is not an :Orchestra,

which contradicts the rule rdfs7:

:isRecordedBy rdfs:range :Orchestra . :Turangalı̂la :isRecordedBy :Boston .
rdfs7

:Boston rdf:type :Orchestra .

INF3580 :: Spring 2011 Lecture 6 :: 1st March 42 / 46

Domains, ranges and open worlds

Contd.

Instead;

RDFS infers a new triple.

More specifically it adds :Boston rdf:type :Orchestra .

which is precisely what rdfs7 is designed to do.

This is open world reasoning in action:

Instead of saying “I know that :Boston is not an :Orchestra”,

RDFS says “:Boston is an :Orchestra, I just didn’t know it.”

RDFS will not signal an inconsistency, therefore

but rather just add the missing information

This is the most important difference between relational DBs and RDF!

INF3580 :: Spring 2011 Lecture 6 :: 1st March 43 / 46

Domains, ranges and open worlds

Ramifications

This fact has two important consequences:
1 RDFS is useless for validation,

... understood as sorting conformant from non-conformant documents,
since it never signals an inconsistency in the data,
it just goes along with anything,
and adds triples whenever they are inferred,
It is in this respect more like a database schema,
which declares what joins are possible,
but makes no statement about the validity of the joined data.
Note though, that validation functionality beyond RDFS is often
implemented in RDFS reasoners.

2 RDFS has no notion of negation at all
For instance, the two triples

ex:Martin rdf:type ex:Smoker .,
ex:Martin rdf:type ex:NonSmoker .

are not inconsistent.
(It is not possible to in RDFS to say that ex:Smoker and
ex:nonSmoker are disjoint).

INF3580 :: Spring 2011 Lecture 6 :: 1st March 44 / 46

Domains, ranges and open worlds

Expressive limitations of RDFS

Hence,

RDFS cannot express inconsistencies,

so any RDFS graph is consistent.

Therefore,

RDFS supports no reasoning services that require
consistency-checking.

If consistency-checks are needed, one must turn to OWL.

More about that in a few weeks.

INF3580 :: Spring 2011 Lecture 6 :: 1st March 45 / 46

Domains, ranges and open worlds

Supplementary reading

For RDFS design patterns:

Semantic Web for the Working Ontologist.
Allemang, Hendler.
Morgan Kaufmann 2008
Read chapter 6.

For RDFS semantics:

Read chapter 3.

INF3580 :: Spring 2011 Lecture 6 :: 1st March 46 / 46

	Inference rules
	RDFS Basics
	Domains, ranges and open worlds

