INF3580 - Semantic Technologies - Spring 2011

Lecture 9: Model Semantics & Reasoning

Martin Giese

22nd March 2011

Today's Plan

- Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- 4 Entailment and Derivability

Outline

- Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- 4 Entailment and Derivability

• We will simplify things by only looking at certain kinds of RDF graphs.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf: Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:
 - individual property individual .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf: Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
```

class rdfs:subClassOf class.

INF3580 :: Spring 2011 Lecture 9 :: 22nd March 4 / 37

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf: Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf: Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf: Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .
```

• Forget blank nodes and literals for a while!

• Resources and Triples are no longer all alike

- Resources and Triples are no longer all alike
- No need to use the same general triple notation

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$r(i_1, i_2)$ $C(i_1)$
indi rdf:type class .	$C(i_1)$
<pre>class rdfs:subClassOf class . prop rdfs:subPropOf prop .</pre>	$C \sqsubseteq D$ $r \sqsubseteq s$ $dom(r, C)$ $rg(r, C)$
prop rdfs:domain class .	dom(r, C)
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$r(i_1, i_2)$ $C(i_1)$
indi rdf:type class .	$C(i_1)$
class rdfs:subClassOf class .	$C \sqsubseteq D$ $r \sqsubseteq s$ $dom(r, C)$ $rg(r, C)$
<pre>prop rdfs:subPropOf prop .</pre>	<i>r</i> <u></u> <i>s</i>
<pre>prop rdfs:domain class .</pre>	dom(r, C)
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

• This is called "Description Logic" (DL) Syntax

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$r(i_1, i_2)$ $C(i_1)$
indi rdf:type class .	$C(i_1)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
<pre>prop rdfs:subPropOf prop .</pre>	$r \sqsubseteq s$
<pre>prop rdfs:domain class .</pre>	dom(r, C) $rg(r, C)$
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

- This is called "Description Logic" (DL) Syntax
- Used much in particular for OWL

• Triples:

• Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```


Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

• DL syntax, without namespaces:

6 / 37

Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

DL syntax, without namespaces:

```
loves(romeo, juliet)
Lady(juliet)

Lady □ Person
loves □ knows
dom(loves, Lover)
rg(loves, Beloved)
```


• To interpret the six kinds of triples, we need to know how to interpret

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - ullet A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - ullet A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - ullet For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI C, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* $\mathcal I$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI C, a subset $C^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$
 - For each property URI r, a relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI C, a subset $C^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$
 - ullet For each property URI r, a relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$
- Given these, it will be possible to say whether a triple holds or not.

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & &$

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & &$

$$ullet$$
 romeo $^{\mathcal{I}_1}=$ $egin{array}{c} ext{juliet}^{\mathcal{I}_1}= egin{array}{c} ext{initial} \end{array}$

$$\bullet \ \ \Delta^{\mathcal{I}_1} = \left\{ \boxed{ } , \boxed{ } , \boxed{ } \right\}$$

•
$$romeo^{\mathcal{I}_1} = juliet^{\mathcal{I}_1} = juliet^{\mathcal{I}_1}$$

$$juliet^{\mathcal{I}_1} =$$

$$ullet$$
 Lady $^{\mathcal{I}_1}=\left\{egin{align*} igspace & extit{Person}^{\mathcal{I}_1}=\Delta^{\mathcal{I}_1} \end{array}
ight.$

$$Person^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1}$$

$$\mathsf{Lover}^{\mathcal{I}_1} = \mathsf{Beloved}^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & &$$

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$

$$ullet$$
 romeo $^{\mathcal{I}_1}=$ juliet $^{\mathcal{I}_1}=$

$$ullet$$
 Lady $^{\mathcal{I}_1} = \left\{egin{align*} igspace & ext{Person}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \end{array}
ight.$

$$\mathit{Lover}^{\mathcal{I}_1} = \mathit{Beloved}^{\mathcal{I}_1} = \left\{ egin{matrix} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & &$$

•
$$loves^{\mathcal{I}_1} = \left\{ \left\langle \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \left\langle \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\rangle \right\}$$

$$knows^{\mathcal{I}_1} = \Lambda^{\mathcal{I}_1} \times \Lambda^{\mathcal{I}_1}$$

INF3580 :: Spring 2011

$$\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- $\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$

- $\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$

- $\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = \langle = \{ \langle x, y \rangle \mid x < y \}$ $knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$

- $\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = \langle = \{ \langle x, y \rangle \mid x < y \}$ $knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$
- Just because names (URIs) look familiar, they don't need to denote what we think!

- $\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = \langle = \{ \langle x, y \rangle \mid x < y \}$ $knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$
- Just because names (URIs) look familiar, they don't need to denote what we think!
- In fact, there is no way of ensuring they denote only what we think!

• Given an interpretation \mathcal{I} , define \models as follows:

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

 - $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

 - $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$
 - $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
 - $\mathcal{I} \models \text{dom}(r, C)$ iff $\text{dom } r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

 - $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
 - $\mathcal{I} \models \mathsf{dom}(r, C)$ iff $\mathsf{dom}\,r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $\operatorname{rg} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

 - $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
 - $\mathcal{I} \models \mathsf{dom}(r, C)$ iff $\mathsf{dom}\,r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - $\mathcal{I} \models \operatorname{rg}(r,C)$ iff $\operatorname{rg} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- For a set of triples A (any of the six kinds)

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

 - $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
 - $\mathcal{I} \models \mathsf{dom}(r, C)$ iff $\mathsf{dom}\,r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $\operatorname{rg} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- For a set of triples A (any of the six kinds)
- \mathcal{A} is valid in \mathcal{I} , written

$$\mathcal{I} \models \mathcal{A}$$

10 / 37

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

 - $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
 - $\mathcal{I} \models \mathsf{dom}(r, C)$ iff $\mathsf{dom}\,r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - $\mathcal{I} \models \operatorname{rg}(r,C)$ iff $\operatorname{rg} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- For a set of triples A (any of the six kinds)
- A is valid in I. written

$$\mathcal{I} \models \mathcal{A}$$

• iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.

• $\mathcal{I}_1 \models loves(juliet, romeo)$ because

• $\mathcal{I}_2 \not\models Person(romeo)$ because

- $\mathcal{I}_2 \not\models Person(romeo)$ because
- $romeo^{\mathcal{I}_2} = 17 \not\in Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$

- $\mathcal{I}_2 \not\models Person(romeo)$ because
- $\bullet \ \textit{romeo}^{\mathcal{I}_2} = 17 \not \in \textit{Person}^{\mathcal{I}_2} = \{2,4,6,8,10,\ldots\}$
- $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

- $\mathcal{I}_2 \not\models Person(romeo)$ because
- $romeo^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$
- $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

$$\mathit{Lover}^{\mathcal{I}_1} = \left\{ igwedge_{i}, igwedge_{i}
ight\} \subseteq \mathit{Person}^{\mathcal{I}_1} = \left\{ igwedge_{i}, igwedge_{i},$$

• $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left\langle igcirc , igcirc \right
angle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle igcirc , igcirc \right
angle, \left\langle igcirc , igcirc \right
angle \right\}$$

- $\mathcal{I}_2 \not\models Person(romeo)$ because
- $romeo^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$
- $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

$$\mathit{Lover}^{\mathcal{I}_1} = \left\{ igwedge^{\mathcal{I}_1}, igwedge^{\mathcal{I}_2}
ight\} \subseteq \mathit{Person}^{\mathcal{I}_1} = \left\{ igwedge^{\mathcal{I}_1}, igwedge^{\mathcal{I}_2}, igwedge^{\mathcal{I}_3}
ight\}$$

• $\mathcal{I}_2 \not\models Lover \sqsubseteq Person$ because

• $\mathcal{I}_1 \models loves(juliet, romeo)$ because

- $\mathcal{I}_2 \not\models Person(romeo)$ because
- $romeo^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$
- $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

$$\mathit{Lover}^{\mathcal{I}_1} = \left\{ igwedge^{\mathcal{I}_1}, igwedge^{\mathcal{I}_2}
ight\} \subseteq \mathit{Person}^{\mathcal{I}_1} = \left\{ igwedge^{\mathcal{I}_1}, igwedge^{\mathcal{I}_2}, igwedge^{\mathcal{I}_3}
ight\}$$

• $\mathcal{I}_2 \not\models Lover \sqsubseteq Person$ because $Lover^{\mathcal{I}_2} = \mathbb{N}$ and $Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$

ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)

- ullet Given a set of triples ${\cal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- ullet T is entailed by \mathcal{A} , written $\mathcal{A} \models \mathcal{T}$

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - ullet For any interpretation ${\mathcal I}$ with ${\mathcal I} \models {\mathcal A}$

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
- ullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
- $\mathcal{I} \models T$.

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \models T$.
- Example:

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
 - $A = \{..., Lady(juliet), Lady \subseteq Person,...\}$ as before

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
 - $A = \{..., Lady(juliet), Lady \subseteq Person,...\}$ as before
 - $A \models Person(juliet)$ because. . .

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
- ullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
- $\mathcal{I} \models T$.
- Example:
 - $A = \{..., Lady(juliet), Lady \subseteq Person,...\}$ as before
 - $A \models Person(juliet)$ because...
 - ullet in any interpretation $\mathcal{I}\dots$

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
- ullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
- $\mathcal{I} \models \mathcal{T}$.
- Example:
 - $A = \{..., Lady(juliet), Lady \subseteq Person,...\}$ as before
 - $A \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...
 - if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
- ullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
- $\mathcal{I} \models T$.
- Example:
 - $A = \{..., Lady(juliet), Lady \subseteq Person,...\}$ as before
 - $A \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...
 - if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$
 - ullet then by set theory $juliet^{\mathcal{I}} \in \textit{Person}^{\mathcal{I}}$

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
 - $A = \{..., Lady(juliet), Lady \subseteq Person,...\}$ as before
 - $A \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...
 - if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$
 - ullet then by set theory $juliet^{\mathcal{I}} \in \textit{Person}^{\mathcal{I}}$
- Not about T being (intuitively) true or not

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
 - $A = \{..., Lady(juliet), Lady \subseteq Person,...\}$ as before
 - $A \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...
 - if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$
 - then by set theory $juliet^{\mathcal{I}} \in Person^{\mathcal{I}}$
- Not about T being (intuitively) true or not
- ullet Only about whether T is a consequence of ${\cal A}$

• If $A \not\models T$,...

- If $A \not\models T$,...
- ullet then there is an ${\mathcal I}$ with

- If $A \not\models T$,...
- ullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$

- If $A \not\models T$,...
- ullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$

- If $A \not\models T$,...
- ullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$

- If $A \not\models T$,...
- ullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- ullet Such an ${\mathcal I}$ is called a *counter-model* (for the assumption that ${\mathcal A}$ entails ${\mathcal T}$)

- If $A \not\models T, \dots$
- ullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- ullet Such an ${\mathcal I}$ is called a *counter-model* (for the assumption that ${\mathcal A}$ entails ${\mathcal T}$)
- To show that $A \models T$ does *not* hold:

- If $A \not\models T$,...
- ullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models T$, then $\mathcal{A} \not\models T$
- ullet Such an ${\mathcal I}$ is called a *counter-model* (for the assumption that ${\mathcal A}$ entails ${\mathcal T}$)
- To show that $A \models T$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)

- If $A \not\models T, \dots$
- ullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models T$, then $\mathcal{A} \not\models T$
- Such an $\mathcal I$ is called a *counter-model* (for the assumption that $\mathcal A$ entails $\mathcal T$)
- To show that $A \models T$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)
 - Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)

- If $A \not\models T, \dots$
- ullet then there is an ${\mathcal I}$ with
 - $\bullet \mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails T)
- To show that $A \models T$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)
 - Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
 - Prove that $\mathcal{I} \not\models T$ (using the semantics)

13 / 37

- If $A \not\models T, \dots$
- ullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an $\mathcal I$ is called a *counter-model* (for the assumption that $\mathcal A$ entails $\mathcal T$)
- To show that $A \models T$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)
 - Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
 - Prove that $\mathcal{I} \not\models T$ (using the semantics)
- Countermodels for intuitively true statements are always unintuitive! (Why?)

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

 \bullet \mathcal{A} as before:

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

• Does $A \models Lover \sqsubseteq Beloved$?

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.

```
\mathcal{A} = \{loves(romeo, juliet), \ Lady(juliet), \ Lady \sqsubseteq Person, \\ loves \sqsubseteq knows, \ dom(loves, Lover), \ rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$

A as before:

```
\mathcal{A} = \{ \textit{loves}(\textit{romeo}, \textit{juliet}), \; \textit{Lady}(\textit{juliet}), \; \textit{Lady} \sqsubseteq \textit{Person}, \\ \textit{loves} \sqsubseteq \textit{knows}, \; \textit{dom}(\textit{loves}, \textit{Lover}), \; \textit{rg}(\textit{loves}, \textit{Beloved}) \}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$
- Then $\langle a, b \rangle \in loves^{\mathcal{I}}$, $a \in Lover^{\mathcal{I}}$, $b \in Beloved^{\mathcal{I}}$.

A as before:

```
\mathcal{A} = \{ \textit{loves}(\textit{romeo}, \textit{juliet}), \; \textit{Lady}(\textit{juliet}), \; \textit{Lady} \sqsubseteq \textit{Person}, \\ \textit{loves} \sqsubseteq \textit{knows}, \; \textit{dom}(\textit{loves}, \textit{Lover}), \; \textit{rg}(\textit{loves}, \textit{Beloved}) \}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$
- Then $\langle a, b \rangle \in loves^{\mathcal{I}}$, $a \in Lover^{\mathcal{I}}$, $b \in Beloved^{\mathcal{I}}$.
- With $Lover^{\mathcal{I}} = \{a\}$ and $Beloved^{\mathcal{I}} = \{b\}$, $\mathcal{I} \not\models Lover \sqsubseteq Beloved!$

A as before:

```
\mathcal{A} = \{loves(romeo, juliet), \ Lady(juliet), \ Lady \sqsubseteq Person, \\ loves \sqsubseteq knows, \ dom(loves, Lover), \ rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$
- Then $\langle a, b \rangle \in loves^{\mathcal{I}}$, $a \in Lover^{\mathcal{I}}$, $b \in Beloved^{\mathcal{I}}$.
- With $Lover^{\mathcal{I}} = \{a\}$ and $Beloved^{\mathcal{I}} = \{b\}$, $\mathcal{I} \not\models Lover \sqsubseteq Beloved!$
- Choose

$$loves^{\mathcal{I}} = knows^{\mathcal{I}} = \{\langle a, b \rangle\}$$
 $Lady^{\mathcal{I}} = Person^{\mathcal{I}} = \{b\}$

to complete the count-model while satisfying $\mathcal{I} \models \mathcal{A}$

Outline

- 1 Repetition: RDF semantics
- 2 Literal Semantics
- 3 Blank Node Semantics
- 4 Entailment and Derivability

• Literals can only occur as *objects* of triples

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:
 ex:me ex:likes dbpedia:Berlin .
 ex:me ex:likes "food" .
- We simplify things by:

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:
 ex:me ex:likes dbpedia:Berlin .

```
ex:me ex:likes "food" .
```

- We simplify things by:
 - ignoring language tags and data types, and

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
 - ignoring language tags and data types, and
 - allowing either literal objects or literal objects for any predicate

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
 - ignoring language tags and data types, and
 - allowing either literal objects or literal objects for any predicate
- Five types of resources:

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
 - ignoring language tags and data types, and
 - allowing either literal objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf: knows

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
 - ignoring language tags and data types, and
 - allowing either literal objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf: knows
 - Datatype Properties like dc:title, foaf:name

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
 - ignoring language tags and data types, and
 - allowing either literal objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf: knows
 - Datatype Properties like dc:title, foaf:name
 - Classes like foaf:Person

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
 - ignoring language tags and data types, and
 - allowing either literal objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf:knows
 - Datatype Properties like dc:title, foaf:name
 - Classes like foaf: Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
 - ignoring language tags and data types, and
 - allowing either literal objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf:knows
 - Datatype Properties like dc:title, foaf:name
 - Classes like foaf: Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)

- Literals can only occur as *objects* of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
 - ignoring language tags and data types, and
 - allowing either literal objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf:knows
 - Datatype Properties like dc:title, foaf:name
 - Classes like foaf: Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- Why? simpler, object/datatype split is in OWL

Allowed triples

Allow only triples using object properties and datatype properties as intended

Triples	Abbreviation
indi o-prop indi .	$r(i_1,i_2)$
indi d-prop "lit" .	a (<i>i</i> , <i>l</i>)
<pre>indi rdf:type class .</pre>	$C(i_1)$
<pre>class rdfs:subClassOf class . o-prop rdfs:subPropOf o-prop . d-prop rdfs:subPropOf d-prop .</pre>	$C \sqsubseteq D$ $r \sqsubseteq s$ $a \sqsubseteq b$
o-prop rdfs:domain class .	dom(r, C)
o-prop rdfs:range class .	rg(r, C)

Interpretation with Literals

- Let Λ be the set of all literal values, i.e. all strings
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - ullet A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
 - For each datatype property URI a, a relation $a^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Lambda$
- Semantics:
 - $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ for object property r
 - $\mathcal{I} \models a(i, l)$ iff $\langle i^{\mathcal{I}}, l \rangle \in a^{\mathcal{I}}$ for datatype property a
 - $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$ for object properties r, s
 - $\mathcal{I} \models a \sqsubseteq b$ iff $a^{\mathcal{I}} \subseteq b^{\mathcal{I}}$ for datatype properties a, b
- Note: Literals I are in Λ , don't need to be interpreted.

Example: Interpretation with a Datatype Property

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & &$

Example: Interpretation with a Datatype Property

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & &$

•
$$loves^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \left\langle \right\rangle, \left\langle \right\rangle, \left\langle \left\langle \right\rangle, \left\langle \right\rangle \right\rangle \right\} \right\}$$

 $knows^{\mathcal{I}_1} = \Lambda^{\mathcal{I}_1} \times \Lambda^{\mathcal{I}_1}$

Example: Interpretation with a Datatype Property

$$ullet$$
 loves $\mathcal{I}_1 = \left\{ \left\langle igwedge, igwedge, \left\langle igc, \left\langle igo, \left\langle igwedge, \left\langle igwedge, \left\langle igwedge, \left\langle igwedge,$

$$\textit{knows}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_1}$$

$$\bullet \ \textit{age}^{\mathcal{I}_1} = \left\{ \left\langle \rule{0mm}{2mm}, \texttt{"16"} \right\rangle, \left\langle \rule{0mm}{2mm}, \texttt{"almost 14"} \right\rangle, \left\langle \rule{0mm}{2mm}, \texttt{"13"} \right\rangle, \right\}$$

INF3580 :: Spring 2011 Lecture 9 :: 22nd March 19 / 37

Outline

- 1 Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- 4 Entailment and Derivability

• Remember: Blank nodes are just like resources...

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples. . .

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples. . .
- ... but they have to be in the same "file" or "data set"

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples. . .
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples

INF3580 :: Spring 2011 Lecture 9 :: 22nd March 21 / 37

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples. . .
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples
- But we still need to interpret single triples.

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples. . .
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples
- But we still need to interpret single triples.
- Solution: pass in blank node interpretation, deal with sets later!

ullet Given an interpretation $\mathcal I$ with domain $\Delta^{\mathcal I}$...

- ullet Given an interpretation $\mathcal I$ with domain $\Delta^{\mathcal I}$...
 - A blank node valuation β ...

- ullet Given an interpretation $\mathcal I$ with domain $\Delta^{\mathcal I}$...
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...

INF3580 :: Spring 2011 Lecture 9 :: 22nd March 22 / 37

- ullet Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}}...$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b

- ullet Given an interpretation $\mathcal I$ with domain $\Delta^{\mathcal I}$...
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$

- ullet Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}}...$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i

- ullet Given an interpretation $\mathcal I$ with domain $\Delta^{\mathcal I}$...
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I

- ullet Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}}...$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b

- ullet Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}}...$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:

- \bullet Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}}.$. .
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:
 - $\mathcal{I}, \beta \models r(x, y)$ iff $\langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}} \dots$

- ullet Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}}...$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:
 - $\mathcal{I}, \beta \models r(x, y) \text{ iff } \langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}} \dots$
 - ullet ... for any legal combination of URIs/literals/blank nodes x, y

- \bullet Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}}.$. .
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:
 - $\mathcal{I}, \beta \models r(x, y)$ iff $\langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}} \dots$
 - \bullet ... for any legal combination of URIs/literals/blank nodes x, y
 - ...and object/datatype property r

ullet Given a set ${\mathcal A}$ of triples with blank nodes...

- ullet Given a set ${\mathcal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models A \text{ for all } A \in \mathcal{A}$

- ullet Given a set ${\mathcal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models A \text{ for all } A \in \mathcal{A}$
- ullet $\mathcal A$ is valid in $\mathcal I$

- ullet Given a set ${\mathcal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models A$ for all $A \in \mathcal{A}$
- ullet $\mathcal A$ is valid in $\mathcal I$

$$\mathcal{I} \models \mathcal{A}$$

Sets of Triples with Blank Nodes

- ullet Given a set ${\mathcal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models A \text{ for all } A \in \mathcal{A}$
- ullet $\mathcal A$ is valid in $\mathcal I$

$$\mathcal{I} \models \mathcal{A}$$

if there is a β such that $\mathcal{I}, \beta \models \mathcal{A}$

Sets of Triples with Blank Nodes

- ullet Given a set ${\mathcal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models A \text{ for all } A \in \mathcal{A}$
- ullet \mathcal{A} is valid in \mathcal{I}

$$\mathcal{I} \models \mathcal{A}$$

if there is a β such that $\mathcal{I}, \beta \models \mathcal{A}$

• I.e. if there exists some valuation for the blank nodes that makes all triples true.

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & &$

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} igwedge & igwedge, & igwedge & igwedge, & igwedge & igwedge, & igwedge & igwedge & igwedge, & igwedge &$

$$ullet$$
 loves $\mathcal{I}_1 = \left\{ \left\langle igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge
ight
angle,
ight
angle
ight\}$

$$\textit{knows}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_1}$$

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} igwedge & igwedge, & igwedge & igwedge, & igwedge & igwedge, & igwedge &$

$$ullet$$
 loves $\mathcal{I}_1 = \left\{ \left\langle igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge, igwedge
ight
angle
ight.$

$$\bullet \ \textit{age}^{\mathcal{I}_1} = \left\{ \left\langle \rule{0mm}{2mm}, \texttt{"16"} \right\rangle, \left\langle \rule{0mm}{2mm}, \texttt{"almost 14"} \right\rangle, \left\langle \rule{0mm}{2mm}, \texttt{"13"} \right\rangle, \right\}$$

$$\bullet \ \ \textit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle, \right\rangle, \left\langle \right\rangle, \left\langle \right\rangle, \right\rangle \right\} \qquad \textit{knows}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_1}$$

$$\bullet \ \textit{age}^{\mathcal{I}_1} = \left\{ \left\langle \text{ } \right\rangle, \texttt{"16"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"almost 14"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"13"} \right\rangle, \right\}$$

• Let b_1 , b_2 , b_3 be blank nodes

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} igwedge & & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & & \ &$

$$ullet$$
 loves $\mathcal{I}_1 = \left\{ \left\langle igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge, igwedge
ight
angle
ight.$ knows $\mathcal{I}_1 = \Delta^{\mathcal{I}_1} imes \Delta^{\mathcal{I}_1}$

$$\bullet \ \textit{age}^{\mathcal{I}_1} = \left\{ \left\langle \text{ } \right\rangle, \texttt{"16"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"almost 14"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"13"} \right\rangle, \right\}$$

- Let b_1 , b_2 , b_3 be blank nodes
- $A = \{age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13")\}$

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & &$

$$ullet$$
 loves $\mathcal{I}_1 = \left\{ \left\langle igcirc, igcirc, \left\langle \right\rangle \right\rangle \right\rangle \right. \right\rangle \right. \right\rangle \right. \right. \right. \right\} \right]$

$$\bullet \ \textit{age}^{\mathcal{I}_1} = \left\{ \left\langle \text{ } \right\rangle, \texttt{"16"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"almost 14"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"13"} \right\rangle, \right\}$$

- Let b_1 , b_2 , b_3 be blank nodes
- $A = \{age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13")\}$
- Valid in \mathcal{I}_1 ?

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} igwedge & & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & & \ &$

$$ullet$$
 loves $\mathcal{I}_1 = \left\{ \left\langle igwidghtarrow{1}{2}, igwidghtarrow{1}{2}, \left\langle igwidghtarrow{1}{2}, igwidghtarrow{1}{2}
ight
angle , igwidghtarrow{1}{2}, igwidghtarrow{1}{2}
ight
angle \, knows^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} imes \Delta^{\mathcal{I}_1}$

$$\bullet \ \textit{age}^{\mathcal{I}_1} = \left\{ \left\langle \text{ } \right\rangle, \texttt{"16"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"almost 14"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"13"} \right\rangle, \right\}$$

- Let b_1 , b_2 , b_3 be blank nodes
- $A = \{age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13")\}$
- Valid in \mathcal{I}_1 ?

• Pick
$$\beta(b_1) = \beta(b_2) = \{ \beta(b_3) = \{ \beta(b_$$

INF3580 :: Spring 2011 Lecture 9 :: 22nd March 24 / 37

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & &$

$$ullet$$
 loves $\mathcal{I}_1 = \left\{ \left\langle igwidghtarrow{1}{2}, igwidghtarrow{1}{2}, \left\langle igwidghtarrow{1}{2}, igwidghtarrow{1}{2}
ight
angle , igwidghtarrow{1}{2}, igwidghtarrow{1}{2}
ight
angle \, knows^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} imes \Delta^{\mathcal{I}_1}$

$$\bullet \ \textit{age}^{\mathcal{I}_1} = \left\{ \left\langle \text{ } \right\rangle, \texttt{"16"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"almost 14"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"13"} \right\rangle, \right\}$$

- Let b_1 , b_2 , b_3 be blank nodes
- $A = \{age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13")\}$
- Valid in \mathcal{I}_1 ?

• Pick
$$\beta(b_1) = \beta(b_2) = \beta(b_3) = \beta(b_3)$$

• Then $\mathcal{I}_1, \beta \models \mathcal{A}$

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} igwedge & & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & & \ &$

$$ullet$$
 loves $\mathcal{I}_1 = \left\{ \left\langle igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge,$

$$\bullet \ \textit{age}^{\mathcal{I}_1} = \left\{ \left\langle \text{ } \right\rangle, \texttt{"16"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"almost 14"} \right\rangle, \left\langle \text{ } \right\rangle, \texttt{"13"} \right\rangle, \right\}$$

- Let b_1 , b_2 , b_3 be blank nodes
- $A = \{age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13")\}$
- Valid in \mathcal{I}_1 ?

• Pick
$$\beta(b_1) = \beta(b_2) = \{ \beta(b_3) = \{ \beta(b_$$

- Then $\mathcal{I}_1, \beta \models \mathcal{A}$
- So, yes, $\mathcal{I}_1 \models \mathcal{A}$.

• Entailment is defined just like without blank nodes:

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- ullet This expands to: for any interpretation ${\cal I}$

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- ullet This expands to: for any interpretation ${\cal I}$
 - such that there exists a β with $\mathcal{I}, \beta \models \mathcal{A}$

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- ullet This expands to: for any interpretation ${\cal I}$
 - such that there exists a β with $\mathcal{I}, \beta \models \mathcal{A}$
 - there also exists a β such that $\mathcal{I}, \beta \models \mathcal{B}$

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- ullet This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- ullet This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- ullet Can evaluate the same blank node name differently in ${\cal A}$ and ${\cal B}$.

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- ullet This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- ullet Can evaluate the same blank node name differently in ${\cal A}$ and ${\cal B}$.
- Example:

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- ullet This expands to: for any interpretation ${\mathcal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- ullet Can evaluate the same blank node name differently in ${\cal A}$ and ${\cal B}$.
- Example:

```
\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\}
```

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- ullet This expands to: for any interpretation ${\mathcal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- ullet Can evaluate the same blank node name differently in ${\cal A}$ and ${\cal B}$.
- Example:

```
\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\}\
\models \{loves(b_2, b_1), knows(b_1, romeo)\}
```

ullet Assume $\mathcal{A} \models \mathcal{B}$

- Assume $A \models B$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}' \supseteq \mathcal{A}$

- ullet Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}'\supseteq\mathcal{A}$
- ullet Then ${\mathcal B}$ is still entailed: ${\mathcal A}' \models {\mathcal B}$

- Assume $A \models B$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}' \supseteq \mathcal{A}$
- ullet Then ${\mathcal B}$ is still entailed: ${\mathcal A}' \models {\mathcal B}$
- We say that RDF/RDFS entailment is monotonic

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}' \supseteq \mathcal{A}$
- ullet Then ${\mathcal B}$ is still entailed: ${\mathcal A}' \models {\mathcal B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}' \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:

- ullet Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}' \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:
 - $\{Bird \sqsubseteq CanFly, Bird(tweety)\} \models CanFly(tweety)$

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}' \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:
 - $\{Bird \sqsubseteq CanFly, Bird(tweety)\} \models CanFly(tweety)$
 - $\{\dots, Penguin \sqsubseteq Bird, Penguin(tweety), Penguin \sqsubseteq \neg CanFly\} \not\models CanFly(tweety)$

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}' \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:
 - $\{Bird \sqsubseteq CanFly, Bird(tweety)\} \models CanFly(tweety)$
 - $\{\ldots, Penguin \sqsubseteq Bird, Penguin(tweety), Penguin \sqsubseteq \neg CanFly\} \not\models CanFly(tweety)$
 - Interesting for human-style reasoning

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}' \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:
 - $\{Bird \sqsubseteq CanFly, Bird(tweety)\} \models CanFly(tweety)$
 - $\{\ldots, Penguin \sqsubseteq Bird, Penguin(tweety), Penguin \sqsubseteq \neg CanFly\} \not\models CanFly(tweety)$
 - Interesting for human-style reasoning
 - Hard to combine with semantic web technologies

Outline

- 1 Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- 4 Entailment and Derivability

Two Kinds of Consequence?

• We now have two ways of describing logical consequence. . .

Two Kinds of Consequence?

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

```
:Lady rdfs:subClassOf :Person . :juliet a :Lady . :juliet a :Person . rdfs9
```

INF3580 :: Spring 2011 Lecture 9 :: 22nd March 28 / 37

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

```
\frac{: Lady \ rdfs: subClassOf \ : Person \ . \ : juliet \ a \ : Lady \ .}{: juliet \ a \ : Person \ .} rdfs9
\frac{Lady \sqsubseteq Person \ Lady(juliet)}{Person(juliet)} \ rdfs9
```

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

```
:Lady rdfs:subClassOf :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady □ Person Lady(juliet)

Person(juliet) rdfs9
```

2. Using the model semantics

- We now have two ways of describing logical consequence. . .
- Using RDFS rules:

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$

- We now have two ways of describing logical consequence. . .
- Using RDFS rules:

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ...then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...

- We now have two ways of describing logical consequence. . .
- Using RDFS rules:

```
:Lady rdfs:subClassOf :Person . :juliet a :Lady .

:juliet a :Person .

Lady □ Person Lady(juliet)

Person(juliet) rdfs9
```

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ...then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...
 - ullet ... so by set theory, $juliet^{\mathcal{I}} \in \textit{Person}^{\mathcal{I}}...$

- We now have two ways of describing logical consequence. . .
- Using RDFS rules:

```
:Lady rdfs:subClassOf :Person . :juliet a :Lady .

:juliet a :Person .

Lady □ Person Lady(juliet)

Person(juliet) rdfs9
```

28 / 37

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ...then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...
 - ... so by set theory, $juliet^{\mathcal{I}} \in Person^{\mathcal{I}}$...
 - ... and therefore $\mathcal{I} \models Person(juliet)$.

- We now have two ways of describing logical consequence. . .
- Using RDFS rules:

```
:Lady rdfs:subClassOf :Person . :juliet a :Lady .

:juliet a :Person .

Lady □ Person Lady(juliet)

Person(juliet) rdfs9
```

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ...then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...
 - ... so by set theory, $juliet^{\mathcal{I}} \in Person^{\mathcal{I}}$...
 - ...and therefore $\mathcal{I} \models Person(juliet)$.
 - Together: $\{Lady \sqsubseteq Person, Lady(juliet)\} \models Person(juliet)$

- We now have two ways of describing logical consequence. . .
- Using RDFS rules:

```
:Lady rdfs:subClassOf :Person . :juliet a :Lady .

:juliet a :Person .

Lady □ Person Lady(juliet)

Person(juliet) rdfs9
```

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ... then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...
 - ... so by set theory, $juliet^{\mathcal{I}} \in Person^{\mathcal{I}}$...
 - ...and therefore $\mathcal{I} \models Person(juliet)$.
 - Together: $\{Lady \sqsubseteq Person, Lady(juliet)\} \models Person(juliet)$
 - What is the connection between these two?

• Actually, two different notions!

- Actually, two different notions!
- Entailment is defined using the model semantics.

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - ullet can't be directly checked mechanically (∞ many interpretations)

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - ullet can't be directly checked mechanically (∞ many interpretations)
- Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - ullet can't be directly checked mechanically (∞ many interpretations)
- Derivability
 - can be checked mechanically

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - ullet can't be directly checked mechanically (∞ many interpretations)
- Derivability
 - can be checked mechanically
 - forward or backward chaining

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - ullet can't be directly checked mechanically (∞ many interpretations)
- Derivability
 - can be checked mechanically
 - forward or backward chaining
- Want these notions to correspond:

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - ullet can't be directly checked mechanically (∞ many interpretations)
- Derivability
 - can be checked mechanically
 - · forward or backward chaining
- Want these notions to correspond:
 - $\mathcal{A} \models \mathcal{B}$ iff \mathcal{B} can be derived from \mathcal{A}

• Two directions:

- Two directions:
 - **1** If $A \models B$ then B can be derived from A

- Two directions:

 - 2 If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$

- Two directions:
 - **1** If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
 - 2 If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:

- Two directions:
 - **1** If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
 - 2 If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.

- Two directions:
 - **1** If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
 - 2 If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.

- Two directions:
 - **1** If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
 - 2 If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.
- This is known as soundness.

- Two directions:
 - **1** If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
 - 2 If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.
- This is known as soundness
- The calculus is said to be sound (w.r.t. the model semantics)

• Soundness of every rule has to be (manually) checked!

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs} 11$$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs} 11$$

Soundness means that

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs} 11$$

- Soundness means that
 - For any choice of three classes A, B, C

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
 rdfs11

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
 rdfs11

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs} 11$$

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs} 11$$

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - ullet Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs} 11$$

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - ullet Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - ullet By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
 rdfs11

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubset B, B \sqsubset C\} \models A \sqsubset C$
- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\overline{\mathcal{I}}}$
 - By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - By model semantics, $\mathcal{I} \models A \sqsubseteq C$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
 rdfs11

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubset B, B \sqsubset C\} \models A \sqsubset C$
- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\dot{\mathcal{I}}} \subseteq C^{\bar{\mathcal{I}}}$
 - By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - By model semantics, $\mathcal{I} \models A \sqsubseteq C$
 - Q.E.D.

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
 rdfs11

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\overline{\mathcal{I}}}$
 - By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - By model semantics, $\mathcal{I} \models A \sqsubseteq C$
 - Q.E.D.
- This can be done similarly for all of the rules.

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
 rdfs11

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - By model semantics, $\mathcal{I} \models A \sqsubseteq C$
 - Q.E.D.
- This can be done similarly for all of the rules.
 - All given RDF/RDFS rules are sound w.r.t. the model semantics!

Two directions:

- Two directions:
 - **1** If $A \models B$ then B can be derived from A

- Two directions:
 - **1** If $A \models B$ then B can be derived from A
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$

- Two directions:
 - **1** If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.

- Two directions:
 - **1** If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.

- Two directions:
 - **1** If $A \models B$ then B can be derived from A
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.
- Can't be checked separately for each rule, only for whole rule set

- Two directions:
 - **1** If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.
- Can't be checked separately for each rule, only for whole rule set
- Proofs are more complicated than soundness

$$\frac{r(u,x)}{r(u,b_1)} \text{ se1} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}$$

$$\frac{r(u,x)}{r(u,b_1)} \text{ se1} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}$$

$$\frac{r(u,x)}{r(u,b_1)} \text{ se1} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}$$

Where b_1 is a blank node identifier, that either

• has not been used before in the graph, or

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{se1} \qquad \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.

$$\frac{r(u,x)}{r(u,b_1)} \text{ se1} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}$$

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{se1} \qquad \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
 - With blank nodes and literals

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{se1} \qquad \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{se1} \qquad \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS
 - and without RDF axioms like rdf:type rdf:type rdf:Property .

$$\frac{r(u,x)}{r(u,b_1)} \text{ se1} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}$$

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS
 - and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.

$$\frac{r(u,x)}{r(u,b_1)} \text{ se1} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}$$

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS
 - and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.

$${\cal A}$$
 simply entails ${\cal B}$

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{se1} \qquad \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS
 - and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.

 ${\cal A}$ simply entails ${\cal B}$

iff \mathcal{A} can be extended with se1 and se2 to \mathcal{A}' with $\mathcal{B} \subseteq \mathcal{A}'$.

{loves(b₁, juliet), knows(juliet, romeo), age(juliet, "13")}

 $\{loves(\textit{b}_1, \textit{juliet}), \textit{knows(juliet}, \textit{romeo}), \textit{age(juliet}, \texttt{"13"})\}$

$$\models \{loves(b_2, b_3), knows(b_3, romeo)\}$$

```
\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\}
loves(b_2, juliet) (b_2 \rightarrow b_1)
```

$$\models \{loves(b_2, b_3), knows(b_3, romeo)\}$$

```
\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\}
loves(b_2, juliet) (b_2 \rightarrow b_1)
loves(b_2, b_3) (b_3 \rightarrow juliet)
\models \{loves(b_2, b_3), knows(b_3, romeo)\}
```

```
\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\}

loves(b_2, juliet) (b_2 \rightarrow b_1)

loves(b_2, b_3) (b_3 \rightarrow juliet)

knows(b_3, romeo) (reusing b_3 \rightarrow juliet)

\models \{loves(b_2, b_3), knows(b_3, romeo)\}
```

• See Foundations book, Sect. 3.3

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
 - rdfs:range rdfs:domain rdfs:Class ...

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
 - rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$\frac{\operatorname{dom}(r,A) \qquad r(x,y)}{A(x)} \operatorname{rdfs2} \qquad \frac{\operatorname{rg}(r,B) \qquad r(x,y)}{B(y)} \operatorname{rdfs3}$$

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
 - rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$\frac{\text{dom}(r,A) \qquad r(x,y)}{A(x)} \text{ rdfs2} \qquad \frac{\text{rg}(r,B) \qquad r(x,y)}{B(y)} \text{ rdfs3}$$

$$\frac{r \sqsubseteq s \qquad s \sqsubseteq t}{r \sqsubseteq t} \text{ rdfs5} \qquad \frac{r \sqsubseteq s \qquad r(x,y)}{s(x,y)} \text{ rdfs7}$$

Rules for (simplified) RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
 - rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$\frac{\text{dom}(r,A) \qquad r(x,y)}{A(x)} \text{ rdfs2} \qquad \frac{\text{rg}(r,B) \qquad r(x,y)}{B(y)} \text{ rdfs3}$$

$$\frac{r \sqsubseteq s \qquad s \sqsubseteq t}{r \sqsubseteq t} \text{ rdfs5} \qquad \frac{r \sqsubseteq s \qquad r(x,y)}{s(x,y)} \text{ rdfs7}$$

$$\frac{A \sqsubseteq B \qquad A(x)}{B(x)} \text{ rdfs9} \qquad \frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}$$

• These rules are *not* complete for our RDF/RDFS semantics

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

• Because for every interpretation \mathcal{I} ,

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

- Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ rg(loves, Beloved), Beloved \sqsubseteq Person \}$

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

- Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ rg(loves, Beloved), Beloved \sqsubseteq Person \}$
 - then by semantics, $\operatorname{rg} loves^{\mathcal{I}} \subseteq Beloved^{\mathcal{I}}$ and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

- Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ rg(loves, Beloved), Beloved \sqsubseteq Person \}$
 - then by semantics, $\operatorname{rg} loves^{\mathcal{I}} \subseteq Beloved^{\mathcal{I}}$ and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, $\operatorname{rg} \operatorname{loves}^{\mathcal{I}} \subseteq \operatorname{Person}^{\mathcal{I}}$

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

- ullet Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ rg(loves, Beloved), Beloved \sqsubseteq Person \}$
 - then by semantics, $\operatorname{rg} loves^{\mathcal{I}} \subseteq Beloved^{\mathcal{I}}$ and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, $\operatorname{rg} \operatorname{loves}^{\mathcal{I}} \subseteq \operatorname{Person}^{\mathcal{I}}$
 - By semantics, $\mathcal{I} \models rg(loves, Person)$

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

- ullet Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ rg(loves, Beloved), Beloved \sqsubseteq Person \}$
 - then by semantics, $\operatorname{rg} loves^{\mathcal{I}} \subseteq Beloved^{\mathcal{I}}$ and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, $\operatorname{rg} \operatorname{loves}^{\mathcal{I}} \subset \operatorname{Person}^{\mathcal{I}}$
 - By semantics, $\mathcal{I} \models rg(loves, Person)$
- But there is no way to derive this using the given rules

- These rules are *not* complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

- ullet Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ rg(loves, Beloved), Beloved \sqsubseteq Person \}$
 - then by semantics, $\operatorname{rg} \operatorname{loves}^{\mathcal{I}} \subseteq \operatorname{Beloved}^{\mathcal{I}}$ and $\operatorname{Beloved}^{\mathcal{I}} \subseteq \operatorname{Person}^{\mathcal{I}}$.
 - Therefore, by set theory, $\operatorname{rg} \operatorname{loves}^{\mathcal{I}} \subset \operatorname{Person}^{\mathcal{I}}$
 - By semantics, $\mathcal{I} \models rg(loves, Person)$
- But there is no way to derive this using the given rules
 - There is no rule which allows to derive a range statement.

- These rules are *not* complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

- ullet Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ rg(loves, Beloved), Beloved \sqsubseteq Person \}$
 - then by semantics, $\operatorname{rg} \operatorname{loves}^{\mathcal{I}} \subseteq \operatorname{Beloved}^{\mathcal{I}}$ and $\operatorname{Beloved}^{\mathcal{I}} \subseteq \operatorname{Person}^{\mathcal{I}}$.
 - Therefore, by set theory, $\operatorname{rg} \operatorname{loves}^{\mathcal{I}} \subset \operatorname{Person}^{\mathcal{I}}$
 - By semantics, $\mathcal{I} \models rg(loves, Person)$
- But there is no way to derive this using the given rules
 - There is no rule which allows to derive a range statement.
- We could now add rules to make the system complete

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)
```

- ullet Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ \mathsf{rg}(loves, Beloved), Beloved \sqsubseteq Person \}$
 - then by semantics, $\operatorname{rg} loves^{\mathcal{I}} \subseteq Beloved^{\mathcal{I}}$ and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, $\operatorname{rg} \operatorname{loves}^{\mathcal{I}} \subset \operatorname{Person}^{\mathcal{I}}$
 - By semantics, $\mathcal{I} \models rg(loves, Person)$
- But there is no way to derive this using the given rules
 - There is no rule which allows to derive a range statement.
- We could now add rules to make the system complete
- Won't bother to do that now. Will get completeness for OWL.

• RDFS allows some simple modelling: "all ladies are persons"

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends
 - A metropolis is a town with at least a million inhabitants

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends
 - A metropolis is a town with at least a million inhabitants
 - ...and many more

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends
 - A metropolis is a town with at least a million inhabitants
 - ...and many more
- Modeling will not be done by writing triples manually:

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends
 - A metropolis is a town with at least a million inhabitants
 - ...and many more
- Modeling will not be done by writing triples manually:
- Will use ontology editor Protégé.