# INF3580 – Semantic Technologies – Spring 2011 Lecture 11: OWL 2

Martin G. Skjæveland

5th April 2011





UNIVERSITY OF OSLO

# Outline



## 2 OWL 2

- 3 Axioms and assertions using individuals
  - 4 Restrictions on roles
- 5 Modelling problems
- 6 Roles

## 7 Datatypes

# ${\cal ALC}$ Semantics

#### Interpretation

An interpretation  $\mathcal{I}$  fixes a set  $\Delta^{\mathcal{I}}$ , the *domain*,  $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$  for each atomic concept A,  $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$  for each role R, and  $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$  for each individual a.

Interpretation of concept descriptions  

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ \perp^{\mathcal{I}} &=& \emptyset \\ (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \text{for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in C^{\mathcal{I}} \} \\ (\exists R.C)^{\mathcal{I}} &=& \{a \in \Delta^{\mathcal{I}} \mid \text{there is a } b \text{ where } \langle a, b \rangle \in R^{\mathcal{I}} \text{ and } b \in C^{\mathcal{I}} \} \end{array}$$

Interpretation of Axioms

• 
$$\mathcal{I} \models C \sqsubseteq D$$
 if  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  and  $\mathcal{I} \models C \equiv D$  if  $C^{\mathcal{I}} = D^{\mathcal{I}}$ 

• 
$$\mathcal{I}\models \mathcal{C}(a) ext{ if } a^\mathcal{I}\in \mathcal{C}^\mathcal{I} ext{ and } \mathcal{I}\models \mathcal{R}(a,b) ext{ if } \langle a^\mathcal{I},b^\mathcal{I}
angle\in \mathcal{R}^\mathcal{I}.$$

INF3580 :: Spring 2011

#### Lecture 11 :: 5th April

# TBox, ABox

- The TBox
  - is for terminological knowledge,
  - is independent of any actual instance data, and
  - for  $\mathcal{ALC}$ , it is a set of  $\sqsubseteq$  axioms and  $\equiv$  axioms.
  - Example TBox axioms:
    - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
    - FrontDrivenCar  $\equiv$  Car  $\sqcap \forall$  driveAxle.FrontAxle.
- The ABox
  - is for assertional knowledge,
  - contains facts about individuals *a*, *b*, *c*,
  - a set of concept membership assertions C(a),
  - and role assertions R(b, c).
  - Example ABox axioms:
    - driveAxle(myCar, axle)
    - (FrontAxle  $\sqcup$  RearAxle)(axle).

# Modelling patterns

So, what can we say with  $\mathcal{ALC}$ ?

- Every person has a mother.
- Penguins eats only fish. Horses eats only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- Everything is black or white.
- There is no such thing as a free lunch.
- X Brothers of fathers are uncles.
- X My friend's friends are also my friends.
- X If Homer is married to Marge, then Marge is married to Homer.
- X If Homer is a parent of Bart, then Bart is a child of Homer.

Today we'll learn how to say more.

# Outline

## **1** Reminder: *ALC*



- 3 Axioms and assertions using individuals
  - 4 Restrictions on roles
- 5 Modelling problems
- 6 Roles

## 7 Datatypes

# $\mathcal{SHOIN}(\mathcal{D})$ and OWL 2

• OWL 2 is based on the DL SHOIN(D):

- S for  $ALC^1$  plus role transitivity,
- $\mathcal{H}$  for roles hierarchies,
- $\bullet \ \mathcal{O}$  for closed classes,
- $\bullet \ \mathcal{I}$  for inverse roles,
- $\bullet~\mathcal{N}$  for cardinality restrictions, and
- $\bullet \ \mathcal{D}$  for datatypes.
- So, today we'll see:
  - new concept and role builders,
  - new TBox axioms,
  - new ABox axioms,
  - new RBox and axioms, and
  - datatypes!



Focus!

<sup>1</sup>Attributive Concept Language with Complements

#### OWL 2

# OWL 2 and its profiles

- OWL 2 has various *profiles* that correspond to different DLs.
- OWL 2 DL is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive.
- (Other) profiles are tailored for specific ends, e.g.,
  - OWL 2 QL:
    - Specifically designed for efficient database integration.
  - OWL 2 EL:
    - A lightweight language with polynomial time reasoning.
  - OWL 2 RL:
    - Designed for compatibility with rule-based inference tools.
- OWL Full: Anything goes: classes, relations, individuals, ... like in RDFS, are not kept apart. Highly expressive, not decidable. But we want OWL's reasoning capabilities, so stay away if you can—and you almost always can.

OWL 2 Validator: http://owl.cs.manchester.ac.uk/validator/

# Outline

## 1 Reminder: ALC

## 2 OWL 2

## 3 Axioms and assertions using individuals

### Restrictions on roles

## 5 Modelling problems

## 6 Roles

## 7 Datatypes

# Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
  - DL: a = b,  $a \neq b$ ;
  - RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
  - Manchester: SameAs, DifferentFrom.
- Semantics:
  - $\mathcal{I} \models a = b$  iff  $a^{\mathcal{I}} = b^{\mathcal{I}}$
  - $\mathcal{I} \models a \neq b$  iff  $a^{\mathcal{I}} \neq b^{\mathcal{I}}$
- Examples:
  - sim:Bart owl:sameAs dbpedia:Bart\_Simpson,
  - sim:Bart owl:differentFrom sim:Homer.
- Remember:
  - Non unique name assumption (NUNA) in Sem. Web,
  - must use = and  $\neq$  to get expected results.

# Creating concepts using individuals

- New concept builder.
- Create (anonymous) concepts by explicitly giving all members.
- Called *closed classes* in OWL.
- Syntax:
  - DL: {*a*, *b*, . . .}
  - RDF/OWL: oneOf + rdf:List++
  - Manchester: {a, b, ...}
- Example:
  - SimpsonFamilyMember  $\equiv$  {Homer, Marge, Bart, Lisa, Maggie}
- Note:
  - The individuals does not necessarily represent different objects,
  - $\bullet\,$  we still need = and  $\neq$  to say that members are the same/different.
  - "Closed classes of data values" are datatypes.

# Axioms involving individuals: Closed classes

- Using closed classes we can exclude individuals from classes.
- Example: {*NedFlanders*}  $\subseteq \neg$ *SimpsonFamilyMember*.
  - Ned Flanders is not a family member of the Simpsons.
  - (or better: FlandersFamilyMember ≡ {NedFlanders,...} and FlandersFamilyMember ⊑ ¬SimpsonFamilyMember.)
- Closed properties does not exist in OWL
- (can be done with closed classes),
- but there is *negated role assignment* to exclude relationships from relations/roles (on next slide):

# Axioms involving individuals: Negative Property Assertions

- New ABox axiom.
- Syntax:
  - DL: ¬R(a, b),
  - RDF/OWL: NegativePropertyAssertion,
  - Manchester: a not R b.
- Semantics:
  - $\mathcal{I} \models \neg R(a, b)$  iff  $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \notin R^{\mathcal{I}}$ ,
- Notes:
  - Works both for object properties and datatype properties.
- Examples:
  - :Bart not :hasFather :NedFlanders
  - :Bart not :hasAge ''2''

# Outline

- 1 Reminder: ALC
- 2 OWL 2
- 3 Axioms and assertions using individuals
- 4 Restrictions on roles
  - 5 Modelling problems
- 6 Roles

## 7 Datatypes

# Recap of existential and universal restrictions

- Existential restrictions
  - have the form  $\exists R.D$ ,
  - typically used to connect classes,
  - $C \subseteq \exists R.D$ : A C is *R*-related to (at least) some *D*:
    - Example: A person has a female parent:  $Person \sqsubseteq \exists hasParent.Woman$ .
  - Note that C-objects can be R-related to other things:
    - A person may have other parents who are not women—but there must be one who's a woman.

### Universal restrictions

- have the form  $\forall R.D$ ,
- restrict the things a type of object can be connected to,
- $C \sqsubseteq \forall R.C : C$  is *R*-related to *D*'s only:
  - Example: A horse eats only chocolate: *Horse*  $\sqsubseteq \forall eats. Chocolate$ .
- Note that C-objects may not be R-related to anything at all:
  - A horse does not have to eat anything—but if it does it must be chocolate.

# Cardinality restrictions

- New concept builder.
- Syntax:
  - DL:  $\leq_n R.D$  and  $\geq_n R.D$  (and  $=_n R.D$ ).
  - RDF/OWL: minCardinality, maxCardinality, cardinality.
  - Manchester: min, max, exactly.
- Semantics:

• 
$$(\leq_n R.D)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} | \{b : \langle a, b \rangle \in R^{\mathcal{I}} \land b \in D^{\mathcal{I}}\}^{\#} \leq n\}$$

- $(\geq_n R.D)^{\mathcal{I}} = \{ a \in \Delta^{\mathcal{I}} \mid \{ b : \langle a, b \rangle \in R^{\mathcal{I}} \land b \in D^{\mathcal{I}} \}^{\#} \geq n \}$
- Restricts the number of relations a type of object can/must have.
- TBox axioms read:
  - $C \sqsubseteq \Box_n R.D$ : "A C is R-related to n number of D's."
    - $\bullet \leq: at least$
    - $\bullet \geq: at most$
    - =: exactly

# Example cardinality restriction





Examples:

- Car  $\sqsubseteq \leq_2$  driveAxle. $\top$ 
  - "A car has at least two drive axles."
- $RangeRover \sqsubseteq =_1 driveAxle.FrontAxle \sqcap =_1 driveAxle.RearAxle$ 
  - "A Range Rover has one front axle as drive axle and one rear axle as drive axle".

# One more value restriction

- Existential and Universal restrictions are called value restrictions.
- Restrictions of the form ∀R.D, ∃R.D, ≤<sub>n</sub> R.D, ≥<sub>n</sub> R.D are called qualified when D is not ⊤.
- Qualified: the restriction require *R*-relations to "hit" D's.
- We can also qualify with a closed class.
- Syntax:
  - RDF/OWL: hasValue,
  - DL, Manchester: just use:  $\{\ldots\}$ .
- Example:
  - *Bieberette*  $\equiv$  *Girl*  $\sqcap \exists loves.{J.Bieber}$

# Self restriction

- New construct builder.
- Local reflexivity restriction. Restricts to objects which are related to themselves.
- Syntax:
  - DL: ∃*R*.*Self*
  - RDF/OWL: owl:hasSelf,
  - Manchester: Self
- Semantics:
  - $(\exists R.Self)^{\mathcal{I}} = \{x \mid \langle x, x \rangle \in R^{\mathcal{I}}\}$
- Examples:
  - AutoregulatingProcess  $\sqsubseteq \exists regulate.Self$
  - $\exists hate.Self \sqsubseteq UnhappyPerson$

# Outline

1 Reminder: ALC

# 2 OWL 2

- 3 Axioms and assertions using individuals
  - 4 Restrictions on roles
- 5 Modelling problems
  - 6 Roles

## 7 Datatypes

# Restrictions, non-unique names and open worlds

Restrictions + the OWA and the NUNA can be tricky, consider:

TBox:

```
Orchestra ⊑ Ensemble

ChamberEnsemble ⊑ Ensemble

ChamberEnsemble ⊑ ≤1 firstViolin.⊤

ABox:

Ensemble(oslo)

firstViolin(oslo, skolem)
```

firstViolin(oslo, lie)

- Orchestras and Chamber ensembles are Ensembles.
- Chamber ensembles have only one instrument on each voice,
- in particular, only one first violin.
- oslo has two first violins; is oslo an Orchestra?

Orchestra

Ensemble

# Unexpected (non-)results

It does not follow from TBox + ABox that oslo is an *Orchestra*:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble.
- Add "covering axiom" *Ensemble*  $\sqsubseteq$  *Orchestra*  $\sqcup$  *ChamberEnsemble*:
  - An ensemble is an orchestra or a chamber ensemble.
- It still does not follow that oslo is an Orchestra:
  - This is due to the NUNA.
  - We cannot assume that skolem and lie are distinct.
  - The statement skolem owl:differentFrom lie, i.e., skolem  $\neq$  lie, makes oslo an orchestra.

If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?

- it does not follow that oslo is a *ChamberEnsemble*.
- This is due to the OWA:
- oslo may have other first violinists.

# Protégé demo of previous slide

- Make class Ensemble.
- Make subclass Orchestra.
- Make subclass ChamberEnsemble.
- Make object property firstViolin.
- Make firstViolin max 1 superclass of ChamberEnsemble.
- Make an Ensemble oslo
- Make a Thing skolem
- Make a Thing lie
- Add firstViolin skolem to oslo
- Add firstViolin lie to oslo
- Classify! Nothing happens.
- Add covering axiom: Orchestra or ChamberEnsemble superclass of Ensemble.
- Classify! Nothing happens.
- skolem is different from lie
- Classify! Bingo! oslo is an Orchestra!

# A tempting mistake?

Cardinality restrictions cannot be used to reason with

- intervals or any kind of sequence
- and it cannot be used for arithmetic.
- Example of incorrect modelling:



- Scotch whisky is casked for (a duration of) more than three years:
- Scotch  $\sqsubseteq$  Whisky  $\sqcap \ge_3$  casked. Years (\*)

Why incorrect?

- The class Years is just a set of objects,
- so the axiom (\*) reads "Scotch is Whisky which is casked in at least three (different) years."
- These years may be unrelated (other then by type), e.g: 1996, 1999, 2010.
- $\geq_{12}$  casked. Years is not longer than  $\geq_3$  casked. Years

# Outline

1 Reminder: ALC

# 2 OWL 2

- 3 Axioms and assertions using individuals
  - 4 Restrictions on roles
  - 5 Modelling problems



### 7 Datatypes

## Roles and RBoxes

- Just as we have TBoxes and ABoxes for axioms concerning concepts and individual respectively,
- there is an RBox for axioms on roles.
- In the RBox we find
  - role relationships axioms and
  - role characteristics axioms.
- Consider these boxes convenient for bookkeeping,
- and they are used in literature.



Boxes!

# Role characteristics and relationships

- A role can be:
  - atomic,
  - the universal role, the empty role,
  - the inverse of a role, or
  - a chain of roles. (The two latter are role builders).
- A role can have the characteristics (axioms):
  - reflexive, irreflexive,
  - symmetric, asymmetric,
  - $\bullet\,$  transitive, or/and^2
  - functional, inverse functional.
- Role axioms: Let R and S be roles, then we can assert
  - subsumption:  $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$ ,
  - equivalence:  $R^{\mathcal{I}} = S^{\mathcal{I}}$ ,
  - disjointness:  $R^{\mathcal{I}} \cap S^{\mathcal{I}} = \emptyset$ ,
  - key: *R* is a *key* for concept *C*.

### <sup>2</sup>Restrictions apply



OWL keys!

## New roles

- The universal role, and the empty role—for both object values and data values.
- Syntax:
  - (DL: U (universal object role), mcD (universal data value role))
  - RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty, owl:bottomObjectProperty, owl:bottomDataProperty
- Semantics:
  - $U^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
  - $\bullet \ \mathcal{D}^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Lambda$
- Reads:
  - all pairs of individuals are connected by owl:topObjectProperty,
  - no individuals are connected by owl:bottomObjectProperty.
  - all possible individuals are connected with all literals by owl:topDataProperty,
  - no individual is connected by owl:bottomDataProperty to a literal.

# Corresponding mathematical properties and operations

A relation R over a set X ( $R \subseteq X \times X$ ) is

| Reflexive:          | $if\langle a,a\rangle\in Rforalla\in X$                                                                                             |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Irreflexive:        | $if\; \langle {\pmb{a}}, {\pmb{a}} \rangle \not\in R \; for \; all \; {\pmb{a}} \in {\pmb{X}}$                                      |
| Symmetric:          | $if\; \langle \pmb{a}, \pmb{b} \rangle \in R \; implies\; \langle \pmb{b}, \pmb{a} \rangle \in R$                                   |
| Asymmetric:         | $if\; \langle \pmb{a}, \pmb{b} \rangle \in R \; implies\; \langle \pmb{b}, \pmb{a} \rangle \notin R$                                |
| Transitive:         | if $\langle a, b \rangle, \langle b, c \rangle \in R$ implies $\langle a, c \rangle \in R$                                          |
| Functional:         | $if\; \langle {\pmb{a}}, {\pmb{b}} \rangle, \langle {\pmb{a}}, {\pmb{c}} \rangle \in {\pmb{R}} \; implies \; {\pmb{b}} = {\pmb{c}}$ |
| Inverse functional: | $if\; \langle \textit{a},\textit{b}\rangle, \langle \textit{c},\textit{b}\rangle \in \textit{R}  implies  \textit{a} = \textit{c}$  |

If R and S are binary relations on X then

 $\langle a, c \rangle \in R \circ S$ : if  $\langle a, b \rangle \in R$  and  $\langle b, c \rangle \in S$  for some  $b \in X$  $\langle b, a \rangle \in R^{-}$ : if  $\langle a, b \rangle \in R$ .

The syntax for the corresponding axioms is similar, and their semantics should be clear from this slide.

INF3580 :: Spring 2011

# Role characteristics and operations illustrated



# Role chaining and inverses illustrated



# Properties in OWL

Remember: three kinds of *mutually disjoint* properties in OWL:

- owl:DatatypeProperty
  - link individuals to data values, e.g., xsd:string.
  - Examples: :hasAge, :hasSurname.
- owl:ObjectProperty
  - link individuals to individuals.
  - Example: :hasFather, :driveAxle.
- owl:AnnotationProperty
  - has no logical implication, ignored by reasoners.
  - Examples: rdfs:label, dc:creator.



Drive axle!

# Characteristics of OWL properties

- Object properties link individuals to individuals, so all characteristics and operations are defined for them.
- Datatype properties link individuals to data values, so they cannot be
  - reflexive—or they would not be datatype properties,
  - transitive—since no property takes data values in 1. position,
  - symmetric—as above,
  - inverses—as above,
  - inverse functional-for computational reasons,
  - part of chains—as above,
  - so, what remains is: functionality,
  - (and subsumption, equivalence and disjointness).
- (Annotation properties have no logical implication, so nothing can be said about them.)

# Some relations from ordinary language

- Symmetric relations:
  - hasSibling
  - differentFrom
- Non-symmetric relations:
  - hasBrother
- Asymmetric relations:
  - olderThan
  - memberOf
- Transitive relations:
  - olderThan
  - hasSibling
- Functional relations:
  - hasBiologicalMother
- Inverse functional relations:
  - gaveBirthTo



Brother!

# Examples inverses and chains

Some inverses:

- $hasParent \equiv hasChild^-$
- $hasBiologicalMother \equiv gaveBirthTo^-$
- $olderThan \equiv youngerThan^{-}$

Some role chains:

- hasParent hasParent ⊑ hasGrandParent
- isLocatedIn ∘ isPartOf ⊑ isLocatedIn



Grandparents!

## Quirks

Role modelling in OWL 2 can get excessively complicated.

- For instance:
  - transitive roles cannot be irreflexive or asymmetric,
  - role inclusions are not allowed to cycle, i.e. not

hasParent  $\circ$  hasHusband  $\sqsubseteq$  hasFather hasFather  $\sqsubseteq$  hasParent.

- transitive roles R and S cannot be declared disjoint
- Note:
  - these restrictions can be hard to keep track of
  - the reason they exist are computational, not logical
- Fortunately:
  - There are also *simple* patterns
  - that are quite useful.



Quirk!

## Managing roles in Protege



# OWL keys

- The OWL equivalent of a database primary key, but not completely ...
- Inverse functional properties apply to instances whose existence may only be implied.
- For inverse datatype properties reasoning is impossible in practise.
- OWL Keys apply only to *named instances*, i.e., it's computationally feasible.
- Works for object properties and datatype properties.
- Example: Course hasKey {hasCode, hasSemester, hasYear}:
  - e.g., this course is identifies by the values ("INF3580", Spring, "2011").
  - if two courses share the same values, they are the same course.

# Outline

1 Reminder: ALC

## 2 OWL 2

- 3 Axioms and assertions using individuals
  - 4 Restrictions on roles
- 5 Modelling problems
- 6 Roles



#### Datatypes

# Creating datatypes

- Many predefined datatypes are available in OWL:
  - all common XSD datatypes: xsd:string, xsd:int, ...
  - a few from RDF: rdf:PlainLiteral,
  - and a few of their own: owl:real and owl:rational.
- New datatypes can be defined by boolean operations:  $\neg$ ,  $\sqcap$ ,  $\sqcup$ :
  - owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.
- Datatypes may be restricted with *constraining facets*, borrowed from XML Schema.
  - For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
  - For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.
- Example:
  - Teenager is equivalent to: (Manchester) Person and (age some positiveInteger[>= 13, <= 19])
  - "A teenager is a person of age 13 to 19."

# Modelling patterns

So, what can we say now?

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog.
- ✓ A smoker is not a non-smoker (and vice versa).
- Everybody loves Mary. ????
- ✓ Adam is not Eve (and vice versa).
- Everything is black or white.
- The brother of my father is my uncle.
- My friend's friends are also my friends.
- ✓ If Homer is married to Marge, then Marge is married to Homer.
- ✓ If Homer is a parent of Bart, then Bart is a child of Homer.

... and more!

#### Datatypes

## Next week

- Recaps.
- More modelling with OWL/OWL 2.
- What cannot be expressed in OWL/OWL 2?



Cap!