INF3580 - Semantic Technologies - Spring 2011

Lecture 9: Model Semantics \& Reasoning

Martin Giese
22nd March 2011

Today's Plan

(1) Repetition: RDF semantics
(2) Literal Semantics
(3) Blank Node Semantics

4 Entailment and Derivability

Outline

(1) Repetition: RDF semantics

(2) Literal Semantics

(3) Blank Node Semantics

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:
individual property individual .

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
```


Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class
```


Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
```


Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
```


Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .
```


Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
- Properties like foaf:knows, dc:title
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .
```

- Forget blank nodes and literals for a while!

Short Forms

- Resources and Triples are no longer all alike

Short Forms

- Resources and Triples are no longer all alike
- No need to use the same general triple notation

Short Forms

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$r\left(i_{1}, i_{2}\right)$
indi rdf:type class .	$C\left(i_{1}\right)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
prop rdfs:subProp0f prop .	$r \sqsubseteq s$
prop rdfs:domain class .	$\operatorname{dom}(r, C)$
prop rdfs:range class .	$\operatorname{rg}(r, C)$

Short Forms

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$r\left(i_{1}, i_{2}\right)$
indi rdf:type class .	$C\left(i_{1}\right)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
prop rdfs:subProp0f prop .	$r \sqsubseteq s$
prop rdfs:domain class .	$\operatorname{dom}(r, C)$
prop rdfs:range class .	$\operatorname{rg}(r, C)$

- This is called "Description Logic" (DL) Syntax

Short Forms

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$r\left(i_{1}, i_{2}\right)$
indi rdf:type class .	$C\left(i_{1}\right)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
prop rdfs:subProp0f prop .	$r \sqsubseteq s$
prop rdfs:domain class .	$\operatorname{dom}(r, C)$
prop rdfs:range class .	$\operatorname{rg}(r, C)$

- This is called "Description Logic" (DL) Syntax
- Used much in particular for OWL

Example

- Triples:

Example

- Triples:

Example

- Triples:

Example

- Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

- DL syntax, without namespaces:
loves(romeo, juliet)
Lady (juliet)
Lady \sqsubseteq Person
loves \sqsubseteq knows

dom(loves, Lover)
rg(loves, Beloved)

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
- Individual URIs as real or imagined objects

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
- Individual URIs as real or imagined objects
- Class URIs as sets of such objects

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
- Individual URIs as real or imagined objects
- Class URIs as sets of such objects
- Property URIs as relations between these objects

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
- Individual URIs as real or imagined objects
- Class URIs as sets of such objects
- Property URIs as relations between these objects
- A DL-interpretation \mathcal{I} consists of

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
- Individual URIs as real or imagined objects
- Class URIs as sets of such objects
- Property URIs as relations between these objects
- A DL-interpretation \mathcal{I} consists of
- A set $\Delta^{\mathcal{I}}$, called the domain (sorry!) of \mathcal{I}

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
- Individual URIs as real or imagined objects
- Class URIs as sets of such objects
- Property URIs as relations between these objects
- A DL-interpretation \mathcal{I} consists of
- A set $\Delta^{\mathcal{I}}$, called the domain (sorry!) of \mathcal{I}
- For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
- Individual URIs as real or imagined objects
- Class URIs as sets of such objects
- Property URIs as relations between these objects
- A DL-interpretation \mathcal{I} consists of
- A set $\Delta^{\mathcal{I}}$, called the domain (sorry!) of \mathcal{I}
- For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- For each class URI C, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
- Individual URIs as real or imagined objects
- Class URIs as sets of such objects
- Property URIs as relations between these objects
- A DL-interpretation \mathcal{I} consists of
- A set $\Delta^{\mathcal{I}}$, called the domain (sorry!) of \mathcal{I}
- For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- For each class URI C, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
- For each property URI r, a relation $\bar{r}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
- Individual URIs as real or imagined objects
- Class URIs as sets of such objects
- Property URIs as relations between these objects
- A DL-interpretation \mathcal{I} consists of
- A set $\Delta^{\mathcal{I}}$, called the domain (sorry!) of \mathcal{I}
- For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- For each class URI C, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
- For each property URI r, a relation $\bar{r}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- Given these, it will be possible to say whether a triple holds or not.

An example "intended" interpretation

- $\Delta^{x}=\{$ 图

An example "intended" interpretation

- $\Delta^{\mathcal{I}_{1}}=\{$,, ,
- romeo $^{\mathcal{I}_{1}}=$ juliet ${ }^{\mathcal{I}_{1}}=$

An example "intended" interpretation

- $\Delta^{\mathcal{I}_{1}}=\{$,
- romeo $^{\mathcal{I}_{1}}=\frac{1}{2}$ juliet $^{\mathcal{I}_{1}}=$
- Lady $^{\mathcal{I}_{1}}=\left\{\right.$ Person ${ }^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}}$

Lover $^{\mathcal{I}_{1}}=$ Beloved $^{\mathcal{I}_{1}}=\{$,

An example "intended" interpretation

- Lady $^{\mathcal{I}_{1}}=\{ \} \quad \operatorname{Person}^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}}$

$\cdot \operatorname{mon}^{5}=\{$ 包 (图 $\}$
knows $^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{1}}$

An example "non-intended" interpretation

- $\Delta^{\mathcal{I}_{2}}=\mathbb{N}=\{1,2,3,4, \ldots\}$

An example "non-intended" interpretation

- $\Delta^{\mathcal{I}_{2}}=\mathbb{N}=\{1,2,3,4, \ldots\}$
- romeo $^{\mathcal{I}_{2}}=17$ juliet $^{\mathcal{I}_{2}}=32$

An example "non-intended" interpretation

- $\Delta^{\mathcal{I}_{2}}=\mathbb{N}=\{1,2,3,4, \ldots\}$
- romeo $^{\mathcal{I}_{2}}=17$
juliet $^{\mathcal{I}_{2}}=32$
- Lady ${ }^{\mathcal{I}_{2}}=\left\{2^{n} \mid n \in \mathbb{N}\right\}=\{2,4,8,16,32, \ldots\}$

Person ${ }^{\mathcal{I}_{2}}=\{2 n \mid n \in \mathbb{N}\}=\{2,4,6,8,10, \ldots\}$
Lover $^{\mathcal{I}_{2}}=$ Beloved $^{\mathcal{I}_{2}}=\mathbb{N}$

An example "non-intended" interpretation

- $\Delta^{\mathcal{I}_{2}}=\mathbb{N}=\{1,2,3,4, \ldots\}$
- romeo $^{\mathcal{I}_{2}}=17$
juliet $^{\mathcal{I}_{2}}=32$
- Lady ${ }^{\mathcal{I}_{2}}=\left\{2^{n} \mid n \in \mathbb{N}\right\}=\{2,4,8,16,32, \ldots\}$

Person ${ }^{\mathcal{I}_{2}}=\{2 n \mid n \in \mathbb{N}\}=\{2,4,6,8,10, \ldots\}$
Lover $^{\mathcal{I}_{2}}=$ Beloved $^{\mathcal{I}_{2}}=\mathbb{N}$

- loves ${ }^{\mathcal{I}_{2}}=<=\{\langle x, y\rangle \mid x<y\}$ knows $^{\mathcal{I}_{2}}=\leq=\{\langle x, y\rangle \mid x \leq y\}$

An example "non-intended" interpretation

- $\Delta^{\mathcal{I}_{2}}=\mathbb{N}=\{1,2,3,4, \ldots\}$
- romeo $^{\mathcal{I}_{2}}=17$ juliet $^{\mathcal{I}_{2}}=32$
- Lady $^{\mathcal{I}_{2}}=\left\{2^{n} \mid n \in \mathbb{N}\right\}=\{2,4,8,16,32, \ldots\}$

Person ${ }^{\mathcal{I}_{2}}=\{2 n \mid n \in \mathbb{N}\}=\{2,4,6,8,10, \ldots\}$
Lover $^{\mathcal{I}_{2}}=$ Beloved $^{\mathcal{I}_{2}}=\mathbb{N}$

- loves ${ }^{\mathcal{I}_{2}}=<=\{\langle x, y\rangle \mid x<y\}$ knows $^{\mathcal{I}_{2}}=\leq=\{\langle x, y\rangle \mid x \leq y\}$
- Just because names (URIs) look familiar, they don't need to denote what we think!

An example "non-intended" interpretation

- $\Delta^{\mathcal{I}_{2}}=\mathbb{N}=\{1,2,3,4, \ldots\}$
- romeo $^{\mathcal{I}_{2}}=17$ juliet ${ }^{\mathcal{I}_{2}}=32$
- Lady $^{\mathcal{I}_{2}}=\left\{2^{n} \mid n \in \mathbb{N}\right\}=\{2,4,8,16,32, \ldots\}$

Person ${ }^{\mathcal{I}_{2}}=\{2 n \mid n \in \mathbb{N}\}=\{2,4,6,8,10, \ldots\}$
Lover $^{\mathcal{I}_{2}}=$ Beloved $^{\mathcal{I}_{2}}=\mathbb{N}$

- loves ${ }^{\mathcal{I}_{2}}=<=\{\langle x, y\rangle \mid x<y\}$ knows $^{\mathcal{I}_{2}}=\leq=\{\langle x, y\rangle \mid x \leq y\}$
- Just because names (URIs) look familiar, they don't need to denote what we think!
- In fact, there is no way of ensuring they denote only what we think!

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{dom}(r, C)$ iff $\operatorname{dom} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{dom}(r, C)$ iff dom $r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $r g r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{dom}(r, C)$ iff dom $r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $r g r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- For a set of triples \mathcal{A} (any of the six kinds)

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{dom}(r, C)$ iff dom $r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $r g r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- For a set of triples \mathcal{A} (any of the six kinds)
- \mathcal{A} is valid in \mathcal{I}, written

$$
\mathcal{I} \models \mathcal{A}
$$

Validity in Interpretations

- Given an interpretation \mathcal{I}, define \models as follows:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{dom}(r, C)$ iff dom $r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $r g r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- For a set of triples \mathcal{A} (any of the six kinds)
- \mathcal{A} is valid in \mathcal{I}, written

$$
\mathcal{I} \models \mathcal{A}
$$

- iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.

Validity Examples

- $\mathcal{I}_{1} \models$ loves(juliet, romeo) because

Validity Examples

- $\mathcal{I}_{1} \models$ loves(juliet, romeo) because

Validity Examples

- $\mathcal{I}_{1} \models$ loves(juliet, romeo) because

- $\mathcal{I}_{2} \not \models \operatorname{Person}($ romeo $)$ because

Validity Examples

- $\mathcal{I}_{1} \models$ loves(juliet, romeo) because

- $\mathcal{I}_{2} \not \vDash \operatorname{Person}($ romeo $)$ because
- romeo $^{\mathcal{I}_{2}}=17 \notin$ Person $^{\mathcal{I}_{2}}=\{2,4,6,8,10, \ldots\}$

Validity Examples

- $\mathcal{I}_{1} \models$ loves(juliet, romeo) because

- $\mathcal{I}_{2} \not \vDash \operatorname{Person}($ romeo $)$ because
- romeo $^{\mathcal{I}_{2}}=17 \notin$ Person $^{\mathcal{I}_{2}}=\{2,4,6,8,10, \ldots\}$
- $\mathcal{I}_{1} \models$ Lover \sqsubseteq Person because

Validity Examples

- $\mathcal{I}_{1} \models$ loves(juliet, romeo) because

- $\mathcal{I}_{2} \not \vDash \operatorname{Person}($ romeo $)$ because
- romeo $^{\mathcal{I}_{2}}=17 \notin$ Person $^{\mathcal{I}_{2}}=\{2,4,6,8,10, \ldots\}$
- $\mathcal{I}_{1} \models$ Lover \sqsubseteq Person because

Validity Examples

- $\mathcal{I}_{1} \models$ loves(juliet, romeo) because

- $\mathcal{I}_{2} \not \vDash \operatorname{Person}($ romeo $)$ because
- romeo $^{\mathcal{I}_{2}}=17 \notin$ Person $^{\mathcal{I}_{2}}=\{2,4,6,8,10, \ldots\}$
- $\mathcal{I}_{1} \models$ Lover \sqsubseteq Person because

- $\mathcal{I}_{2} \not \vDash$ Lover \sqsubseteq Person because

Validity Examples

- $\mathcal{I}_{1} \models$ loves(juliet, romeo) because

- $\mathcal{I}_{2} \not \vDash \operatorname{Person}($ romeo $)$ because
- romeo $^{\mathcal{I}_{2}}=17 \notin$ Person $^{\mathcal{I}_{2}}=\{2,4,6,8,10, \ldots\}$
- $\mathcal{I}_{1} \models$ Lover \sqsubseteq Person because

- $\mathcal{I}_{2} \not \vDash$ Lover \sqsubseteq Person because Lover $^{\mathcal{I}_{2}}=\mathbb{N}$ and Person ${ }^{\mathcal{I}_{2}}=\{2,4,6,8,10, \ldots\}$

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
- $\mathcal{A}=\{\ldots$, Lady $(j u l i e t)$, Lady \sqsubseteq Person,$\ldots\}$ as before

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
- $\mathcal{A}=\{\ldots$, Lady $(j u l i e t)$, Lady \sqsubseteq Person,$\ldots\}$ as before
- $\mathcal{A} \models$ Person(juliet) because...

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
- $\mathcal{A}=\{\ldots$, Lady $(j u l i e t)$, Lady \sqsubseteq Person,$\ldots\}$ as before
- $\mathcal{A} \models$ Person(juliet) because...
- in any interpretation \mathcal{I}...

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
- $\mathcal{A}=\{\ldots$, Lady $(j u l i e t)$, Lady \sqsubseteq Person,$\ldots\}$ as before
- $\mathcal{A} \models$ Person(juliet) because...
- in any interpretation \mathcal{I}...
- if juliet ${ }^{\mathcal{I}} \in$ Lady $^{\mathcal{I}}$ and Lady ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}} \ldots$

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
- $\mathcal{A}=\{\ldots$, Lady $(j u l i e t)$, Lady \sqsubseteq Person,$\ldots\}$ as before
- $\mathcal{A} \models$ Person(juliet) because...
- in any interpretation \mathcal{I}...
- if juliet ${ }^{\mathcal{I}} \in$ Lady $^{\mathcal{I}}$ and Lady ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}} \ldots$
- then by set theory juliet ${ }^{\mathcal{I}} \in$ Person $^{\mathcal{I}}$

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
- $\mathcal{A}=\{\ldots$, Lady $(j u l i e t)$, Lady \sqsubseteq Person,$\ldots\}$ as before
- $\mathcal{A} \models$ Person(juliet) because...
- in any interpretation \mathcal{I}...
- if juliet ${ }^{\mathcal{I}} \in$ Lady $^{\mathcal{I}}$ and Lady ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}} \ldots$
- then by set theory juliet ${ }^{\mathcal{I}} \in$ Person $^{\mathcal{I}}$
- Not about T being (intuitively) true or not

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A}, written $\mathcal{A} \models T$
- iff
- For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \models T$.
- Example:
- $\mathcal{A}=\{\ldots$, Lady $(j u l i e t)$, Lady \sqsubseteq Person,$\ldots\}$ as before
- $\mathcal{A} \models$ Person(juliet) because...
- in any interpretation \mathcal{I}...
- if juliet ${ }^{\mathcal{I}} \in$ Lady $^{\mathcal{I}}$ and Lady ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}} \ldots$
- then by set theory juliet ${ }^{\mathcal{I}} \in$ Person $^{\mathcal{I}}$
- Not about T being (intuitively) true or not
- Only about whether T is a consequence of \mathcal{A}

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with
- $\mathcal{I} \models \mathcal{A}$

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with
- $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \not \vDash T$

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with
- $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \not \vDash T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not \vDash T$, then $\mathcal{A} \not \models T$

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with
- $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \not \vDash T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not \vDash T$, then $\mathcal{A} \not \vDash T$
- Such an \mathcal{I} is called a counter-model (for the assumption that \mathcal{A} entails T)

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with
- $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \not \vDash T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not \vDash T$, then $\mathcal{A} \not \vDash T$
- Such an \mathcal{I} is called a counter-model (for the assumption that \mathcal{A} entails T)
- To show that $\mathcal{A} \vDash T$ does not hold:

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with
- $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \not \vDash T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not \vDash T$, then $\mathcal{A} \not \vDash T$
- Such an \mathcal{I} is called a counter-model (for the assumption that \mathcal{A} entails T)
- To show that $\mathcal{A} \equiv T$ does not hold:
- Describe an interpretation \mathcal{I} (using your fantasy)

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with
- $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \not \vDash T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not \vDash T$, then $\mathcal{A} \not \vDash T$
- Such an \mathcal{I} is called a counter-model (for the assumption that \mathcal{A} entails T)
- To show that $\mathcal{A} \vDash T$ does not hold:
- Describe an interpretation \mathcal{I} (using your fantasy)
- Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with
- $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \not \vDash T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not \vDash T$, then $\mathcal{A} \not \vDash T$
- Such an \mathcal{I} is called a counter-model (for the assumption that \mathcal{A} entails T)
- To show that $\mathcal{A} \vDash T$ does not hold:
- Describe an interpretation \mathcal{I} (using your fantasy)
- Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
- Prove that $\mathcal{I} \not \vDash T$ (using the semantics)

Countermodels

- If $\mathcal{A} \not \vDash T, \ldots$
- then there is an \mathcal{I} with
- $\mathcal{I} \models \mathcal{A}$
- $\mathcal{I} \not \vDash T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not \vDash T$, then $\mathcal{A} \not \vDash T$
- Such an \mathcal{I} is called a counter-model (for the assumption that \mathcal{A} entails T)
- To show that $\mathcal{A} \equiv T$ does not hold:
- Describe an interpretation \mathcal{I} (using your fantasy)
- Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
- Prove that $\mathcal{I} \not \vDash T$ (using the semantics)
- Countermodels for intuitively true statements are always unintuitive! (Why?)

Countermodel Example

- \mathcal{A} as before:

$$
\begin{aligned}
\mathcal{A}= & \{\text { loves }(\text { romeo }, \text { juliet }), \text { Lady }(\text { juliet }), \text { Lady } \sqsubseteq \text { Person }, \\
& \text { loves } \sqsubseteq \text { knows, dom(loves, Lover }), \operatorname{rg}(\text { loves, Beloved })\}
\end{aligned}
$$

Countermodel Example

- \mathcal{A} as before:

$$
\begin{aligned}
\mathcal{A}= & \{\text { loves }(\text { romeo }, \text { juliet }), \text { Lady }(\text { juliet }), \text { Lady } \sqsubseteq \text { Person }, \\
& \text { loves } \sqsubseteq \text { knows, dom(loves, Lover }), \text { rg(loves, Beloved })\}
\end{aligned}
$$

- Does $\mathcal{A} \models$ Lover \sqsubseteq Beloved?

Countermodel Example

- \mathcal{A} as before:

$$
\begin{aligned}
\mathcal{A}= & \{\text { loves }(\text { romeo }, \text { juliet }), \text { Lady }(\text { juliet }), \text { Lady } \sqsubseteq \text { Person }, \\
& \text { loves } \sqsubseteq \text { knows, dom(loves, Lover }), \operatorname{rg}(\text { loves, Beloved })\}
\end{aligned}
$$

- Does $\mathcal{A} \models$ Lover \sqsubseteq Beloved?
- Holds in \mathcal{I}_{1} and \mathcal{I}_{2}.

Countermodel Example

- \mathcal{A} as before:

$$
\begin{aligned}
\mathcal{A}= & \{\text { loves }(\text { romeo }, \text { juliet }), \text { Lady }(\text { juliet }), \text { Lady } \sqsubseteq \text { Person }, \\
& \text { loves } \sqsubseteq \text { knows, dom(loves, Lover }), \operatorname{rg}(\text { loves, Beloved })\}
\end{aligned}
$$

- Does $\mathcal{A} \models$ Lover \sqsubseteq Beloved?
- Holds in \mathcal{I}_{1} and \mathcal{I}_{2}.
- Try to find an interpretation with $\Delta^{\mathcal{I}}=\{a, b\}, a \neq b$.

Countermodel Example

- \mathcal{A} as before:

$$
\begin{aligned}
\mathcal{A}= & \{\text { loves }(\text { romeo }, \text { juliet }), \text { Lady }(\text { juliet }), \text { Lady } \sqsubseteq \text { Person }, \\
& \text { loves } \sqsubseteq \text { knows, dom(loves, Lover }), \operatorname{rg}(\text { loves, Beloved })\}
\end{aligned}
$$

- Does $\mathcal{A} \models$ Lover \sqsubseteq Beloved?
- Holds in \mathcal{I}_{1} and \mathcal{I}_{2}.
- Try to find an interpretation with $\Delta^{\mathcal{I}}=\{a, b\}, a \neq b$.
- Interpret romeo ${ }^{\mathcal{I}}=a$ and juliet $^{\mathcal{I}}=b$

Countermodel Example

- \mathcal{A} as before:

$$
\begin{aligned}
\mathcal{A}= & \{\text { loves }(\text { romeo }, \text { juliet }), \text { Lady }(\text { juliet }), \text { Lady } \sqsubseteq \text { Person }, \\
& \text { loves } \sqsubseteq \text { knows, dom(loves, Lover }), \operatorname{rg}(\text { loves, Beloved })\}
\end{aligned}
$$

- Does $\mathcal{A} \models$ Lover \sqsubseteq Beloved?
- Holds in \mathcal{I}_{1} and \mathcal{I}_{2}.
- Try to find an interpretation with $\Delta^{\mathcal{I}}=\{a, b\}, a \neq b$.
- Interpret romeo ${ }^{\mathcal{I}}=a$ and juliet ${ }^{\mathcal{I}}=b$
- Then $\langle a, b\rangle \in$ loves $^{\mathcal{I}}, a \in$ Lover $^{\mathcal{I}}, b \in$ Beloved $^{\mathcal{I}}$.

Countermodel Example

- \mathcal{A} as before:

$$
\begin{aligned}
\mathcal{A}= & \{\text { loves }(\text { romeo }, \text { juliet }), \text { Lady }(\text { juliet }), \text { Lady } \sqsubseteq \text { Person }, \\
& \text { loves } \sqsubseteq \text { knows, dom }(\text { loves, Lover }), \operatorname{rg}(\text { loves, Beloved })\}
\end{aligned}
$$

- Does $\mathcal{A} \models$ Lover \sqsubseteq Beloved?
- Holds in \mathcal{I}_{1} and \mathcal{I}_{2}.
- Try to find an interpretation with $\Delta^{\mathcal{I}}=\{a, b\}, a \neq b$.
- Interpret romeo ${ }^{\mathcal{I}}=a$ and juliet ${ }^{\mathcal{I}}=b$
- Then $\langle a, b\rangle \in$ loves $^{\mathcal{I}}, a \in$ Lover $^{\mathcal{I}}, b \in$ Beloved $^{\mathcal{I}}$.
- With Lover $^{\mathcal{I}}=\{a\}$ and Beloved ${ }^{\mathcal{I}}=\{b\}, \mathcal{I} \not \equiv$ Lover \sqsubseteq Beloved!

Countermodel Example

- \mathcal{A} as before:

$$
\begin{aligned}
\mathcal{A}= & \{\text { loves }(\text { romeo }, \text { juliet }), \text { Lady }(\text { juliet }), \text { Lady } \sqsubseteq \text { Person }, \\
& \text { loves } \sqsubseteq \text { knows, dom }(\text { loves, Lover }), \operatorname{rg}(\text { loves, Beloved })\}
\end{aligned}
$$

- Does $\mathcal{A} \models$ Lover \sqsubseteq Beloved?
- Holds in \mathcal{I}_{1} and \mathcal{I}_{2}.
- Try to find an interpretation with $\Delta^{\mathcal{I}}=\{a, b\}, a \neq b$.
- Interpret romeo ${ }^{\mathcal{I}}=a$ and juliet ${ }^{\mathcal{I}}=b$
- Then $\langle a, b\rangle \in$ loves $^{\mathcal{I}}, a \in$ Lover $^{\mathcal{I}}, b \in$ Beloved $^{\mathcal{I}}$.
- With Lover $^{\mathcal{I}}=\{a\}$ and Beloved ${ }^{\mathcal{I}}=\{b\}, \mathcal{I} \not \equiv$ Lover \sqsubseteq Beloved!
- Choose

$$
\text { loves }^{\mathcal{I}}=\text { knows }^{\mathcal{I}}=\{\langle a, b\rangle\} \quad \text { Lady }^{\mathcal{I}}=\text { Person }^{\mathcal{I}}=\{b\}
$$

to complete the count-model while satisfying $\mathcal{I} \models \mathcal{A}$

Outline

(1) Repetition: RDF semantics

(2) Literal Semantics

(3) Blank Node Semantics

4) Entailment and Derivability

Simplifying Literals

- Literals can only occur as objects of triples

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources: ex:me ex:likes dbpedia:Berlin .

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```


Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
- ignoring language tags and data types, and

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
- ignoring language tags and data types, and
- allowing either literal objects or literal objects for any predicate

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
- ignoring language tags and data types, and
- allowing either literal objects or literal objects for any predicate
- Five types of resources:

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
- ignoring language tags and data types, and
- allowing either literal objects or literal objects for any predicate
- Five types of resources:
- Object Properties like foaf:knows

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
- ignoring language tags and data types, and
- allowing either literal objects or literal objects for any predicate
- Five types of resources:
- Object Properties like foaf:knows
- Datatype Properties like dc:title, foaf: name

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
- ignoring language tags and data types, and
- allowing either literal objects or literal objects for any predicate
- Five types of resources:
- Object Properties like foaf:knows
- Datatype Properties like dc:title, foaf: name
- Classes like foaf:Person

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
- ignoring language tags and data types, and
- allowing either literal objects or literal objects for any predicate
- Five types of resources:
- Object Properties like foaf:knows
- Datatype Properties like dc:title, foaf: name
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
- ignoring language tags and data types, and
- allowing either literal objects or literal objects for any predicate
- Five types of resources:
- Object Properties like foaf:knows
- Datatype Properties like dc:title, foaf: name
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)

Simplifying Literals

- Literals can only occur as objects of triples
- Can be plain, with language tag, or with data type.
- The same predicate can be used with literals and resources:

```
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .
```

- We simplify things by:
- ignoring language tags and data types, and
- allowing either literal objects or literal objects for any predicate
- Five types of resources:
- Object Properties like foaf:knows
- Datatype Properties like dc:title, foaf: name
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources)
- Why? - simpler, object/datatype split is in OWL

Allowed triples

Allow only triples using object properties and datatype properties as intended

Triples	Abbreviation
indi o-prop indi .	$r\left(i_{1}, i_{2}\right)$
indi d-prop "lit" .	$a(i, l)$
indi rdf:type class .	$C\left(i_{1}\right)$
	$C \sqsubseteq D$
class rdfs:subClassOf class .	C.
o-prop rdfs:subProp0f o-prop .	$r \sqsubseteq s$
d-prop rdfs:subPropOf d-prop .	$a \sqsubseteq b$
o-prop rdfs:domain class .	$\operatorname{dom}(r, C)$
o-prop rdfs:range class .	$\operatorname{rg}(r, C)$

Interpretation with Literals

- Let Λ be the set of all literal values, i.e. all strings
- A DL-interpretation \mathcal{I} consists of
- A set $\Delta^{\mathcal{I}}$, called the domain of \mathcal{I}
- Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}, C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
- For each datatype property URI a, a relation $a^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Lambda$
- Semantics:
- $\mathcal{I} \models r\left(i_{1}, i_{2}\right)$ iff $\left\langle i_{1}^{\mathcal{I}}, i_{2}^{\mathcal{I}}\right\rangle \in r^{\mathcal{I}}$ for object property r
- $\mathcal{I} \models a(i, I)$ iff $\left\langle i^{\mathcal{I}}, I\right\rangle \in a^{\mathcal{I}}$ for datatype property a
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$ for object properties r, s
- $\mathcal{I} \models a \sqsubseteq b$ iff $a^{\mathcal{I}} \subseteq b^{\mathcal{I}}$ for datatype properties a, b
- Note: Literals / are in Λ, don't need to be interpreted.

Example: Interpretation with a Datatype Property

- $\Delta^{\mathcal{I}_{1}}=\{$,

Example: Interpretation with a Datatype Property

$\operatorname{knows}^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{1}}$

Example: Interpretation with a Datatype Property

$\operatorname{knows}^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{1}}$

Outline

(1) Repetition: RDF semantics

(2) Literal Semantics
(3) Blank Node Semantics
(4) Entailment and Derivability

Blank Nodes

- Remember: Blank nodes are just like resources...

Blank Nodes

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.

Blank Nodes

- Remember: Blank nodes are just like resources...
- ...but without a "global" URI.
- Blank node has a local "blank node identifier" instead.

Blank Nodes

- Remember: Blank nodes are just like resources...
- ...but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples. . .

Blank Nodes

- Remember: Blank nodes are just like resources...
- ...but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples...
- ... but they have to be in the same "file" or "data set"

Blank Nodes

- Remember: Blank nodes are just like resources...
- ...but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples...
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples

Blank Nodes

- Remember: Blank nodes are just like resources...
- ...but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples...
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples
- But we still need to interpret single triples.

Blank Nodes

- Remember: Blank nodes are just like resources...
- ...but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples...
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples
- But we still need to interpret single triples.
- Solution: pass in blank node interpretation, deal with sets later!

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \wedge \ldots$

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda \ldots$
- ... for every blank node ID b

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda \ldots$
- ... for every blank node ID b
- Now define ${ }^{\text {I, }, \beta}$

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda \ldots$
- ... for every blank node ID b
- Now define ${ }^{\text {I }, \beta}$
- $i^{\mathcal{I}, \beta}=i^{\mathcal{I}}$ for individual URIs i

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda \ldots$
- ... for every blank node ID b
- Now define ${ }^{\text {I }, \beta}$
- $i^{\mathcal{I}, \beta}=i^{\mathcal{I}}$ for individual URIs i
- $I^{\mathcal{I}, \beta}=\|$ for literals $/$

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda \ldots$
- ... for every blank node ID b
- Now define ${ }^{\text {I }, \beta}$
- $i^{\mathcal{I}, \beta}=i^{\mathcal{I}}$ for individual URIs i
- $I^{\mathcal{I}, \beta}=$ / for literals $/$
- $b^{\mathcal{I}, \beta}=\beta(b)$ for blank node IDs b

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda \ldots$
- ... for every blank node ID b
- Now define ${ }^{\text {I }, \beta}$
- $i^{\mathcal{I}, \beta}=i^{\mathcal{I}}$ for individual URIs i
- $I^{\mathcal{I}, \beta}=$ / for literals $/$
- $b^{\mathcal{I}, \beta}=\beta(b)$ for blank node IDs b
- Interpretation:

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda \ldots$
- ... for every blank node ID b
- Now define ${ }^{\text {I, }, \beta}$
- $i^{\mathcal{I}, \beta}=i^{\mathcal{I}}$ for individual URIs i
- $I^{\mathcal{I}, \beta}=/$ for literals $/$
- $b^{\mathcal{I}, \beta}=\beta(b)$ for blank node IDs b
- Interpretation:
- $\mathcal{I}, \beta \models r(x, y)$ iff $\left\langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta}\right\rangle \in r^{\mathcal{I}} \ldots$

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda \ldots$
- ... for every blank node ID b
- Now define ${ }^{\mathcal{I}, \beta}$
- $i^{\mathcal{I}, \beta}=i^{\mathcal{I}}$ for individual URIs i
- $I^{\mathcal{I}, \beta}=I$ for literals I
- $b^{\mathcal{I}, \beta}=\beta(b)$ for blank node IDs b
- Interpretation:
- $\mathcal{I}, \beta \models r(x, y)$ iff $\left\langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta}\right\rangle \in r^{\mathcal{I}} \ldots$
- ... for any legal combination of URIs/literals/blank nodes x, y

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}} \ldots$
- A blank node valuation β...
- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda \ldots$
- ... for every blank node ID b
- Now define ${ }^{\text {I, }, \beta}$
- $i^{\mathcal{I}, \beta}=i^{\mathcal{I}}$ for individual URIs i
- $I^{\mathcal{I}, \beta}=I$ for literals I
- $b^{\mathcal{I}, \beta}=\beta(b)$ for blank node IDs b
- Interpretation:
- $\mathcal{I}, \beta \models r(x, y)$ iff $\left\langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta}\right\rangle \in r^{\mathcal{I}} \ldots$
- ...for any legal combination of URIs/literals/blank nodes x, y
- ... and object/datatype property r

Sets of Triples with Blank Nodes

- Given a set \mathcal{A} of triples with blank nodes...

Sets of Triples with Blank Nodes

- Given a set \mathcal{A} of triples with blank nodes...
- $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models A$ for all $A \in \mathcal{A}$

Sets of Triples with Blank Nodes

- Given a set \mathcal{A} of triples with blank nodes...
- $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models A$ for all $A \in \mathcal{A}$
- \mathcal{A} is valid in \mathcal{I}

Sets of Triples with Blank Nodes

- Given a set \mathcal{A} of triples with blank nodes...
- $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models A$ for all $A \in \mathcal{A}$
- \mathcal{A} is valid in \mathcal{I}

$$
\mathcal{I} \models \mathcal{A}
$$

Sets of Triples with Blank Nodes

- Given a set \mathcal{A} of triples with blank nodes...
- $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models A$ for all $A \in \mathcal{A}$
- \mathcal{A} is valid in \mathcal{I}

$$
\mathcal{I} \models \mathcal{A}
$$

if there is a β such that $\mathcal{I}, \beta \models \mathcal{A}$

Sets of Triples with Blank Nodes

- Given a set \mathcal{A} of triples with blank nodes...
- $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models A$ for all $A \in \mathcal{A}$
- \mathcal{A} is valid in \mathcal{I}

$$
\mathcal{I} \models \mathcal{A}
$$

if there is a β such that $\mathcal{I}, \beta \models \mathcal{A}$

- I.e. if there exists some valuation for the blank nodes that makes all triples true.

Example: Blank Node Semantics

- $\Delta^{t}=\{$ 国

Example: Blank Node Semantics

10 질

Example: Blank Node Semantics

Example: Blank Node Semantics

- loves $^{\mathcal{I}_{1}}=\left\{\left\langle\boldsymbol{Z},\langle \rangle,\left\langle\operatorname{knows}^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{1}}\right.\right.\right.$

- Let b_{1}, b_{2}, b_{3} be blank nodes

Example: Blank Node Semantics

0 an

- loves $^{\mathcal{I}_{1}}=\left\{\left\langle\mathcal{Z},\langle\boldsymbol{Z}\rangle,\left\langle\operatorname{knows}^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{1}}\right.\right.\right.$
- age $e^{\mathcal{I}_{1}}=\{\langle$, "16" $\rangle,\langle \rangle, "$ almost 14" $\left.\rangle,\langle\langle \rangle, " 13 "\rangle,\right\}$
- Let b_{1}, b_{2}, b_{3} be blank nodes
- $\mathcal{A}=\left\{\operatorname{age}\left(b_{1}, " 16 "\right), \operatorname{knows}\left(b_{1}, b_{2}\right)\right.$, loves $\left(b_{2}, b_{3}\right)$, age($\left.\left.b_{3}, " 13 "\right)\right\}$

Example: Blank Node Semantics

- 5

- Let b_{1}, b_{2}, b_{3} be blank nodes
- $\mathcal{A}=\left\{\operatorname{age}\left(b_{1}, " 16 "\right), \operatorname{knows}\left(b_{1}, b_{2}\right)\right.$, loves $\left(b_{2}, b_{3}\right)$, age $\left.\left(b_{3}, " 13 "\right)\right\}$
- Valid in \mathcal{I}_{1} ?

Example: Blank Node Semantics

- $\Delta^{\mathcal{I}_{1}}=\{$,
- loves ${ }^{\mathcal{I}_{1}}=\left\{\left\langle\boldsymbol{Z},\langle \rangle,\left\langle\operatorname{knows}^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{1}}\right.\right.\right.$

- Let b_{1}, b_{2}, b_{3} be blank nodes
- $\mathcal{A}=\left\{\operatorname{age}\left(b_{1}, " 16 "\right), \operatorname{knows}\left(b_{1}, b_{2}\right)\right.$, loves $\left(b_{2}, b_{3}\right)$, age $\left.\left(b_{3}, " 13 "\right)\right\}$
- Valid in \mathcal{I}_{1} ?
- Pick $\beta\left(b_{1}\right)=\beta\left(b_{2}\right)=1, \beta\left(b_{3}\right)=$

Example: Blank Node Semantics

- loves ${ }^{\mathcal{I}_{1}}=\left\{\left\langle,\langle \rangle,\left\langle\operatorname{knows}^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{1}}\right.\right.\right.$

- Let b_{1}, b_{2}, b_{3} be blank nodes
- $\mathcal{A}=\left\{\operatorname{age}\left(b_{1}, " 16 "\right), \operatorname{knows}\left(b_{1}, b_{2}\right)\right.$, loves $\left(b_{2}, b_{3}\right)$, age $\left.\left(b_{3}, " 13 "\right)\right\}$
- Valid in \mathcal{I}_{1} ?
- Pick $\beta\left(b_{1}\right)=\beta\left(b_{2}\right)=\beta\left(b_{3}\right)=$
- Then $\mathcal{I}_{1}, \beta \models \mathcal{A}$

Example: Blank Node Semantics

- Let b_{1}, b_{2}, b_{3} be blank nodes
- $\mathcal{A}=\left\{\operatorname{age}\left(b_{1}, " 16 "\right), \operatorname{knows}\left(b_{1}, b_{2}\right)\right.$, loves $\left(b_{2}, b_{3}\right)$, age $\left.\left(b_{3}, " 13 "\right)\right\}$
- Valid in \mathcal{I}_{1} ?
- Pick $\beta\left(b_{1}\right)=\beta\left(b_{2}\right)=\beta, \beta\left(b_{3}\right)=$
- Then $\mathcal{I}_{1}, \beta \models \mathcal{A}$
- So, yes, $\mathcal{I}_{1} \models \mathcal{A}$.

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A} \vDash \mathcal{B}$

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A}=\mathcal{B}$
- iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A}=\mathcal{B}$
- iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- This expands to: for any interpretation \mathcal{I}

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A}=\mathcal{B}$
- iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- This expands to: for any interpretation \mathcal{I}
- such that there exists a β with $\mathcal{I}, \beta \models \mathcal{A}$

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A}=\mathcal{B}$
- iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- This expands to: for any interpretation \mathcal{I}
- such that there exists a β with $\mathcal{I}, \beta \models \mathcal{A}$
- there also exists a β such that $\mathcal{I}, \beta \models \mathcal{B}$

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A}=\mathcal{B}$
- iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- This expands to: for any interpretation \mathcal{I}
- such that there exists a β_{1} with $\mathcal{I}, \beta_{1}=\mathcal{A}$
- there also exists a β_{2} such that $\mathcal{I}, \beta_{2} \models \mathcal{B}$
- Two different blank node valuations!

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A}=\mathcal{B}$
- iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- This expands to: for any interpretation \mathcal{I}
- such that there exists a β_{1} with $\mathcal{I}, \beta_{1}=\mathcal{A}$
- there also exists a β_{2} such that $\mathcal{I}, \beta_{2} \models \mathcal{B}$
- Two different blank node valuations!
- Can evaluate the same blank node name differently in \mathcal{A} and \mathcal{B}.

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A}=\mathcal{B}$
- iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- This expands to: for any interpretation \mathcal{I}
- such that there exists a β_{1} with $\mathcal{I}, \beta_{1}=\mathcal{A}$
- there also exists a β_{2} such that $\mathcal{I}, \beta_{2} \models \mathcal{B}$
- Two different blank node valuations!
- Can evaluate the same blank node name differently in \mathcal{A} and \mathcal{B}.
- Example:

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A}=\mathcal{B}$
- iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- This expands to: for any interpretation \mathcal{I}
- such that there exists a β_{1} with $\mathcal{I}, \beta_{1}=\mathcal{A}$
- there also exists a β_{2} such that $\mathcal{I}, \beta_{2}=\mathcal{B}$
- Two different blank node valuations!
- Can evaluate the same blank node name differently in \mathcal{A} and \mathcal{B}.
- Example:

$$
\left\{\text { loves(} b_{1},\right. \text { juliet), knows(juliet, romeo), age(juliet, "13")\} }
$$

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
- Given sets of triples \mathcal{A} and B,
- \mathcal{A} entails \mathcal{B}, written $\mathcal{A}=\mathcal{B}$
- iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- This expands to: for any interpretation \mathcal{I}
- such that there exists a β_{1} with $\mathcal{I}, \beta_{1} \models \mathcal{A}$
- there also exists a β_{2} such that $\mathcal{I}, \beta_{2} \models \mathcal{B}$
- Two different blank node valuations!
- Can evaluate the same blank node name differently in \mathcal{A} and \mathcal{B}.
- Example:

$$
\begin{aligned}
& \left.\left\{\text { loves }\left(b_{1}, \text { juliet }\right), \operatorname{knows}(\text { juliet, romeo }), \text { age (juliet, "13" }\right)\right\} \\
& \models\left\{\operatorname{loves}\left(b_{2}, b_{1}\right), \operatorname{knows}\left(b_{1}, \text { romeo }\right)\right\}
\end{aligned}
$$

Monotonicity

- Assume $\mathcal{A} \equiv \mathcal{B}$

Monotonicity

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A}, i.e. $\mathcal{A}^{\prime} \supseteq \mathcal{A}$

Monotonicity

- Assume $\mathcal{A}=\mathcal{B}$
- Now add information to \mathcal{A}, i.e. $\mathcal{A}^{\prime} \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}^{\prime} \models \mathcal{B}$

Monotonicity

- Assume $\mathcal{A}=\mathcal{B}$
- Now add information to \mathcal{A}, i.e. $\mathcal{A}^{\prime} \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}^{\prime} \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic

Monotonicity

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A}, i.e. $\mathcal{A}^{\prime} \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}^{\prime} \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)

Monotonicity

- Assume $\mathcal{A}=\mathcal{B}$
- Now add information to \mathcal{A}, i.e. $\mathcal{A}^{\prime} \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}^{\prime} \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:

Monotonicity

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A}, i.e. $\mathcal{A}^{\prime} \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}^{\prime} \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:
- $\{$ Bird \sqsubseteq CanFly, Bird(tweety) $\} \models$ CanFly (tweety)

Monotonicity

- Assume $\mathcal{A}=\mathcal{B}$
- Now add information to \mathcal{A}, i.e. $\mathcal{A}^{\prime} \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}^{\prime} \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:
- $\{$ Bird \sqsubseteq CanFly, Bird(tweety) $\} \models$ CanFly(tweety)
- \{..., Penguin \sqsubseteq Bird, Penguin(tweety), Penguin $\sqsubseteq \neg$ CanFly $\} \not \vDash=$ CanFly (tweety)

Monotonicity

- Assume $\mathcal{A}=\mathcal{B}$
- Now add information to \mathcal{A}, i.e. $\mathcal{A}^{\prime} \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}^{\prime} \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:
- $\{$ Bird \sqsubseteq CanFly, Bird(tweety) $\} \models$ CanFly(tweety)
- \{..., Penguin \sqsubseteq Bird, Penguin(tweety), Penguin $\sqsubseteq \neg$ CanFly $\} \not \vDash=$ CanFly(tweety)
- Interesting for human-style reasoning

Monotonicity

- Assume $\mathcal{A}=\mathcal{B}$
- Now add information to \mathcal{A}, i.e. $\mathcal{A}^{\prime} \supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}^{\prime} \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- Needed to derive consequences under incomplete information (OWA)
- Non-monotonic reasoning:
- $\{$ Bird \sqsubseteq CanFly, Bird(tweety) $\} \models$ CanFly(tweety)
- \{..., Penguin \sqsubseteq Bird, Penguin(tweety), Penguin $\sqsubseteq \neg$ CanFly $\} \not \vDash=$ CanFly(tweety)
- Interesting for human-style reasoning
- Hard to combine with semantic web technologies

Outline

(1) Repetition: RDF semantics

(2) Literal Semantics

(3) Blank Node Semantics

4) Entailment and Derivability

Two Kinds of Consequence?

- We now have two ways of describing logical consequence. . .

Two Kinds of Consequence?

- We now have two ways of describing logical consequence. . .

1. Using RDFS rules:
$\frac{\text { :Lady rdfs:subClassOf :Person . :juliet a :Lady . }}{\mathrm{:juliet} \mathrm{a} \mathrm{:Person} \mathrm{.}}$ rdfs9

Two Kinds of Consequence?

- We now have two ways of describing logical consequence. . .

1. Using RDFS rules:

$$
\begin{gathered}
\text { :Lady rdfs:subClassOf :Person . : juliet a :Lady . } \mathrm{:} \mathrm{juliet} \mathrm{a} \mathrm{:} \mathrm{Person} \mathrm{.} \text { (ads9 } \\
\frac{\text { Lady } \sqsubseteq \text { Person } \quad \text { Lady (juliet) }}{\text { Person(juliet) }} \text { rdfs9 }
\end{gathered}
$$

Two Kinds of Consequence?

- We now have two ways of describing logical consequence. . .

1. Using RDFS rules:

$$
\begin{gathered}
\text { :Lady rdfs:subClassOf :Person . } \quad \text { :juliet a :Lady . } \\
\text { :juliet a :Person . } \\
\frac{\text { Lady } \sqsubseteq \text { Person } \quad \text { Lady }(\text { juliet })}{\text { Person(juliet) }} \text { rdfs9 }
\end{gathered}
$$

2. Using the model semantics

Two Kinds of Consequence?

- We now have two ways of describing logical consequence. . .

1. Using RDFS rules:

2. Using the model semantics

- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models \operatorname{Lady}(j u l i e t) \ldots$

Two Kinds of Consequence?

- We now have two ways of describing logical consequence. . .

1. Using RDFS rules:

2. Using the model semantics

- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models$ Lady (juliet)...
- ...then Lady ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$ and juliet ${ }^{\mathcal{I}} \in$ Lady $^{\mathcal{I}} \ldots$

Two Kinds of Consequence?

- We now have two ways of describing logical consequence. . .

1. Using RDFS rules:

2. Using the model semantics

- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models \operatorname{Lady}(j u l i e t) \ldots$
- ...then Lady ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$ and juliet ${ }^{\mathcal{I}} \in$ Lady $^{\mathcal{I}} \ldots$
- ... so by set theory, juliet ${ }^{\mathcal{I}} \in$ Person $^{\mathcal{I}} \ldots$

Two Kinds of Consequence?

- We now have two ways of describing logical consequence...

1. Using RDFS rules:

2. Using the model semantics

- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models \operatorname{Lady}(j u l i e t) \ldots$
- ...then Lady ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$ and juliet ${ }^{\mathcal{I}} \in$ Lady $^{\mathcal{I}} \ldots$
- ... so by set theory, juliet ${ }^{\mathcal{I}} \in$ Person $^{\mathcal{I}} \ldots$
- and therefore $\mathcal{I} \vDash \operatorname{Person}($ juliet $)$.

Two Kinds of Consequence?

- We now have two ways of describing logical consequence...

1. Using RDFS rules:

2. Using the model semantics

- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models \operatorname{Lady}(j u l i e t) \ldots$
- ...then Lady ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$ and juliet ${ }^{\mathcal{I}} \in$ Lady $^{\mathcal{I}} \ldots$
- ... so by set theory, juliet $^{\mathcal{I}} \in$ Person $^{\mathcal{I}} \ldots$
- and therefore $\mathcal{I} \vDash \operatorname{Person}(j u l i e t)$.
- Together: $\{$ Lady \sqsubseteq Person, Lady(juliet) $\} \models$ Person(juliet)

Two Kinds of Consequence?

- We now have two ways of describing logical consequence...

1. Using RDFS rules:

2. Using the model semantics

- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models$ Lady (juliet)...
- ...then Lady ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$ and juliet ${ }^{\mathcal{I}} \in$ Lady $^{\mathcal{I}} \ldots$
- ... so by set theory, juliet $^{\mathcal{I}} \in$ Person $^{\mathcal{I}}$...
- and therefore $\mathcal{I} \vDash \operatorname{Person}(j u l i e t)$.
- Together: $\{$ Lady \sqsubseteq Person, Lady(juliet) $\} \models$ Person(juliet)
- What is the connection between these two?

Entailment and Derivability

- Actually, two different notions!

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment
- is closely related to the meaning of things

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment
- is closely related to the meaning of things
- higher confidence in model semantics than in a bunch of rules

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment
- is closely related to the meaning of things
- higher confidence in model semantics than in a bunch of rules
- The semantics given by the standard, rules are just "informative"

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment
- is closely related to the meaning of things
- higher confidence in model semantics than in a bunch of rules
- The semantics given by the standard, rules are just "informative"
- can't be directly checked mechanically (∞ many interpretations)

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment
- is closely related to the meaning of things
- higher confidence in model semantics than in a bunch of rules
- The semantics given by the standard, rules are just "informative"
- can't be directly checked mechanically (∞ many interpretations)
- Derivability

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment
- is closely related to the meaning of things
- higher confidence in model semantics than in a bunch of rules
- The semantics given by the standard, rules are just "informative"
- can't be directly checked mechanically (∞ many interpretations)
- Derivability
- can be checked mechanically

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment
- is closely related to the meaning of things
- higher confidence in model semantics than in a bunch of rules
- The semantics given by the standard, rules are just "informative"
- can't be directly checked mechanically (∞ many interpretations)
- Derivability
- can be checked mechanically
- forward or backward chaining

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment
- is closely related to the meaning of things
- higher confidence in model semantics than in a bunch of rules
- The semantics given by the standard, rules are just "informative"
- can't be directly checked mechanically (∞ many interpretations)
- Derivability
- can be checked mechanically
- forward or backward chaining
- Want these notions to correspond:

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
- derivability
- provability
- Entailment
- is closely related to the meaning of things
- higher confidence in model semantics than in a bunch of rules
- The semantics given by the standard, rules are just "informative"
- can't be directly checked mechanically (∞ many interpretations)
- Derivability
- can be checked mechanically
- forward or backward chaining
- Want these notions to correspond:
- $\mathcal{A} \models \mathcal{B} \quad$ iff $\quad \mathcal{B}$ can be derived from \mathcal{A}

Soundness

- Two directions:

Soundness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}

Soundness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$

Soundness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A}=\mathcal{B}$
- Nr. 2 usually considered more important:

Soundness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A}=\mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.

Soundness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.

Soundness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.
- This is known as soundness

Soundness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.
- This is known as soundness
- The calculus is said to be sound (w.r.t. the model semantics)

Showing Soundness

- Soundness of every rule has to be (manually) checked!

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C
- $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C
- $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C
- $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
- Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models\{A \sqsubseteq B, B \sqsubseteq C\}$

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C
- $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
- Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models\{A \sqsubseteq B, B \sqsubseteq C\}$
- Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C
- $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
- Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models\{A \sqsubseteq B, B \sqsubseteq C\}$
- Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C
- $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
- Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models\{A \sqsubseteq B, B \sqsubseteq C\}$
- Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- By model semantics, $\mathcal{I} \models A \sqsubseteq C$

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C
- $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
- Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models\{A \sqsubseteq B, B \sqsubseteq C\}$
- Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- By model semantics, $\mathcal{I} \models A \sqsubseteq C$
- Q.E.D.

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C
- $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
- Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models\{A \sqsubseteq B, B \sqsubseteq C\}$
- Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- By model semantics, $\mathcal{I} \models A \sqsubseteq C$
- Q.E.D.
- This can be done similarly for all of the rules.

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
$$

- Soundness means that
- For any choice of three classes A, B, C
- $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
- Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models\{A \sqsubseteq B, B \sqsubseteq C\}$
- Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- By model semantics, $\mathcal{I} \models A \sqsubseteq C$
- Q.E.D.
- This can be done similarly for all of the rules.
- All given RDF/RDFS rules are sound w.r.t. the model semantics!

Completeness

- Two directions:

Completeness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}

Completeness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$

Completeness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.

Completeness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.

Completeness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.
- Can't be checked separately for each rule, only for whole rule set

Completeness

- Two directions:
(1) If $\mathcal{A} \models \mathcal{B}$ then \mathcal{B} can be derived from \mathcal{A}
(2) If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.
- Can't be checked separately for each rule, only for whole rule set
- Proofs are more complicated than soundness

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \text { se2 }
$$

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \text { se2 }
$$

Where b_{1} is a blank node identifier, that either

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \operatorname{se} 2
$$

Where b_{1} is a blank node identifier, that either

- has not been used before in the graph, or

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \text { se2 }
$$

Where b_{1} is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \text { se2 }
$$

Where b_{1} is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \text { se2 }
$$

Where b_{1} is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
- With blank nodes and literals

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \text { se2 }
$$

Where b_{1} is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
- With blank nodes and literals
- but without RDFS

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \text { se2 }
$$

Where b_{1} is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
- With blank nodes and literals
- but without RDFS
- and without RDF axioms like rdf:type rdf:type rdf:Property .

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \operatorname{se} 2
$$

Where b_{1} is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
- With blank nodes and literals
- but without RDFS
- and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \operatorname{se} 2
$$

Where b_{1} is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
- With blank nodes and literals
- but without RDFS
- and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.
\mathcal{A} simply entails \mathcal{B}

Simple Entailment Rules

$$
\frac{r(u, x)}{r\left(u, b_{1}\right)} \text { se1 } \quad \frac{r(u, x)}{r\left(b_{1}, x\right)} \operatorname{se} 2
$$

Where b_{1} is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal x resp. u.
- Simple entailment is entailment
- With blank nodes and literals
- but without RDFS
- and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.
\mathcal{A} simply entails \mathcal{B}
iff \mathcal{A} can be extended with se1 and se2 to \mathcal{A}^{\prime} with $\mathcal{B} \subseteq \mathcal{A}^{\prime}$.

Simple Entailment Example

\{loves(b_{1}, juliet), knows(juliet, romeo), age(juliet, "13")\}

Simple Entailment Example

\{loves(b_{1}, juliet), knows(juliet, romeo), age(juliet, "13")\}
$\vDash\left\{\operatorname{loves}\left(b_{2}, b_{3}\right), \operatorname{knows}\left(b_{3}\right.\right.$, romeo $\left.)\right\}$

Simple Entailment Example

\{loves(b_{1}, juliet), knows(juliet, romeo), age(juliet, "13")\} loves $\left(b_{2}\right.$, juliet $) \quad\left(b_{2} \rightarrow b_{1}\right)$
$\vDash\left\{\right.$ loves $\left(b_{2}, b_{3}\right)$, knows(b_{3}, romeo $\left.)\right\}$

Simple Entailment Example

\{loves(b_{1}, juliet), knows(juliet, romeo), age(juliet, "13")\} loves(b_{2}, juliet) ($b_{2} \rightarrow b_{1}$)
loves $\left(b_{2}, b_{3}\right)$ ($b_{3} \rightarrow$ juliet)
$\vDash\left\{\operatorname{loves}\left(b_{2}, b_{3}\right)\right.$, knows(b_{3}, romeo $\left.)\right\}$

Simple Entailment Example

\{loves(b_{1}, juliet), knows(juliet, romeo), age(juliet, "13")\} loves(b_{2}, juliet) $\left(b_{2} \rightarrow b_{1}\right)$
loves $\left(b_{2}, b_{3}\right)$ ($b_{3} \rightarrow$ juliet)
knows (b_{3}, romeo) (reusing $b_{3} \rightarrow$ juliet)
$\vDash\left\{\operatorname{loves}\left(b_{2}, b_{3}\right)\right.$, knows $\left(b_{3}\right.$, romeo $\left.)\right\}$

Rules for (simplified) RDF/RDFS

- See Foundations book, Sect. 3.3

Rules for (simplified) RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS

Rules for (simplified) RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
- rdfs:range rdfs:domain rdfs:Class ...

Rules for (simplified) RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
- rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$
\frac{\operatorname{dom}(r, A) \quad r(x, y)}{A(x)} \text { rdfs2 } \quad \frac{r g(r, B) r(x, y)}{B(y)} \text { rdfs3 }
$$

Rules for (simplified) RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
- rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$
\begin{aligned}
& \frac{\operatorname{dom}(r, A)}{A(x)} r(x, y) \operatorname{rdfs} 2 \\
& \frac{\operatorname{rg}(r, B) \quad r(x, y)}{B(y)} \mathrm{rdfs} 3 \\
& \frac{r \sqsubseteq s \quad s \sqsubseteq t}{r \sqsubseteq t} \mathrm{rdfs} 5 \quad \frac{r \sqsubseteq r}{r g f s} 6 \quad \frac{r \sqsubseteq s \quad r(x, y)}{s(x, y)} \mathrm{rdfs} 7
\end{aligned}
$$

Rules for (simplified) RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
- rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$
\begin{aligned}
& \frac{\operatorname{dom}(r, A)}{A(x)} r(x, y) \text { rdfs2 } \\
& \frac{\operatorname{rg}(r, B) \quad r(x, y)}{B(y)} \mathrm{rdfs} 3 \\
& \frac{r \sqsubseteq s \quad s \sqsubseteq t}{r \sqsubseteq t} \mathrm{rdfs} 5 \quad \frac{}{r \sqsubseteq r} \mathrm{rdfs} 6 \quad \frac{r \sqsubseteq s \quad r(x, y)}{s(x, y)} \mathrm{rdfs} 7 \\
& \frac{A \sqsubseteq B \quad A(x)}{B(x)} \mathrm{rdfs} 9 \frac{}{A \sqsubseteq A} \operatorname{rdfs} 10 \frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \mathrm{rdfs} 11
\end{aligned}
$$

Complete?

- These rules are not complete for our RDF/RDFS semantics

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

$$
\{\mathrm{rg}(\text { loves, Beloved }), \text { Beloved } \sqsubseteq \text { Person }\} \models \mathrm{rg} \text { (loves, Person) }
$$

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

$$
\{\mathrm{rg}(\text { loves, Beloved }), \text { Beloved } \sqsubseteq \text { Person }\} \models \mathrm{rg} \text { (loves, Person) }
$$

- Because for every interpretation \mathcal{I},

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

$$
\{\mathrm{rg}(\text { loves, Beloved }), \text { Beloved } \sqsubseteq \text { Person }\} \models \mathrm{rg} \text { (loves, Person) }
$$

- Because for every interpretation \mathcal{I},
- if $\mathcal{I} \models\{r g($ loves, Beloved $)$, Beloved \sqsubseteq Person $\}$

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

$$
\{\mathrm{rg}(\text { loves, Beloved }), \text { Beloved } \sqsubseteq \text { Person }\} \models \mathrm{rg} \text { (loves, Person) }
$$

- Because for every interpretation \mathcal{I},
- if $\mathcal{I} \models\{\mathrm{rg}($ loves, Beloved $)$, Beloved \sqsubseteq Person $\}$
- then by semantics, rg loves $^{\mathcal{I}} \subseteq$ Beloved $^{\mathcal{I}}$ and Beloved ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$.

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

$$
\{\mathrm{rg}(\text { loves, Beloved }), \text { Beloved } \sqsubseteq \text { Person }\} \models \mathrm{rg} \text { (loves, Person) }
$$

- Because for every interpretation \mathcal{I},
- if $\mathcal{I} \models\{\mathrm{rg}($ loves, Beloved $)$, Beloved \sqsubseteq Person $\}$
- then by semantics, rg loves $^{\mathcal{I}} \subseteq$ Beloved $^{\mathcal{I}}$ and Beloved ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$.
- Therefore, by set theory, rg loves ${ }^{\mathcal{I}} \subseteq$ Person ${ }^{\mathcal{I}}$

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
{rg(loves, Beloved),Beloved \sqsubseteq Person} \modelsrg(loves, Person)
```

- Because for every interpretation \mathcal{I},
- if $\mathcal{I} \models\{\mathrm{rg}($ loves, Beloved $)$, Beloved \sqsubseteq Person $\}$
- then by semantics, rg loves $^{\mathcal{I}} \subseteq$ Beloved $^{\mathcal{I}}$ and Beloved ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$.
- Therefore, by set theory, rg loves ${ }^{\mathcal{I}} \subseteq$ Person ${ }^{\mathcal{I}}$
- By semantics, $\mathcal{I} \models \mathrm{rg}$ (loves, Person)

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
{rg(loves, Beloved),Beloved \sqsubseteq Person} \modelsrg(loves, Person)
```

- Because for every interpretation \mathcal{I},
- if $\mathcal{I} \models\{\mathrm{rg}($ loves, Beloved $)$, Beloved \sqsubseteq Person $\}$
- then by semantics, rg loves ${ }^{\mathcal{I}} \subseteq$ Beloved $^{\mathcal{I}}$ and Beloved ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$.
- Therefore, by set theory, rg loves ${ }^{\mathcal{I}} \subseteq$ Person ${ }^{\mathcal{I}}$
- By semantics, $\mathcal{I} \models \mathrm{rg}$ (loves, Person)
- But there is no way to derive this using the given rules

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

```
{rg(loves, Beloved),Beloved \sqsubseteq Person} \modelsrg(loves, Person)
```

- Because for every interpretation \mathcal{I},
- if $\mathcal{I} \models\{\mathrm{rg}($ loves, Beloved $)$, Beloved \sqsubseteq Person $\}$
- then by semantics, rg loves $^{\mathcal{I}} \subseteq$ Beloved $^{\mathcal{I}}$ and Beloved ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$.
- Therefore, by set theory, rg loves ${ }^{\mathcal{I}} \subseteq$ Person ${ }^{\mathcal{I}}$
- By semantics, $\mathcal{I} \models \mathrm{rg}$ (loves, Person)
- But there is no way to derive this using the given rules
- There is no rule which allows to derive a range statement.

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

$$
\{\mathrm{rg}(\text { loves, Beloved }), \text { Beloved } \sqsubseteq \text { Person }\} \models \mathrm{rg} \text { (loves, Person) }
$$

- Because for every interpretation \mathcal{I},
- if $\mathcal{I} \models\{\mathrm{rg}($ loves, Beloved $)$, Beloved \sqsubseteq Person $\}$
- then by semantics, rg loves $^{\mathcal{I}} \subseteq$ Beloved $^{\mathcal{I}}$ and Beloved ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$.
- Therefore, by set theory, rg loves ${ }^{\mathcal{I}} \subseteq$ Person ${ }^{\mathcal{I}}$
- By semantics, $\mathcal{I} \models \mathrm{rg}$ (loves, Person)
- But there is no way to derive this using the given rules
- There is no rule which allows to derive a range statement.
- We could now add rules to make the system complete

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

$$
\{\mathrm{rg}(\text { loves, Beloved }), \text { Beloved } \sqsubseteq \text { Person }\} \models \mathrm{rg} \text { (loves, Person) }
$$

- Because for every interpretation \mathcal{I},
- if $\mathcal{I} \models\{\mathrm{rg}($ loves, Beloved $)$, Beloved \sqsubseteq Person $\}$
- then by semantics, rg loves $^{\mathcal{I}} \subseteq$ Beloved $^{\mathcal{I}}$ and Beloved ${ }^{\mathcal{I}} \subseteq$ Person $^{\mathcal{I}}$.
- Therefore, by set theory, rg loves ${ }^{\mathcal{I}} \subseteq$ Person ${ }^{\mathcal{I}}$
- By semantics, $\mathcal{I} \models \mathrm{rg}$ (loves, Person)
- But there is no way to derive this using the given rules
- There is no rule which allows to derive a range statement.
- We could now add rules to make the system complete
- Won't bother to do that now. Will get completeness for OWL.

Outlook

- RDFS allows some simple modelling: "all ladies are persons"

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
- Every car has a motor

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
- Every car has a motor
- Every car has at least three parts of type wheel

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
- Every car has a motor
- Every car has at least three parts of type wheel
- A mother is a person who is female and has at least one child

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
- Every car has a motor
- Every car has at least three parts of type wheel
- A mother is a person who is female and has at least one child
- The friends of my friends are also my friends

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
- Every car has a motor
- Every car has at least three parts of type wheel
- A mother is a person who is female and has at least one child
- The friends of my friends are also my friends
- A metropolis is a town with at least a million inhabitants

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
- Every car has a motor
- Every car has at least three parts of type wheel
- A mother is a person who is female and has at least one child
- The friends of my friends are also my friends
- A metropolis is a town with at least a million inhabitants
- ... and many more

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
- Every car has a motor
- Every car has at least three parts of type wheel
- A mother is a person who is female and has at least one child
- The friends of my friends are also my friends
- A metropolis is a town with at least a million inhabitants
- ... and many more
- Modeling will not be done by writing triples manually:

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
- Every car has a motor
- Every car has at least three parts of type wheel
- A mother is a person who is female and has at least one child
- The friends of my friends are also my friends
- A metropolis is a town with at least a million inhabitants
- ... and many more
- Modeling will not be done by writing triples manually:
- Will use ontology editor Protégé.

