INF3580 — Semantic Technologies — Spring 2011

Lecture 7: Reasoners in Jena

Audun Stolpe
8th March 2011

d d DEPARTMENT OF
c INFORMATICS

UNIVERSITY OF
OsLo

-__
Today's Plan
@ Recap: Reasoning with rules
© Backwards and forwards reasoning
© The Jena reasoning system
@ Built-in reasoners
© Richer API with OntModel
@ External reasoners

@ A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Outline

© Recap: Reasoning with rules

: Spring 2011 Lecture 7 :: 8th March

What is inference?

In a Semantic Web context, inference always means,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

What is inference?

In a Semantic Web context, inference always means,

@ adding triples,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

What is inference?

In a Semantic Web context, inference always means,

@ adding triples,

More specifically it means,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

What is inference?

In a Semantic Web context, inference always means,

@ adding triples,

More specifically it means,

@ adding new triples to an RDF graph,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

What is inference?

In a Semantic Web context, inference always means,

@ adding triples,

More specifically it means,

@ adding new triples to an RDF graph,

@ on the basis of the triples already in it.

INF3580 :: Spring 2011 Lecture 7 :: 8th March

What is inference?

In a Semantic Web context, inference always means,

@ adding triples,

More specifically it means,

@ adding new triples to an RDF graph,
@ on the basis of the triples already in it.
@ ‘adding’ should be understood in a logical sense, indeed;

INF3580 :: Spring 2011 Lecture 7 :: 8th March

What is inference?

In a Semantic Web context, inference always means,

@ adding triples,

More specifically it means,

@ adding new triples to an RDF graph,
@ on the basis of the triples already in it.

@ ‘adding’ should be understood in a logical sense, indeed;
e new/entailed triples need not be materialized or persisted

INF3580 :: Spring 2011 Lecture 7 :: 8th March

What is inference?

In a Semantic Web context, inference always means,

@ adding triples,

More specifically it means,

@ adding new triples to an RDF graph,
@ on the basis of the triples already in it.

@ ‘adding’ should be understood in a logical sense, indeed;

e new/entailed triples need not be materialized or persisted
e indeed they may be ephemeral and transitory

INF3580 :: Spring 2011 Lecture 7 :: 8th March

cont.

A rule of the form

INF3580 :: Spring 2011 Lecture 7 :: 8th March

cont.

A rule of the form

INF3580 :: Spring 2011 Lecture 7 :: 8th March

cont.

A rule of the form

may be read as an instruction;

pring 2011 Lecture 7 :: 8th March

cont.

A rule of the form

may be read as an instruction;

o “If Pi,..., Py are all in the graph, add P to the graph”

INF3580 :: Spring 2011 Lecture 7 :: 8th March

cont.

A rule of the form

may be read as an instruction;

e "“If P1,..., P, are all in the graph, add P to the graph”
@ as an instruction this may in turn be understood procedurally ...

INF3580 :: Spring 2011 Lecture 7 :: 8th March

cont.

A rule of the form

may be read as an instruction;

e "“If P1,..., P, are all in the graph, add P to the graph”
@ as an instruction this may in turn be understood procedurally ...
e in a forward sense, or

INF3580 :: Spring 2011 Lecture 7 :: 8th March

cont.

A rule of the form

may be read as an instruction;

e "“If P1,..., P, are all in the graph, add P to the graph”
@ as an instruction this may in turn be understood procedurally ...

e in a forward sense, or
e in a backward sense

INF3580 :: Spring 2011 Lecture 7 :: 8th March

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
[. Type propagation:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

[. Type propagation:
e “The 2CV is a car, and a car is a motorised vehicle, so..."

INF3580 :: Spring 2011 Lecture 7 :: 8th March

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

[. Type propagation:
e “The 2CV is a car, and a car is a motorised vehicle, so..."
[l. Property inheritance:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
[. Type propagation:
e “The 2CV is a car, and a car is a motorised vehicle, so..."

[l. Property inheritance:
e “Martin lectures at Ifi, and anyone who does so is employed by Ifi,

SO. ..

INF3580 :: Spring 2011 Lecture 7 :: 8th March

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
[. Type propagation:
e “The 2CV is a car, and a car is a motorised vehicle, so..."

[l. Property inheritance:
e “Martin lectures at Ifi, and anyone who does so is employed by Ifi,

so. ..
[1l. Domain and range reasoning:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
[. Type propagation:
e “The 2CV is a car, and a car is a motorised vehicle, so..."

[l. Property inheritance:
e “Martin lectures at Ifi, and anyone who does so is employed by Ifi,

so. ..
[1l. Domain and range reasoning:

e "“Everything someone has written is a document. Martin has written a
PhD thesis, therefore...”

INF3580 :: Spring 2011 Lecture 7 :: 8th March

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

[. Type propagation:
e “The 2CV is a car, and a car is a motorised vehicle, so..."
[l. Property inheritance:
e “Martin lectures at Ifi, and anyone who does so is employed by Ifi,

So. ..
[1l. Domain and range reasoning:
e "“Everything someone has written is a document. Martin has written a
PhD thesis, therefore...”

e "All fathers of people are males. Martin is the father of Karl,
therefore. . ."”

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Sample RDFS rules

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Sample RDFS rules

Rules for property transfer

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Sample RDFS rules

Rules for property transfer

@ Transitivity:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Sample RDFS rules

Rules for property transfer
@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r .
p rdfs:subProperty0f r .

rdfsb

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Sample RDFS rules

Rules for property transfer
@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r .
p rdfs:subProperty0f r .

rdfsb

@ Reflexivity:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Sample RDFS rules

Rules for property transfer
@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r .

p rdfs:subProperty0f r . rdfs5

@ Reflexivity:

p rdf:type rdf:Property .

p rdfs:subProperty0f p . rdfs6

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Sample RDFS rules

Rules for property transfer
@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r .

p rdfs:subProperty0f r . rdfs5

@ Reflexivity:

p rdf:type rdf:Property .

p rdfs:subProperty0f p . rdfs6

@ Property transfer:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Sample RDFS rules

Rules for property transfer
@ Transitivity:

p rdfs:subProperty0f q . q rdfs:subProperty0f r .

p rdfs:subProperty0f r . rdfs5

@ Reflexivity:

p rdf:type rdf:Property .

p rdfs:subProperty0f p . rdfs6

@ Property transfer:

p rdfs:subProperty0f q . upv

T q v . rdfs7

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example: Conductors and ensembles

:Person :Ensemble
H
%

) %

o o

© Pt

: g

u 5

44 n

et .-
12]

H +
o
a9

_\ rdfs:domain
:conductor :SymphonyOrchestra

Spring 2011 Lecture 7 :: 8th March

Example contd.

This ontolology includes

Spring 2011 Lecture 7 :: 8th March

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClass0f :Ensemble .

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClass0f :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example contd.

This ontolology includes
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

the data includes

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

the data includes

:0sloPhilharmonic :conductor :Petrenko

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Recap: Reasoning with rules

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

the data includes

:0sloPhilharmonic :conductor :Petrenko

but interestingly not

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Recap: Reasoning with rules

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

the data includes

:0sloPhilharmonic :conductor :Petrenko

but interestingly not
:0sloPhilharmonic rdf:type :SymphonyOrchestra .

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Recap: Reasoning with rules

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

the data includes

:0sloPhilharmonic :conductor :Petrenko

but interestingly not
:0sloPhilharmonic rdf:type :SymphonyOrchestra .

the entailments include

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Recap: Reasoning with rules

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

the data includes

:0sloPhilharmonic :conductor :Petrenko

but interestingly not
:0sloPhilharmonic rdf:type :SymphonyOrchestra .

the entailments include

:0sloPhilharmonic rdf:type :SymphonyOrchestra .

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Recap: Reasoning with rules

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

the data includes

:0sloPhilharmonic :conductor :Petrenko

but interestingly not
:0sloPhilharmonic rdf:type :SymphonyOrchestra .

the entailments include

:0sloPhilharmonic rdf:type :SymphonyOrchestra .
:0sloPhilharmonic rdf:type :Ensemble

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Recap: Reasoning with rules

Example contd.

This ontolology includes

:SymphonyOrchestra rdfs:subClassOf :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

the data includes

:0sloPhilharmonic :conductor :Petrenko

but interestingly not
:0sloPhilharmonic rdf:type :SymphonyOrchestra .

the entailments include

:0sloPhilharmonic rdf:type :SymphonyOrchestra .
:0sloPhilharmonic rdf:type :Ensemble
:Petrenko rdf:type :Person .

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Outline

© Backwards and forwards reasoning

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Forward chaining vs. backward chaining

Forward chaining:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Forward chaining vs. backward chaining

Forward chaining:

@ reasoning from premises to conclusion of rules

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Forward chaining vs. backward chaining

Forward chaining:
@ reasoning from premises to conclusion of rules

@ adds facts corresponding to the conclusions of rules

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Forward chaining vs. backward chaining

Forward chaining:
@ reasoning from premises to conclusion of rules
@ adds facts corresponding to the conclusions of rules

@ entailed facts are stored and reused

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Forward chaining vs. backward chaining

Forward chaining:
@ reasoning from premises to conclusion of rules
@ adds facts corresponding to the conclusions of rules

@ entailed facts are stored and reused

Backward chaining:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Forward chaining vs. backward chaining

Forward chaining:
@ reasoning from premises to conclusion of rules
@ adds facts corresponding to the conclusions of rules

@ entailed facts are stored and reused

Backward chaining:

@ reasoning from conclusions to premises

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Forward chaining vs. backward chaining

Forward chaining:
@ reasoning from premises to conclusion of rules
@ adds facts corresponding to the conclusions of rules

@ entailed facts are stored and reused

Backward chaining:
@ reasoning from conclusions to premises

@ ' ... what needs to be true for this conclusion to hold?’

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Forward chaining vs. backward chaining

Forward chaining:
@ reasoning from premises to conclusion of rules
@ adds facts corresponding to the conclusions of rules

@ entailed facts are stored and reused

Backward chaining:
@ reasoning from conclusions to premises

@ ' ... what needs to be true for this conclusion to hold?’

@ entailment is on-demand

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards and forwards reasoning

Forward chaining inference

Entailed facts Entailed facts
| Fact 5 | | Fact 10 |
} A
\ \ s 2 \
/‘ /‘ // \\
/ / | Fact 8 | | Fact 7 |
/I /I LI N 4
B
A A ; A ;
| | | N
| Fact 1 | | Fact 2 | | Fact 1 | | Fact 2 | | Fact 6
Explicit facts Explicit facts

Figure: When a fact is added, all entailments are computed and stored.

Lecture 7 :: 8th March

INF3580 :: Spring 2011

Benefits of forward chaining

Precomputing and storing answers is suitable for:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Benefits of forward chaining

Precomputing and storing answers is suitable for:

o frequently accessed data

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Benefits of forward chaining

Precomputing and storing answers is suitable for:

o frequently accessed data

@ which it is expensive to compute,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Benefits of forward chaining

Precomputing and storing answers is suitable for:

o frequently accessed data
@ which it is expensive to compute,

@ which is relatively static,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Benefits of forward chaining

Precomputing and storing answers is suitable for:

o frequently accessed data
@ which it is expensive to compute,
@ which is relatively static,

@ and which is small enough to efficiently store

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Benefits of forward chaining

Precomputing and storing answers is suitable for:

o frequently accessed data
@ which it is expensive to compute,
@ which is relatively static,

@ and which is small enough to efficiently store

Benefits:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Benefits of forward chaining

Precomputing and storing answers is suitable for:

o frequently accessed data
@ which it is expensive to compute,
@ which is relatively static,

@ and which is small enough to efficiently store

Benefits:

@ forward chaining optimizes retrieval

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Benefits of forward chaining

Precomputing and storing answers is suitable for:

o frequently accessed data
@ which it is expensive to compute,
@ which is relatively static,

@ and which is small enough to efficiently store

Benefits:
@ forward chaining optimizes retrieval

@ no additional inference is necessary at query time

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards and forwards reasoning

Forward chaining and truth-maintenance

Entailed facts

| Fact 1 | | Fact 2

Explicit facts

Figure: When a fact is removed, everything that comes with it must go too.

INF3580 :: Spring 2011

Entailed facts

| Fact 1 | |

Explicit facts

Fact 2 | f

Lecture 7 :: 8th March

Drawbacks of forward chaining

Drawbacks:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks of forward chaining

Drawbacks:

@ increases storage size

pring 2011 Lecture 7 :: 8th March

Drawbacks of forward chaining

Drawbacks:
@ increases storage size

@ increases the overhead of insertion

pring 2011 Lecture 7 :: 8th March

Drawbacks of forward chaining

Drawbacks:
@ increases storage size
@ increases the overhead of insertion

@ removal is highly problematic

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks of forward chaining

Drawbacks:
@ increases storage size
@ increases the overhead of insertion
@ removal is highly problematic

@ truth maintenance usually not implemented in RDF stores

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks of forward chaining

Drawbacks:
@ increases storage size

increases the overhead of insertion

°
@ removal is highly problematic

@ truth maintenance usually not implemented in RDF stores
°

not suitable for distributed and/or dynamic systems

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks of forward chaining

Drawbacks:

increases storage size
increases the overhead of insertion

removal is highly problematic

°
°
@ truth maintenance usually not implemented in RDF stores
@ not suitable for distributed and/or dynamic systems

o

(... as there is usually nowhere to persist the data)

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backward chaining inference

Entailed facts

\

7 e S N
- N
- N
- N
- ~

» A
= :

N M

| Fact 1 | | Fact 2 | | Fact 3 |

Explicit facts

Figure: Backward chaining uses rules to expand queries.

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers

@ answers can be efficiently computed at runtime

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers
@ answers can be efficiently computed at runtime

@ answers come from multiple dynamic sources

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers
@ answers can be efficiently computed at runtime

@ answers come from multiple dynamic sources

Benefits:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers
@ answers can be efficiently computed at runtime

@ answers come from multiple dynamic sources

Benefits:

@ only the relevant inferences are drawn

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers
@ answers can be efficiently computed at runtime

@ answers come from multiple dynamic sources

Benefits:
@ only the relevant inferences are drawn

@ truth maintenance is automatic

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers
@ answers can be efficiently computed at runtime

@ answers come from multiple dynamic sources

Benefits:
@ only the relevant inferences are drawn
@ truth maintenance is automatic

@ no persistent storage space needed

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards and forwards reasoning

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers
@ answers can be efficiently computed at runtime

@ answers come from multiple dynamic sources

Benefits:

@ only the relevant inferences are drawn
@ truth maintenance is automatic

@ no persistent storage space needed

Drawbacks:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards and forwards reasoning

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

@ there is little need for reuse of computed answers
@ answers can be efficiently computed at runtime

@ answers come from multiple dynamic sources

Benefits:

@ only the relevant inferences are drawn
@ truth maintenance is automatic

@ no persistent storage space needed

Drawbacks:

@ trades insertion overhead for access overhead

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards and forwards reasoning

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:
@ there is little need for reuse of computed answers

@ answers can be efficiently computed at runtime

@ answers come from multiple dynamic sources

Benefits:
@ only the relevant inferences are drawn
@ truth maintenance is automatic

@ no persistent storage space needed

Drawbacks:
@ trades insertion overhead for access overhead

@ without caching, answers must be recomputed every time

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Outline

© The Jena reasoning system

: Spring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is

@ a zillion ways to configure and plug-in a reasoner

pring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner

@ some seem rather haphazard

pring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner

@ some seem rather haphazard

Imposing order at the cost of precision we may say that ...

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner

@ some seem rather haphazard

Imposing order at the cost of precision we may say that ...
@ reasoners fall into one of two categories

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner

@ some seem rather haphazard

Imposing order at the cost of precision we may say that ...

@ reasoners fall into one of two categories
e built-in- and

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner

@ some seem rather haphazard

Imposing order at the cost of precision we may say that ...
@ reasoners fall into one of two categories
e built-in- and
e external reasoners

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner

@ some seem rather haphazard

Imposing order at the cost of precision we may say that ...
@ reasoners fall into one of two categories
e built-in- and
e external reasoners

@ ... and are combined with two kinds of model

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner

@ some seem rather haphazard

Imposing order at the cost of precision we may say that ...
@ reasoners fall into one of two categories
e built-in- and
e external reasoners
@ ... and are combined with two kinds of model
e models of type InfModel, and

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner

@ some seem rather haphazard

Imposing order at the cost of precision we may say that ...
@ reasoners fall into one of two categories
e built-in- and
e external reasoners
@ ... and are combined with two kinds of model

e models of type InfModel, and
e models of type OntModel

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Moreover ...

semantic web
framework

endad

Lecture 7 :: 8th March

The Jena reasoning system

Moreover ...

*semqnﬁc web
framework

@ Different reasoners implement different logics, e.g Jenq

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Moreover ...

*semqnﬁc web
framework

@ Different reasoners implement different logics, e.g Jena

e Transitive reasoning,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Moreover ...

*semqnﬁc web
framework

@ Different reasoners implement different logics, e.g Jena

e Transitive reasoning,
e RDFS,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Moreover ...

*semqnﬁc web
framework

@ Different reasoners implement different logics, e.g Jena

e Transitive reasoning,
e RDFS,
e OWL

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Moreover ...

*semqnﬁc web
framework

@ Different reasoners implement different logics, e.g Jena

e Transitive reasoning,
e RDFS,
e OWL

@ There is a ReasonerFactory class for each type of reasoner,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Moreover ...

*semqnﬁc web
framework

@ Different reasoners implement different logics, e.g Jena

e Transitive reasoning,
e RDFS,
e OWL

@ There is a ReasonerFactory class for each type of reasoner,
e which is used to create Reasoner objects

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Moreover ...

*semqnﬁc web
framework

@ Different reasoners implement different logics, e.g Jena

e Transitive reasoning,
e RDFS,
e OWL

@ There is a ReasonerFactory class for each type of reasoner,

e which is used to create Reasoner objects
e they are all stored in a global ReasonerRegistry class

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Moreover ...

*semqnﬁc web
framework

@ Different reasoners implement different logics, e.g Jena

e Transitive reasoning,
e RDFS,
e OWL

@ There is a ReasonerFactory class for each type of reasoner,
e which is used to create Reasoner objects
e they are all stored in a global ReasonerRegistry class
e which can be manipulated explicitly or implicitly

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The road most often travelled ...

Applications normally access the inference machinery by

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The road most often travelled ...

Applications normally access the inference machinery by
@ using the ModelFactory

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The road most often travelled ...

Applications normally access the inference machinery by
@ using the ModelFactory

@ to associate a dataset with some reasoner

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The road most often travelled ...

Applications normally access the inference machinery by
@ using the ModelFactory
@ to associate a dataset with some reasoner

@ producing a new model with reasoning capabilities

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The road most often travelled ...

Applications normally access the inference machinery by
@ using the ModelFactory
@ to associate a dataset with some reasoner

@ producing a new model with reasoning capabilities

The ModelFactory may

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The road most often travelled ...

Applications normally access the inference machinery by
@ using the ModelFactory
@ to associate a dataset with some reasoner

@ producing a new model with reasoning capabilities

The ModelFactory may

@ create an InfModel via convenience methods on the Registry, or

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The road most often travelled ...

Applications normally access the inference machinery by
@ using the ModelFactory
@ to associate a dataset with some reasoner

@ producing a new model with reasoning capabilities

The ModelFactory may
@ create an InfModel via convenience methods on the Registry, or

@ create an OntModel and pass it an OntModelSpec

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The road most often travelled ...

Applications normally access the inference machinery by
@ using the ModelFactory
@ to associate a dataset with some reasoner

@ producing a new model with reasoning capabilities

The ModelFactory may
@ create an InfModel via convenience methods on the Registry, or

@ create an OntModel and pass it an OntModelSpec

.... Confusing? Stay tuned

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Simplified overview

creates
ModelFactory —> OntModel

wraps

selects from InfGraph

produces

i contains
ReasonerRegistry [—————— Reasoner
X AN

expanded by

‘ RDF graph ’ ‘ Ontology

Figure: The structure of the reasoning system

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Built-in reasoners

Transitive reasoners:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Built-in reasoners

Transitive reasoners:

@ provides support for simple taxonomy traversal

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Built-in reasoners

Transitive reasoners:

@ provides support for simple taxonomy traversal
@ implements only the reflexivity and transitivity of

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Built-in reasoners

Transitive reasoners:

@ provides support for simple taxonomy traversal
@ implements only the reflexivity and transitivity of
e rdfs:subProperty0f, and

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Built-in reasoners

Transitive reasoners:

@ provides support for simple taxonomy traversal
@ implements only the reflexivity and transitivity of

e rdfs:subProperty0f, and
e rdfs:subClassOf.

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Built-in reasoners

Transitive reasoners:
@ provides support for simple taxonomy traversal

@ implements only the reflexivity and transitivity of

e rdfs:subProperty0f, and
e rdfs:subClassOf.

RDFS reasoners:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Built-in reasoners

Transitive reasoners:
@ provides support for simple taxonomy traversal

@ implements only the reflexivity and transitivity of

e rdfs:subProperty0f, and
e rdfs:subClassOf.

RDFS reasoners:

@ supports (most of) the axioms and inference rules specific to RDFS.

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Built-in reasoners

Transitive reasoners:

@ provides support for simple taxonomy traversal

@ implements only the reflexivity and transitivity of
e rdfs:subProperty0f, and
e rdfs:subClassOf.

RDFS reasoners:

@ supports (most of) the axioms and inference rules specific to RDFS.

OWL, OWL mini/micro reasoners:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

The Jena reasoning system

Built-in reasoners

Transitive reasoners:

@ provides support for simple taxonomy traversal
@ implements only the reflexivity and transitivity of

e rdfs:subProperty0f, and
e rdfs:subClassOf.

RDFS reasoners:

@ supports (most of) the axioms and inference rules specific to RDFS.

OWL, OWL mini/micro reasoners:

@ implements different subsets of the OWL specification

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Outline

@ Built-in reasoners

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory

e which calls a ReasonerFactory in the ReasonerRegistry, and

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory

e which calls a ReasonerFactory in the ReasonerRegistry, and
e returns an InfModel all in one go

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory

e which calls a ReasonerFactory in the ReasonerRegistry, and
e returns an InfModel all in one go

@ call a static method in the ReasonerRegistry,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory

e which calls a ReasonerFactory in the ReasonerRegistry, and
e returns an InfModel all in one go

@ call a static method in the ReasonerRegistry,
e the static method returns a reasoner object

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory

e which calls a ReasonerFactory in the ReasonerRegistry, and
e returns an InfModel all in one go

@ call a static method in the ReasonerRegistry,

e the static method returns a reasoner object
e pass it to ModelFactory.createInfModel ()

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory

e which calls a ReasonerFactory in the ReasonerRegistry, and
e returns an InfModel all in one go

@ call a static method in the ReasonerRegistry,
e the static method returns a reasoner object
e pass it to ModelFactory.createInfModel ()
e along with a model and a dataset

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory

e which calls a ReasonerFactory in the ReasonerRegistry, and
e returns an InfModel all in one go

@ call a static method in the ReasonerRegistry,

e the static method returns a reasoner object
e pass it to ModelFactory.createInfModel ()
e along with a model and a dataset

© use a reasoner factory directly

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Obtaining a built-in reasoner

Three main ways of obtaining a built-in reasoner:

@ call a convenience method on the ModelFactory

e which calls a ReasonerFactory in the ReasonerRegistry, and
e returns an InfModel all in one go

@ call a static method in the ReasonerRegistry,

e the static method returns a reasoner object
e pass it to ModelFactory.createInfModel ()
e along with a model and a dataset

© use a reasoner factory directly
e covered in connection with external reasoners later

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Built-in reasoners

Example |: Using a convenience method

A simple RDFS model

Model sche = FileManager.get () .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

InfModel inferredModel = ModelFactory.createRDFSModel (sche, dat);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Built-in reasoners

Example |: Using a convenience method

A simple RDFS model

Model sche = FileManager.get () .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

InfModel inferredModel = ModelFactory.createRDFSModel (sche, dat);

method createRDFSModel () returns an InfModel

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Built-in reasoners

Example |: Using a convenience method

A simple RDFS model

Model sche = FileManager.get () .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

InfModel inferredModel = ModelFactory.createRDFSModel (sche, dat);

method createRDFSModel () returns an InfModel
@ An InfModel has a basic inference API, such as;

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Built-in reasoners

Example |: Using a convenience method

A simple RDFS model

Model sche = FileManager.get () .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

InfModel inferredModel = ModelFactory.createRDFSModel (sche, dat);

method createRDFSModel () returns an InfModel
@ An InfModel has a basic inference API, such as;

e getDeductionsModel () which returns the inferred triples,

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Built-in reasoners

Example |: Using a convenience method

A simple RDFS model

Model sche = FileManager.get () .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

InfModel inferredModel = ModelFactory.createRDFSModel (sche, dat);

method createRDFSModel () returns an InfModel
@ An InfModel has a basic inference API, such as;

e getDeductionsModel () which returns the inferred triples,
e getRawModel () which returns the base triples,

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Built-in reasoners

Example |: Using a convenience method

A simple RDFS model

Model sche = FileManager.get () .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

InfModel inferredModel = ModelFactory.createRDFSModel (sche, dat);

method createRDFSModel () returns an InfModel
@ An InfModel has a basic inference API, such as;

e getDeductionsModel () which returns the inferred triples,
e getRawModel () which returns the base triples,
e getReasoner () which returns the RDFS reasoner,

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Built-in reasoners

Example |: Using a convenience method

A simple RDFS model

Model sche = FileManager.get () .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;
InfModel inferredModel = ModelFactory.createRDFSModel (sche, dat);

method createRDFSModel () returns an InfModel
@ An InfModel has a basic inference API, such as;

getDeductionsModel () which returns the inferred triples,
getRawModel () which returns the base triples,
getReasoner () which returns the RDFS reasoner,
getDerivation(stmt) which returns a trace of the derivation

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example II: Using static methods in the registry

using ModelFactory.createInfModel
Model sche = FileManager.get() .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

Reasoner reas = ReasonerRegistry.getOWLReasoner() ;
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example II: Using static methods in the registry

using ModelFactory.createInfModel
Model sche = FileManager.get() .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

Reasoner reas = ReasonerRegistry.getOWLReasoner() ;
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example II: Using static methods in the registry

using ModelFactory.createInfModel
Model sche = FileManager.get() .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

Reasoner reas = ReasonerRegistry.getOWLReasoner() ;
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

@ we retain a reference to the reasoner,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example II: Using static methods in the registry

using ModelFactory.createInfModel
Model sche = FileManager.get() .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

Reasoner reas = ReasonerRegistry.getOWLReasoner() ;
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

@ we retain a reference to the reasoner,
@ that can be used to configure it

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example II: Using static methods in the registry

using ModelFactory.createInfModel
Model sche = FileManager.get() .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

Reasoner reas = ReasonerRegistry.getOWLReasoner() ;
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

@ we retain a reference to the reasoner,
@ that can be used to configure it
e e.g. to do backwards or forwards chaining

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example II: Using static methods in the registry

using ModelFactory.createInfModel
Model sche = FileManager.get() .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

Reasoner reas = ReasonerRegistry.getOWLReasoner() ;
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

@ we retain a reference to the reasoner,
@ that can be used to configure it

e e.g. to do backwards or forwards chaining
e ... mind you, not all reasoners can do both

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example II: Using static methods in the registry

using ModelFactory.createInfModel
Model sche = FileManager.get() .LoadModel (aURI);
Model dat = FileManager.get () .LoadModel (bURI) ;

Reasoner reas = ReasonerRegistry.getOWLReasoner() ;
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

@ we retain a reference to the reasoner,
@ that can be used to configure it

e e.g. to do backwards or forwards chaining
e ... mind you, not all reasoners can do both

@ similar for built-in and external reasoners alike

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Outline

© Richer APl with OntModel

: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides

@ basic functionality associated with the reasoner, and

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and

@ basic functionality to sort entailed from explicit statements

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and
@ basic functionality to sort entailed from explicit statements

@ ... but no fine-grained control over an ontology

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and
@ basic functionality to sort entailed from explicit statements

@ ... but no fine-grained control over an ontology

An OntModel provides

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and
@ basic functionality to sort entailed from explicit statements

@ ... but no fine-grained control over an ontology

An OntModel provides

@ a richer view of a knowledge base

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and
@ basic functionality to sort entailed from explicit statements

@ ... but no fine-grained control over an ontology

An OntModel provides
@ a richer view of a knowledge base

@ in terms of ontological concepts

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and
@ basic functionality to sort entailed from explicit statements

@ ... but no fine-grained control over an ontology

An OntModel provides
@ a richer view of a knowledge base

@ in terms of ontological concepts
@ mirrored by methods such as

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and
@ basic functionality to sort entailed from explicit statements

@ ... but no fine-grained control over an ontology

An OntModel provides
@ a richer view of a knowledge base

@ in terms of ontological concepts
@ mirrored by methods such as
e createClass()

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and
@ basic functionality to sort entailed from explicit statements

@ ... but no fine-grained control over an ontology

An OntModel provides
@ a richer view of a knowledge base
@ in terms of ontological concepts

@ mirrored by methods such as

e createClass()
e createDatatypeProperty ()

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An OntModel is ontology-aware

An InfModel provides
@ basic functionality associated with the reasoner, and
@ basic functionality to sort entailed from explicit statements

@ ... but no fine-grained control over an ontology

An OntModel provides
@ a richer view of a knowledge base
@ in terms of ontological concepts

@ mirrored by methods such as

e createClass()
e createDatatypeProperty ()
e getIntersectionClass()

INF3580 :: Spring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments

pring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments

@ it is merely a wrapper

pring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments
@ it is merely a wrapper

@ that provides a convenient API

INF3580 :: Spring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments
@ it is merely a wrapper
@ that provides a convenient API

@ given that your data is described by an ontology

INF3580 :: Spring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments
@ it is merely a wrapper
@ that provides a convenient API

@ given that your data is described by an ontology

However,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments
@ it is merely a wrapper
@ that provides a convenient API

@ given that your data is described by an ontology

However,

@ an OntModel can be constructed according to a specification object

INF3580 :: Spring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments
@ it is merely a wrapper
@ that provides a convenient API

@ given that your data is described by an ontology

However,
@ an OntModel can be constructed according to a specification object

@ that, among other things, tells Jena which reasoner to use

INF3580 :: Spring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments
@ it is merely a wrapper
@ that provides a convenient API

@ given that your data is described by an ontology

However,
@ an OntModel can be constructed according to a specification object

@ that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates

INF3580 :: Spring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments
@ it is merely a wrapper
@ that provides a convenient API

@ given that your data is described by an ontology

However,
@ an OntModel can be constructed according to a specification object

@ that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates

@ the storage scheme,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments
@ it is merely a wrapper
@ that provides a convenient API

@ given that your data is described by an ontology

However,
@ an OntModel can be constructed according to a specification object

@ that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates
@ the storage scheme,

@ language profile,

INF3580 :: Spring 2011 Lecture 7 :: 8th March

contd.

An OntModel does not by itself compute entailments
@ it is merely a wrapper
@ that provides a convenient API

@ given that your data is described by an ontology

However,
@ an OntModel can be constructed according to a specification object

@ that, among other things, tells Jena which reasoner to use

More generally, an OntModelSpec encapsulates
@ the storage scheme,
@ language profile,

@ and the reasoner associated with a particular OntModel

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some predefined specification objects

The class OntModelSpec contains static references to prebuilt instances:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some predefined specification objects

The class OntModelSpec contains static references to prebuilt instances:

OWL_DL_MEM RDFS_INF: In-memory OWL DL model that uses the RDFS
inference engine.

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Richer API with OntModel

Some predefined specification objects

The class OntModelSpec contains static references to prebuilt instances:
OWL_DL_MEM RDFS_INF: In-memory OWL DL model that uses the RDFS

inference engine.

OWL_LITE MEM: In-memory OWL Lite model. No reasoning.

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Richer API with OntModel

Some predefined specification objects

The class OntModelSpec contains static references to prebuilt instances:

OWL_DL_MEM RDFS_INF: In-memory OWL DL model that uses the RDFS
inference engine.

OWL_LITE MEM: In-memory OWL Lite model. No reasoning.

OWL_MEM MICRO RULE_INF: In-memory OWL model uses the OWLMicro
inference engine.

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Richer API with OntModel

Some predefined specification objects

The class OntModelSpec contains static references to prebuilt instances:

OWL_DL_MEM RDFS_INF: In-memory OWL DL model that uses the RDFS
inference engine.

OWL_LITE MEM: In-memory OWL Lite model. No reasoning.

OWL_MEM MICRO RULE_INF: In-memory OWL model uses the OWLMicro
inference engine.

OWL_DL_MEM: In-Memory OWL DL model. No reasoning.

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Richer API with OntModel

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.0OWL_DL_MEM) ;
OntModel model = ModelFactory.createOntologyModel (spec, model);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Richer API with OntModel

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.0OWL_DL_MEM) ;
OntModel model = ModelFactory.createOntologyModel (spec, model);

Jena currently lags behind

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Richer API with OntModel

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.0OWL_DL_MEM) ;
OntModel model = ModelFactory.createOntologyModel (spec, model);

Jena currently lags behind
@ no spec for OWL 2

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Richer API with OntModel

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.0OWL_DL_MEM) ;
OntModel model = ModelFactory.createOntologyModel (spec, model);

Jena currently lags behind
@ no spec for OWL 2

@ ... or any of its profiles

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Richer API with OntModel

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.0OWL_DL_MEM) ;
OntModel model = ModelFactory.createOntologyModel (spec, model);

Jena currently lags behind
@ no spec for OWL 2
@ ... or any of its profiles

@ does not mean that we cannot use OWL 2 ontologies with Jena

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Richer API with OntModel

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.0OWL_DL_MEM) ;
OntModel model = ModelFactory.createOntologyModel (spec, model);

Jena currently lags behind
@ no spec for OWL 2
@ ... or any of its profiles
@ does not mean that we cannot use OWL 2 ontologies with Jena

@ but we do not have support in the API for all language constructs

INF3580 :: Spring 2011

Lecture 7 :: 8th March

Richer API with OntModel

Example: Configuring an OntModel

An OntModel is created by calling a method in ModelFactory

Specifying an OntModel

OntModelSpec spec = new OntModelSpec(OntModelSpec.0OWL_DL_MEM) ;
OntModel model = ModelFactory.createOntologyModel (spec, model);

Jena currently lags behind
@ no spec for OWL 2
@ ... or any of its profiles
@ does not mean that we cannot use OWL 2 ontologies with Jena
@ but we do not have support in the API for all language constructs
@ some reasoners supply their own such API, e.g. Pellet

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Outline

@ External reasoners

: Spring 2011 Lecture 7 :: 8th March

Plugging in third-party reasoners

Jena's reasoning-system architecture makes it easy ...

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Plugging in third-party reasoners

Jena's reasoning-system architecture makes it easy ...

@ for third party vendors to write reasoners

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Plugging in third-party reasoners

Jena's reasoning-system architecture makes it easy ...
@ for third party vendors to write reasoners

@ that can be plugged in to Jena architecture

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Plugging in third-party reasoners

Jena's reasoning-system architecture makes it easy ...
@ for third party vendors to write reasoners

@ that can be plugged in to Jena architecture

External reasoners usually

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Plugging in third-party reasoners

Jena's reasoning-system architecture makes it easy ...
@ for third party vendors to write reasoners

@ that can be plugged in to Jena architecture

External reasoners usually

@ check in a ReasonerFactory in the ReasonerRegistry, and

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Plugging in third-party reasoners

Jena's reasoning-system architecture makes it easy ...
@ for third party vendors to write reasoners

@ that can be plugged in to Jena architecture

External reasoners usually
@ check in a ReasonerFactory in the ReasonerRegistry, and

@ supply a OntModelSpec to be handed to the ModelFactory

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.

pring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++

@ Cerebra Engine

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++
@ Cerebra Engine
e CEL

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++
@ Cerebra Engine
e CEL
o HermiT

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++

Cerebra Engine

CEL

HermiT

Pellet

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++

Cerebra Engine

CEL

HermiT

Pellet

Reasoning algorithms vary with purpose, scope, philsophy and age (!);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++

Cerebra Engine

CEL

HermiT

Pellet

Reasoning algorithms vary with purpose, scope, philsophy and age (!);
@ tableu reasoners (FaCt++, Pellet, Cerebra)

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++

Cerebra Engine

CEL

HermiT

Pellet

Reasoning algorithms vary with purpose, scope, philsophy and age (!);
@ tableu reasoners (FaCt++, Pellet, Cerebra)

@ rule-based reasoners (CEL)

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++
@ Cerebra Engine
e CEL
e HermiT
°

Pellet

Reasoning algorithms vary with purpose, scope, philsophy and age (!);
@ tableu reasoners (FaCt++, Pellet, Cerebra)
@ rule-based reasoners (CEL)

@ hyper-tableu (HermiT)

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Some better known ones

There are many, many reasoners to choose from, e.g.
o FaCT++
@ Cerebra Engine
e CEL

e HermiT

°

Pellet

Reasoning algorithms vary with purpose, scope, philsophy and age (!);
tableu reasoners (FaCt++, Pellet, Cerebra)

rule-based reasoners (CEL)
hyper-tableu (HermiT)

only rule reasoners have a notion of forwards vs. backwards

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Using an external reasoner

@ retrieve an instance of the reasoner:

Reasoner r;

r = PelletReasonerFactory.theInstance().create();

pring 2011 Lecture 7 :: 8th March

Using an external reasoner

@ retrieve an instance of the reasoner:

Reasoner r;

r = PelletReasonerFactory.theInstance().create();

@ associate the reasoner with an InfModel, an ontology and a dataset:

InfModel inf;
inf = ModelFactory.createInfModel(r, ontology, dataset);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Using an external reasoner

@ retrieve an instance of the reasoner:

Reasoner r;

r = PelletReasonerFactory.theInstance().create();

@ associate the reasoner with an InfModel, an ontology and a dataset:

InfModel inf;
inf = ModelFactory.createInfModel(r, ontology, dataset);

@ wrap it in an OntModel for a richer API:

OntModel m;
m = ModelFactory.createOntologyModel (

PelletReasonerFactory.THE_SPEC, inf);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Outline

a A worked example

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Integrating information from DBpedia

Quick facts about the DBpedia project:

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Integrating information from DBpedia

Quick facts about the DBpedia project:

@ aims to extract structured content form Wikipedia

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Integrating information from DBpedia

Quick facts about the DBpedia project:
@ aims to extract structured content form Wikipedia

@ it is a community effort, so ..

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Integrating information from DBpedia

Quick facts about the DBpedia project:
@ aims to extract structured content form Wikipedia
@ it is a community effort, so ..

@ the data is not always uniform and consistent

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Integrating information from DBpedia

Quick facts about the DBpedia project:
@ aims to extract structured content form Wikipedia
@ it is a community effort, so ..

@ the data is not always uniform and consistent
@ distinct properties for 'intuitively similar’ objects not uncommon, e.g.;

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Integrating information from DBpedia

Quick facts about the DBpedia project:
@ aims to extract structured content form Wikipedia
@ it is a community effort, so ..

@ the data is not always uniform and consistent
@ distinct properties for 'intuitively similar’ objects not uncommon, e.g.;
e dbprop:doctoralStudents

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Integrating information from DBpedia

Quick facts about the DBpedia project:
@ aims to extract structured content form Wikipedia
@ it is a community effort, so ..

@ the data is not always uniform and consistent
@ distinct properties for 'intuitively similar’ objects not uncommon, e.g.;

e dbprop:doctoralStudents
o dbpedia:doctoralStudent

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Integrating information from DBpedia

Quick facts about the DBpedia project:
@ aims to extract structured content form Wikipedia
it is a community effort, so ..

o
@ the data is not always uniform and consistent
@ distinct properties for 'intuitively similar’ objects not uncommon, e.g.;

e dbprop:doctoralStudents
o dbpedia:doctoralStudent

the latter points to individual students represented by URIs

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Integrating information from DBpedia

Quick facts about the DBpedia project:
@ aims to extract structured content form Wikipedia
it is a community effort, so ..

o
@ the data is not always uniform and consistent
@ distinct properties for 'intuitively similar’ objects not uncommon, e.g.;

e dbprop:doctoralStudents
o dbpedia:doctoralStudent

the latter points to individual students represented by URIs

the former to a list of student names in the from of a string

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Who has worked with Jeffrey Ullman?

Ullman is the most referenced computer scientist

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Who has worked with Jeffrey Ullman?

Ullman is the most referenced computer scientist
@ DBpedia contains info about, e.g. his

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Who has worked with Jeffrey Ullman?

Ullman is the most referenced computer scientist
@ DBpedia contains info about, e.g. his
e education and laureates

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Who has worked with Jeffrey Ullman?

Ullman is the most referenced computer scientist
@ DBpedia contains info about, e.g. his

e education and laureates
e citizenship and nationality

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Who has worked with Jeffrey Ullman?

Ullman is the most referenced computer scientist
@ DBpedia contains info about, e.g. his

e education and laureates
e citizenship and nationality
e scientific contributions

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Who has worked with Jeffrey Ullman?

Ullman is the most referenced computer scientist
@ DBpedia contains info about, e.g. his

e education and laureates
e citizenship and nationality
e scientific contributions

@ say we wish to compile a list of his collaborators, including at least

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Who has worked with Jeffrey Ullman?

Ullman is the most referenced computer scientist
@ DBpedia contains info about, e.g. his

e education and laureates
e citizenship and nationality
e scientific contributions

@ say we wish to compile a list of his collaborators, including at least
e advisors, and

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Who has worked with Jeffrey Ullman?

Ullman is the most referenced computer scientist
@ DBpedia contains info about, e.g. his
e education and laureates
e citizenship and nationality
e scientific contributions
@ say we wish to compile a list of his collaborators, including at least

e advisors, and
e PhD students

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ set relevant prefixes:
String ont = "http://dbpedia.org/ontology/";
String res = "http://dbpedia.org/resource/";
String prop = "http://dbpedia.org/property/";

String ex = "http://www.example.org/";

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ set relevant prefixes:
String ont = "http://dbpedia.org/ontology/";
String res = "http://dbpedia.org/resource/";
String prop = "http://dbpedia.org/property/";

String ex = "http://www.example.org/";

@ connect to DBpedia, describe J. Ullman:
String dbpedia = "http://dbpedia.org/sparql";
String describe = "DESCRIBE <" + res + "Jeffrey Ullman>";
QueryExecution gexc =
QueryExecutionFactory.sparqlService (dbpedia, describe);

Model ullman = gexc.execDescribe();

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ build an ontology of collaborators:

Model ontology = ModelFactory.createDefaultModel() ;

Property
Property
Property
Property
ontology

collab = ontology.createProperty(ex + "Collaborator");
phds = ontology.createProperty(prop + "doctoralStudents");
phd = ontology.createProperty(ont + "doctoralStudent");
adv = ontology.createProperty(ont + "doctoralAdvisor");

.add (phds, RDFS.subProperty0f, collab);
ontology.
ontology.

add(phd, RDFS.subProperty0f, collab);
add(adv, RDFS.subProperty0f, collab);

INF3580 :: Spring 2011

Lecture 7 :: 8th March

A worked example

@ build an ontology of collaborators (or better, read it from file):

Model ontology = ModelFactory.createDefaultModel() ;

Property collab = ontology.createProperty(ex + "Collaborator");
Property phds = ontology.createProperty(prop + "doctoralStudents");
Property phd = ontology.createProperty(ont + "doctoralStudent");
Property adv = ontology.createProperty(ont + "doctoralAdvisor");
ontology.add(phds, RDFS.subProperty0f, collab);

ontology.add(phd, RDFS.subProperty0f, collab);

ontology.add(adv, RDFS.subProperty0f, collab);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ build an ontology of collaborators (or better, read it from file):

Model ontology = ModelFactory.createDefaultModel() ;

Property collab = ontology.createProperty(ex + "Collaborator");
Property phds = ontology.createProperty(prop + "doctoralStudents");
Property phd = ontology.createProperty(ont + "doctoralStudent");
Property adv = ontology.createProperty(ont + "doctoralAdvisor");
ontology.add(phds, RDFS.subProperty0f, collab);

ontology.add(phd, RDFS.subProperty0f, collab);

ontology.add(adv, RDFS.subProperty0f, collab);

@ ... and reason over it:

InfModel inf;
inf = ModelFactory.createRDFSModel (ontology, ullman);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ build an ontology of collaborators (or better, read it from file):

Model ontology = ModelFactory.createDefaultModel() ;

Property collab = ontology.createProperty(ex + "Collaborator");
Property phds = ontology.createProperty(prop + "doctoralStudents");
Property phd = ontology.createProperty(ont + "doctoralStudent");
Property adv = ontology.createProperty(ont + "doctoralAdvisor");
ontology.add(phds, RDFS.subProperty0f, collab);

ontology.add(phd, RDFS.subProperty0f, collab);

ontology.add(adv, RDFS.subProperty0f, collab);

@ ... and reason over it:
InfModel inf;
inf = ModelFactory.createRDFSModel (ontology, ullman);

@ wrap it in an OntModel if you need a richer API

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ write the query:
String qStr =
"PREFIX ont: <" + ont + ">" +
"PREFIX res: <" + res + ">" +
"PREFIX ex: <" + ex + ">" +
"SELECT ?collaborator WHERE {" +
" res:Jeffrey Ullman ex:Collaborator ?collaborator." +

ll}ll;

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ write the query:
String qStr =
"PREFIX ont: <" + ont + ">" +
"PREFIX res: <" + res + ">" +
"PREFIX ex: <" + ex + ">" +
"SELECT ?collaborator WHERE {" +
" res:Jeffrey Ullman ex:Collaborator ?collaborator." +
ll}ll;
@ execute it ...
Query query = QueryFactory.create(qStr);

QueryExecution ge = QueryExecutionFactory.create(query, inf);
ResultSet res = ge.execSelect();

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ write the query:
String qStr =
"PREFIX ont: <" + ont + ">" +
"PREFIX res: <" + res + ">" +
"PREFIX ex: <" + ex + ">" +
"SELECT ?collaborator WHERE {" +
" res:Jeffrey Ullman ex:Collaborator ?collaborator." +
ll}ll;
@ execute it ...
Query query = QueryFactory.create(qStr);
QueryExecution ge = QueryExecutionFactory.create(query, inf);
ResultSet res = ge.execSelect();
@ and, if, you like, print out the results

ResultSetFormatter.out(res, query);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An exercise for the reader ...

@ substituting Pellet for the RDFS reasoner yields a different result

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An exercise for the reader ...

@ substituting Pellet for the RDFS reasoner yields a different result
@ reason rooted in the respective ‘philosophies’ of RDFS and OWL

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An exercise for the reader ...

@ substituting Pellet for the RDFS reasoner yields a different result
@ reason rooted in the respective ‘philosophies’ of RDFS and OWL

@ tracking it down, is an instructive exercise ...

INF3580 :: Spring 2011 Lecture 7 :: 8th March

An exercise for the reader ...

@ substituting Pellet for the RDFS reasoner yields a different result
@ reason rooted in the respective ‘philosophies’ of RDFS and OWL
@ tracking it down, is an instructive exercise ...

@ which is left for the student

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards reasoning over the same example

@ bakcwards reasoning often suitable for stuff in memory

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards reasoning over the same example

@ bakcwards reasoning often suitable for stuff in memory
@ you need a reasoner capable of doing backwards reasoning

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards reasoning over the same example

@ bakcwards reasoning often suitable for stuff in memory
@ you need a reasoner capable of doing backwards reasoning

@ i.e. a rule reasoner

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards reasoning over the same example

@ bakcwards reasoning often suitable for stuff in memory
@ you need a reasoner capable of doing backwards reasoning
@ i.e. a rule reasoner

@ and a way to configure it

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards reasoning over the same example

bakcwards reasoning often suitable for stuff in memory

you need a reasoner capable of doing backwards reasoning

]

o

@ i.e. a rule reasoner

@ and a way to configure it
°

let's use the built-in RDFSRuleReasoner

INF3580 :: Spring 2011 Lecture 7 :: 8th March

Backwards reasoning over the same example

bakcwards reasoning often suitable for stuff in memory
you need a reasoner capable of doing backwards reasoning
i.e. a rule reasoner

and a way to configure it

let's use the built-in RDFSRuleReasoner

first create a configuration specification:
A config spec is itself an RDF graph
Resource config = ontology.createResource();

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ ReasonerVocabulary holds terms for configuration purposes:

config.addProperty(ReasonerVocabulary.PROPruleMode, "backward");

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ ReasonerVocabulary holds terms for configuration purposes:

config.addProperty(ReasonerVocabulary.PROPruleMode, "backward");

@ now create a rule reasoner and pass it the configuration

Reasoner r;

r = RDFSRuleReasonerFactory.theInstance().create(config);

INF3580 :: Spring 2011 Lecture 7 :: 8th March

A worked example

@ ReasonerVocabulary holds terms for configuration purposes:

config.addProperty(ReasonerVocabulary.PROPruleMode, "backward");

@ now create a rule reasoner and pass it the configuration

Reasoner r;

r = RDFSRuleReasonerFactory.theInstance().create(config);

@ proceed as before ...

INF3580 :: Spring 2011 Lecture 7 :: 8th March

	Recap: Reasoning with rules
	Backwards and forwards reasoning
	The Jena reasoning system
	Built-in reasoners
	Richer API with OntModel
	External reasoners
	A worked example

