
INF3580 – Semantic Technologies – Spring 2011
Lecture 7: Reasoners in Jena

Audun Stolpe

8th March 2011

Department of
Informatics

University of
Oslo

Today’s Plan

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March 2 / 46

Recap: Reasoning with rules

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March 3 / 46

Recap: Reasoning with rules

What is inference?

In a Semantic Web context, inference always means,

adding triples,

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

‘adding’ should be understood in a logical sense, indeed;

new/entailed triples need not be materialized or persisted
indeed they may be ephemeral and transitory

INF3580 :: Spring 2011 Lecture 7 :: 8th March 4 / 46

Recap: Reasoning with rules

cont.

A rule of the form

P1, . . . ,Pn

P

may be read as an instruction;

“If P1, . . . ,Pn are all in the graph, add P to the graph”

as an instruction this may in turn be understood procedurally ...

in a forward sense, or
in a backward sense

INF3580 :: Spring 2011 Lecture 7 :: 8th March 5 / 46

Recap: Reasoning with rules

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and a car is a motorised vehicle, so. . . ”

II. Property inheritance:

“Martin lectures at Ifi, and anyone who does so is employed by Ifi,
so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Martin has written a
PhD thesis, therefore. . . ”
“All fathers of people are males. Martin is the father of Karl,
therefore. . . ”

INF3580 :: Spring 2011 Lecture 7 :: 8th March 6 / 46

Recap: Reasoning with rules

Sample RDFS rules

Rules for property transfer

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

INF3580 :: Spring 2011 Lecture 7 :: 8th March 7 / 46

Recap: Reasoning with rules

Example: Conductors and ensembles

rdfs:Resource

:Person :Ensemble

:conductor :SymphonyOrchestra

rdf
s:s

ubC
las

sOf
rdfs:subClassOf

r
d
f
s
:
s
u
b
C
l
a
s
s
O
f

rdfs:domain

r
d
f
s
:
r
a
n
g
e

INF3580 :: Spring 2011 Lecture 7 :: 8th March 8 / 46

Recap: Reasoning with rules

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

the data includes

:OsloPhilharmonic :conductor :Petrenko .

but interestingly not

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

the entailments include

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type :Ensemble .

:Petrenko rdf:type :Person .
INF3580 :: Spring 2011 Lecture 7 :: 8th March 9 / 46

Backwards and forwards reasoning

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March 10 / 46

Backwards and forwards reasoning

Forward chaining vs. backward chaining

Forward chaining:

reasoning from premises to conclusion of rules

adds facts corresponding to the conclusions of rules

entailed facts are stored and reused

Backward chaining:

reasoning from conclusions to premises

‘ ... what needs to be true for this conclusion to hold?’

entailment is on-demand

INF3580 :: Spring 2011 Lecture 7 :: 8th March 11 / 46

Backwards and forwards reasoning

Forward chaining inference

Explicit facts

Entailed facts

Fact 1 Fact 2

Fact 3

Fact 4

Fact 5

Explicit facts

Entailed facts

Fact 1 Fact 2 Fact 6

Fact 3

Fact 4

Fact 5

Fact 7Fact 8

Fact 9

Fact 10

Figure: When a fact is added, all entailments are computed and stored.

INF3580 :: Spring 2011 Lecture 7 :: 8th March 12 / 46

Backwards and forwards reasoning

Benefits of forward chaining

Precomputing and storing answers is suitable for:

frequently accessed data

which it is expensive to compute,

which is relatively static,

and which is small enough to efficiently store

Benefits:

forward chaining optimizes retrieval

no additional inference is necessary at query time

INF3580 :: Spring 2011 Lecture 7 :: 8th March 13 / 46

Backwards and forwards reasoning

Forward chaining and truth-maintenance

Explicit facts

Entailed facts

Fact 1 Fact 2

Fact 3

Fact 4

Fact 5

Explicit facts

Entailed facts

Fact 1 Fact 2 Fact 6

Fact 3

Fact 4

Fact 5

Fact 7Fact 8

Fact 9

Fact 10

Figure: When a fact is removed, everything that comes with it must go too.

INF3580 :: Spring 2011 Lecture 7 :: 8th March 14 / 46

Backwards and forwards reasoning

Drawbacks of forward chaining

Drawbacks:

increases storage size

increases the overhead of insertion

removal is highly problematic

truth maintenance usually not implemented in RDF stores

not suitable for distributed and/or dynamic systems

(... as there is usually nowhere to persist the data)

INF3580 :: Spring 2011 Lecture 7 :: 8th March 15 / 46

Backwards and forwards reasoning

Backward chaining inference

Explicit facts

Entailed facts

Fact 2 Fact 3Fact 1

Fact 4

Fact 5

Fact 6Fact 7

Figure: Backward chaining uses rules to expand queries.

INF3580 :: Spring 2011 Lecture 7 :: 8th March 16 / 46

Backwards and forwards reasoning

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

there is little need for reuse of computed answers

answers can be efficiently computed at runtime

answers come from multiple dynamic sources

Benefits:

only the relevant inferences are drawn

truth maintenance is automatic

no persistent storage space needed

Drawbacks:

trades insertion overhead for access overhead

without caching, answers must be recomputed every time

INF3580 :: Spring 2011 Lecture 7 :: 8th March 17 / 46

The Jena reasoning system

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March 18 / 46

The Jena reasoning system

Quick facts

In Jena there is

a zillion ways to configure and plug-in a reasoner

some seem rather haphazard

Imposing order at the cost of precision we may say that ...

reasoners fall into one of two categories

built-in- and
external reasoners

... and are combined with two kinds of model

models of type InfModel, and
models of type OntModel

INF3580 :: Spring 2011 Lecture 7 :: 8th March 19 / 46

The Jena reasoning system

Moreover ...

Different reasoners implement different logics, e.g

Transitive reasoning,
RDFS,
OWL

There is a ReasonerFactory class for each type of reasoner,

which is used to create Reasoner objects
they are all stored in a global ReasonerRegistry class
which can be manipulated explicitly or implicitly

INF3580 :: Spring 2011 Lecture 7 :: 8th March 20 / 46

The Jena reasoning system

The road most often travelled ...

Applications normally access the inference machinery by

using the ModelFactory

to associate a dataset with some reasoner

producing a new model with reasoning capabilities

The ModelFactory may

create an InfModel via convenience methods on the Registry, or

create an OntModel and pass it an OntModelSpec

.... Confusing? Stay tuned

INF3580 :: Spring 2011 Lecture 7 :: 8th March 21 / 46

The Jena reasoning system

Simplified overview

ModelFactory
creates

selects from

OntModel

wraps

InfGraph

produces

ReasonerReasonerRegistry
contains

RDF graph

expanded by

Ontology

Figure: The structure of the reasoning system

INF3580 :: Spring 2011 Lecture 7 :: 8th March 22 / 46

The Jena reasoning system

Built-in reasoners

Transitive reasoners:

provides support for simple taxonomy traversal

implements only the reflexivity and transitivity of

rdfs:subPropertyOf, and
rdfs:subClassOf.

RDFS reasoners:

supports (most of) the axioms and inference rules specific to RDFS.

OWL, OWL mini/micro reasoners:

implements different subsets of the OWL specification

INF3580 :: Spring 2011 Lecture 7 :: 8th March 23 / 46

Built-in reasoners

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March 24 / 46

Built-in reasoners

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

1 call a convenience method on the ModelFactory

which calls a ReasonerFactory in the ReasonerRegistry, and
returns an InfModel all in one go

2 call a static method in the ReasonerRegistry,

the static method returns a reasoner object
pass it to ModelFactory.createInfModel()

along with a model and a dataset

3 use a reasoner factory directly

covered in connection with external reasoners later

INF3580 :: Spring 2011 Lecture 7 :: 8th March 25 / 46

Built-in reasoners

Example I: Using a convenience method

A simple RDFS model

Model sche = FileManager.get().LoadModel(aURI);

Model dat = FileManager.get().LoadModel(bURI);

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

method createRDFSModel() returns an InfModel

An InfModel has a basic inference API, such as;

getDeductionsModel() which returns the inferred triples,
getRawModel() which returns the base triples,
getReasoner() which returns the RDFS reasoner,
getDerivation(stmt) which returns a trace of the derivation

INF3580 :: Spring 2011 Lecture 7 :: 8th March 26 / 46

Built-in reasoners

Example II: Using static methods in the registry

using ModelFactory.createInfModel

Model sche = FileManager.get().LoadModel(aURI);

Model dat = FileManager.get().LoadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

we retain a reference to the reasoner,

that can be used to configure it

e.g. to do backwards or forwards chaining
... mind you, not all reasoners can do both

similar for built-in and external reasoners alike

INF3580 :: Spring 2011 Lecture 7 :: 8th March 27 / 46

Richer API with OntModel

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March 28 / 46

Richer API with OntModel

An OntModel is ontology-aware

An InfModel provides

basic functionality associated with the reasoner, and

basic functionality to sort entailed from explicit statements

... but no fine-grained control over an ontology

An OntModel provides

a richer view of a knowledge base

in terms of ontological concepts

mirrored by methods such as

createClass()

createDatatypeProperty()

getIntersectionClass()

INF3580 :: Spring 2011 Lecture 7 :: 8th March 29 / 46

Richer API with OntModel

contd.

An OntModel does not by itself compute entailments

it is merely a wrapper

that provides a convenient API

given that your data is described by an ontology

However,

an OntModel can be constructed according to a specification object

that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates

the storage scheme,

language profile,

and the reasoner associated with a particular OntModel

INF3580 :: Spring 2011 Lecture 7 :: 8th March 30 / 46

Richer API with OntModel

Some predefined specification objects

The class OntModelSpec contains static references to prebuilt instances:

OWL DL MEM RDFS INF: In-memory OWL DL model that uses the RDFS
inference engine.

OWL LITE MEM: In-memory OWL Lite model. No reasoning.

OWL MEM MICRO RULE INF: In-memory OWL model uses the OWLMicro
inference engine.

OWL DL MEM: In-Memory OWL DL model. No reasoning.

INF3580 :: Spring 2011 Lecture 7 :: 8th March 31 / 46

Richer API with OntModel

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

OntModel model = ModelFactory.createOntologyModel(spec, model);

Jena currently lags behind

no spec for OWL 2

... or any of its profiles

does not mean that we cannot use OWL 2 ontologies with Jena

but we do not have support in the API for all language constructs

some reasoners supply their own such API, e.g. Pellet

INF3580 :: Spring 2011 Lecture 7 :: 8th March 32 / 46

External reasoners

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March 33 / 46

External reasoners

Plugging in third-party reasoners

Jena’s reasoning-system architecture makes it easy ...

for third party vendors to write reasoners

that can be plugged in to Jena architecture

External reasoners usually

check in a ReasonerFactory in the ReasonerRegistry, and

supply a OntModelSpec to be handed to the ModelFactory

INF3580 :: Spring 2011 Lecture 7 :: 8th March 34 / 46

External reasoners

Some better known ones

There are many, many reasoners to choose from, e.g.

FaCT++

Cerebra Engine

CEL

HermiT

Pellet

Reasoning algorithms vary with purpose, scope, philsophy and age (!);

tableu reasoners (FaCt++, Pellet, Cerebra)

rule-based reasoners (CEL)

hyper-tableu (HermiT)

only rule reasoners have a notion of forwards vs. backwards

INF3580 :: Spring 2011 Lecture 7 :: 8th March 35 / 46

External reasoners

Using an external reasoner

retrieve an instance of the reasoner:

Reasoner r;

r = PelletReasonerFactory.theInstance().create();

associate the reasoner with an InfModel, an ontology and a dataset:

InfModel inf;

inf = ModelFactory.createInfModel(r, ontology, dataset);

wrap it in an OntModel for a richer API:

OntModel m;

m = ModelFactory.createOntologyModel(

PelletReasonerFactory.THE SPEC, inf);

INF3580 :: Spring 2011 Lecture 7 :: 8th March 36 / 46

A worked example

Outline

1 Recap: Reasoning with rules

2 Backwards and forwards reasoning

3 The Jena reasoning system

4 Built-in reasoners

5 Richer API with OntModel

6 External reasoners

7 A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March 37 / 46

A worked example

Integrating information from DBpedia

Quick facts about the DBpedia project:

aims to extract structured content form Wikipedia

it is a community effort, so ..

the data is not always uniform and consistent

distinct properties for ’intuitively similar’ objects not uncommon, e.g.;

dbprop:doctoralStudents

dbpedia:doctoralStudent

the latter points to individual students represented by URIs

the former to a list of student names in the from of a string

INF3580 :: Spring 2011 Lecture 7 :: 8th March 38 / 46

A worked example

Who has worked with Jeffrey Ullman?

Ullman is the most referenced computer scientist

DBpedia contains info about, e.g. his

education and laureates
citizenship and nationality
scientific contributions

say we wish to compile a list of his collaborators, including at least

advisors, and
PhD students

INF3580 :: Spring 2011 Lecture 7 :: 8th March 39 / 46

A worked example

set relevant prefixes:
String ont = "http://dbpedia.org/ontology/";

String res = "http://dbpedia.org/resource/";

String prop = "http://dbpedia.org/property/";

String ex = "http://www.example.org/";

connect to DBpedia, describe J. Ullman:
String dbpedia = "http://dbpedia.org/sparql";

String describe = "DESCRIBE <" + res + "Jeffrey Ullman>";

QueryExecution qexc =

QueryExecutionFactory.sparqlService(dbpedia, describe);

Model ullman = qexc.execDescribe();

INF3580 :: Spring 2011 Lecture 7 :: 8th March 40 / 46

A worked example

build an ontology of collaborators:

Model ontology = ModelFactory.createDefaultModel();

Property collab = ontology.createProperty(ex + "Collaborator");

Property phds = ontology.createProperty(prop + "doctoralStudents");

Property phd = ontology.createProperty(ont + "doctoralStudent");

Property adv = ontology.createProperty(ont + "doctoralAdvisor");

ontology.add(phds, RDFS.subPropertyOf, collab);

ontology.add(phd, RDFS.subPropertyOf, collab);

ontology.add(adv, RDFS.subPropertyOf, collab);

INF3580 :: Spring 2011 Lecture 7 :: 8th March 41 / 46

A worked example

build an ontology of collaborators (or better, read it from file):

Model ontology = ModelFactory.createDefaultModel();

Property collab = ontology.createProperty(ex + "Collaborator");

Property phds = ontology.createProperty(prop + "doctoralStudents");

Property phd = ontology.createProperty(ont + "doctoralStudent");

Property adv = ontology.createProperty(ont + "doctoralAdvisor");

ontology.add(phds, RDFS.subPropertyOf, collab);

ontology.add(phd, RDFS.subPropertyOf, collab);

ontology.add(adv, RDFS.subPropertyOf, collab);

... and reason over it:

InfModel inf;

inf = ModelFactory.createRDFSModel(ontology, ullman);

wrap it in an OntModel if you need a richer API

INF3580 :: Spring 2011 Lecture 7 :: 8th March 42 / 46

A worked example

write the query:
String qStr =

"PREFIX ont: <" + ont + ">" +

"PREFIX res: <" + res + ">" +

"PREFIX ex: <" + ex + ">" +

"SELECT ?collaborator WHERE {" +

" res:Jeffrey Ullman ex:Collaborator ?collaborator." +

"}";
execute it ...
Query query = QueryFactory.create(qStr);

QueryExecution qe = QueryExecutionFactory.create(query, inf);

ResultSet res = qe.execSelect();

and, if, you like, print out the results
ResultSetFormatter.out(res, query);

INF3580 :: Spring 2011 Lecture 7 :: 8th March 43 / 46

A worked example

An exercise for the reader ...

substituting Pellet for the RDFS reasoner yields a different result

reason rooted in the respective ‘philosophies’ of RDFS and OWL

tracking it down, is an instructive exercise ...

which is left for the student

INF3580 :: Spring 2011 Lecture 7 :: 8th March 44 / 46

A worked example

Backwards reasoning over the same example

bakcwards reasoning often suitable for stuff in memory

you need a reasoner capable of doing backwards reasoning

i.e. a rule reasoner

and a way to configure it

let’s use the built-in RDFSRuleReasoner

first create a configuration specification:
A config spec is itself an RDF graph

Resource config = ontology.createResource();

INF3580 :: Spring 2011 Lecture 7 :: 8th March 45 / 46

A worked example

ReasonerVocabulary holds terms for configuration purposes:

config.addProperty(ReasonerVocabulary.PROPruleMode, "backward");

now create a rule reasoner and pass it the configuration

Reasoner r;

r = RDFSRuleReasonerFactory.theInstance().create(config);

proceed as before ...

INF3580 :: Spring 2011 Lecture 7 :: 8th March 46 / 46

	Recap: Reasoning with rules
	Backwards and forwards reasoning
	The Jena reasoning system
	Built-in reasoners
	Richer API with OntModel
	External reasoners
	A worked example

