INF3580 — Semantic Technologies — Spring 2011
Lecture 12: OWL: Loose Ends

Martin Giese
12th April 2011

d d DEPARTMENT OF
c INFORMATICS

UNIVERSITY OF
OsLo

Reminder: OWL

Outline

© Reminder: OWL

T
Today's Plan

© Reminder: OWL

© Disjointness and Covering Axioms
© Keys

@ More about Datatypes

© What can't be expressed in OWL 2

INF3580 :: Spring 2011 Lecture 12 :: 12th April

ALCQ Semantics

Interpretation
An interpretation Z fixes a set AZ, the domain, AL C A for each atomic
concept A, and RT C A x A for each role R
Interpretation of concept descriptions
TI _ AI
1 =0
(:CfF = AT\C?
(CnD)Y = cInD?*
(Ccub)y = ctub?
(VR.C)Y = {ae AT |be CT forall bwith (a,b) € RT}
(3R.C)T = {ae AT |be CT for some b with (a, b) € RT}
(<,R.CY = {ac AT |#{b|(a,b)c RTAbec CT} < n}
(>,R.C)Y = {acAT|#{b|{(a,b)c RTAbec CT} > n}

INF3580 :: Spring 2011 Lecture 12 :: 12th April

INF3580 :: Spring 2011 Lecture 12 :: 12th April

OWL 2 TBox and ABox Nominals, Self-restrictions

@ The TBox

e is for terminological knowledge
e is independent of any actual instance data
@ is a set of axioms:
Class inclusion C, equivalence =
roles symmetric, asymmetric, reflexive, irreflexive, transitive,. ..
roles functional, inverse functional
inverse roles: hasParent = hasChild !
role inclusion hasBrother T hasSibling
@ role chains hasParent o hasBrother C hasUncle

o Only certain combinations allowed! The class of things related to themselves by R:
@ The ABox _ JR.Self
is for assertional knowledge
contains facts about concrete instances a, b, c, ... All people who know themselves:
A set of (negative) concept assertions C(a), =D(b) ... Person 1 3knows. Self
and (negative) role assertions R(b, c), —S(a, b)
also owl:sameAs: a=b
and owl:differentFrom: a # b

@ Sometimes, all elements of a class are known, and can be given in a
list.

Allow concept expressions {a, b, c}

Does not imply that a, b, c are different!
Weekdays = {mon, tue, wed, thu, fri, sat, sun}
r value x shorthand for IR.{x}

Manchester Syntax:
Person and knows Self

INF3580 :: Spring 2011 Lecture 12 :: 12th April / INF3580 :: Spring 2011 Lecture 12 :: 12th April

A Strange Catalogue Outline

@ We have seen many nice things that can be said in OWL
@ Why the strange restrictions, e.g. on role axioms?

@ Why not use 1st-order logic, could say much more?
© Disjointness and Covering Axioms

Because of the reasoning!
Class satisfiability (C # 1)
Classification (C C D)
Instance Check (C(a))

All decidable

Algorithm gives a correct answer after finite time

@ Add a little more to OWL, and this is lost!

INF3580 :: Spring 2011 Lecture 12 :: 12th April / INF3580 :: Spring 2011 Lecture 12 :: 12th April

Guys and Gals

@ Try to model the relationship between the concepts

e Person
e Man
e Woman
@ First try:
Man C Person
Woman C Person
@ General shape of a model:
(Person oy)

- J

@ x is both Man and Woman, y is neither but a Person.

INF3580 :: Spring 2011 Lecture 12 :: 12th April

Disjointness and Covering Axioms

Covering Axioms
@ Any Person should be either a Man or a Woman.
@ Add a covering axiom
Person T Man LI Woman

@ General shape of a model (with disjointness!):

Person

Man Woman

[]
[]
adam eve

@ Specific support in Protégé (“Add Covering Axiom")

@ Compare to “abstract classes” in OO!

INF3580 :: Spring 2011

Lecture 12 :: 12th April

Disjointness Axioms

@ Nothing should be both a Man and a Woman
@ Add a disjointness axiom for Man and Woman
@ Equivalent possibilities:
Man 1 Woman = L
Man C —=Woman
Woman T —Man

@ General shape of a model:

e N
Person oy
Man Woman
[]
adam e\’e
_ J

@ Specific support in OWL (owl:disjointWith) and Protégé

INF3580 :: Spring 2011 Lecture 12 :: 12th April

Disjointness and Covering Axioms

Meat and Veggies

@ Careful: not all subclasses are disjoint and covering!
@ Subclasses can be covering but not disjoint.
o Eg

MeatEatingMammal C Mammal
VeggieEatingMammal C Mammal

@ All mammals eat either meat or vegetables. . .

Mammal C MeatEatingMammal LI VeggieEatingMammal

But there are mammals eating both. ..

...in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!

Lecture 12 :: 12th April

INF3580 :: Spring 2011

Disjointness and Covering Axioms Disjointness and Covering Axioms

Cats and Dogs Teachers and Students
@ Subclasses can be disjoint but not covering. @ Subclasses can be neither disjoint nor covering.
o Eg o Eg
Cat T Mammal Teacher T Person
Dog T Mammal Student LT Person

@ Nothing is both a cat and a dog. . . @ There are people who are neither students nor teachers
Cat C —Dog @ though not in this lecture hall!
@ No covering axiom for these subclasses of Person
@ But there are mammals which are neither. . . @ There are people who are both students and teachers
@ ...in this lecture hall! @ E.g. most PhD students
@ No covering axiom for subclasses Cat and Dog of Mammal @ No disjointness axiom for Teacher and Student!

INF3580 :: Spring 2011 Lecture 12 :: 12th April INF3580 :: Spring 2011 Lecture 12 :: 12th April

Outline Keys

@ A Norwegian is uniquely identified by his/her “personnummer”
e Different Norwegians have different numbers
Each customer in the DB is uniquely identified by the customer ID

e No two customers with the same customer ID
o Referred to as a key for a database table.

@ A course is uniquely determined by code, semester, year.
e E.g. (INF3580, Spring, 2011)

R is a key for some set A if for all x,y € A

© Keys

xRk and yRk imply x=y
@ That's the same as R~! being functional:
kR™x and kR7ly imply x=y

@ So R is a key if it is “inverse functional”
e There is a function giving exactly one object for every key value

INF3580 :: Spring 2011 Lecture 12 :: 12th April INF3580 :: Spring 2011 Lecture 12 :: 12th April

OWL Keys Reasoning with OWL Keys

e Given:

@ Keys in applications are usually (tuples of) literals o :Norwegian hasKey {:personnr}
] . . @ :drillo a :Norwegian
@ In OWL: inverse functional datatype properties o :drillo :personnr "12345698765"
@ Reasoning about these is problematic! e :egil a :Norwegian
@ Therefore, datatype properties cannot be declared inverse functional ® egil :persomnr "12345698765
in OWL 2 @ Can infer:
o :drillo owl:sameAs :egil

@ OWL 2 includes special "hasKey” axioms i

e Given:
@ Example: Course hasKey {hasCode, hasSemester, hasYear} o :Singleton hasKey {:id}
@ Works for object properties and datatype properties. o :Singleton C :id value 1
@ OWL Keys apply only to explicitly named instances ® :x a :Singleton

o Makes reasoning tractable. ® :y a :Singleton

@ Can infer:
@ :X owl:samels :y

INF3580 :: Spring 2011 Lecture 12 :: 12th April INF3580 :: Spring 2011 Lecture 12 :: 12th April

What's with the “named instances”? Outline
o Given:

e :Singleton hasKey {:id}

:Singleton L :id value 1

:x a :Singleton

:Singleton C :other some (:Singleton and not {:x})

:Singleton

@ More about Datatypes

@ not inconsistent, since the blank node is not “named”!

@ Distinct keys only required for explicitly named individuals.

INF3580 :: Spring 2011 Lecture 12 :: 12th April / INF3580 :: Spring 2011 Lecture 12 :: 12th April

A tempting mistake

o Cardinality restrictions are not suitable to express

durations

intervals

or any kind of sequence

and they cannot be used for arithmetic

@ Anti-pattern:

e Scotch whisky is aged at least 3 years:
e Use a datatype property age with range int.
e Scotch C Whisky M >3 age.int

o Why?
e This says that Scotch has at least 3 different ages
e For instance -1, 0, 15

INF3580 :: Spring 2011 Lecture 12 :: 12th April

A possible solution

@ Idea: don't use age.
@ Use a property casked

e domain Whisky
e range int
e relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"""int, "2001"""int, "2002"""int
@ Scotch C Whisky M >3 casked.int
@ Works, but. ..

o Can't express e.g. that the years are consecutive

e Knowing a whisky is casked in 2000 and 2009 doesn't imply it is casked
for 10 years.

Reasoning about >, often works by generating n sample instances
e Town = >1g000 Inhabitant.Person
e Metropolis = >1900000 inhabitant.Person
e Will kill almost any reasoner

Reminder: Datatype properties

e OWL distinguishes between

e object properties: go from resources to resources
e datatype properties: go from resources to literals
@ OWL (2) prescribes a list of available datatypes for literals
e Numbers: real, rational, integer, positive integer, double, long,. ..
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

@ Varying tool support (Protégé 4.1 alpha for some of this)

@ Possible to define more (dates, date ranges, etc.)

INF3580 :: Spring 2011

Lecture 12 :: 12th April

INF3580 :: Spring 2011 Lecture 12 :: 12th April

Data Ranges

@ Like concept descriptions, only for data types
@ Boolean combinations allowed (Manchester syntax)

e xsd:integer or xsd:string

e xsd:integer and not xsd:byte
@ Each basic datatype can be restricted by a number of facets

e xsd:integer[>= 9] — integers >=0.
xsd:integer[>= 9, <= 11] — integers between 9, 10, and 11.
xsd:string[length 5] — strings of length 5.
xsd:string[maxLength 5] — strings of length <5.
xsd:string[minLength 5] - strings of length > 5.
xsd:string[pattern "[01]*"] — strings consisting of 0 and 1.

INF3580 :: Spring 2011 Lecture 12 :: 12th April

Range Examples Pattern Examples

@ An integer or a string of digits

@ A whisky that is at least 12 years old: o xsd:integer or xsd:string[pattern "[0-9]+"]

Whisky and age some integer[>= 12] @ ISBN numbers: 13 digits in 5 —-separted groups, first 978 or 979, last
o A teenager: a single digit.

Person and age some integer[>= 13, <= 19] e Book C ISBN some string[length 17 ,

pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]
@ Reasoning about patterns:
e str a functional datatype property
e A= str some string[pattern "(ab)*"]
e B = str some string[pattern "a(ba)x*b"]
e Reasoner can find out that B C A.

A metropolis:
Place and nrInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties

INF3580 :: Spring 2011 Lecture 12 :: 12th April INF3580 :: Spring 2011 Lecture 12 :: 12th April

Outline Expressivity

Any concept or property can be described in OWL
Maybe not totally, with all its aspects
Might not be needed or meaningful

Remember: working with abstractions

@ Certain relationships between concepts and properties can't be
expressed in OWL
o Eg

e Given that property hasSibling and class Male are defined. ..
e ...cannot say that hasBrother(x,y) iff hasSibling(x,y) and Male(y).

© What can't be expressed in OWL 2 @ Usually, adding such missing relationships would lead to undecidability

@ Not easy to show that something is not expressible
e We look at some examples, not proofs

INF3580 :: Spring 2011 Lecture 12 :: 12th April INF3580 :: Spring 2011 Lecture 12 :: 12th April

Brothers

@ Given terms
hasSibling Male

@ ...a brother is defined to be a sibling who is male

hasSibling

hasBrother
@ Best try:
hasBrother C hasSibling

VhasBrother.Male or: rg(hasBrother, Male)
JhasSibling.Male T JhasBrother. T

@ Not enough to infer that all male siblings are brothers!
e (probably mostly an “accident” in the OWL 2 specification)

INF3580 :: Spring 2011 Lecture 12 :: 12th April

What can’t be expressed in OWL 2

Diamond Properties

A semi-detached house has a left and a right unit
Each unit has a separating wall

The separating walls of the left and

right units are the same

“diamond property”

nasLeftUnit

SemiDetached T JhasLeftUnit.Unit 1 JhasRightUnit.Unit
Unit T JhasSeparatingWall. Wall

@ And now what?

INF3580 :: Spring 2011

Lecture 12 :: 12th April

Uncles

@ Given terms
hasParent hasBrother

@ ...an uncle is defined to be a brother of a parent.

hasParent VN hasBrother
Enoch @ Abel
hasUncle
@ Best try:

hasUncle
hasParent o hasBrother

hasParent o hasBrother

C
hasUncle C

@ properties cannot be declared sub-properties of property chains.
e (can become problematic for reasoning in some constellations)

INF3580 :: Spring 2011 Lecture 12 :: 12th April

Connecting Datatype Properties

@ Given terms

Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the
same birthday.

o Try...
TwinParent = Person 1 3hasChild.3hasBirthday]. . .]
M 3hasChild.3hasBirthday|. . .]
@ No way to connect the two birthdays to say that they're the same.

e (and no way to say that the children are not the same)
@ Try...

TwinParent = Person M >y hasChild.3hasBirthday]|. .]

@ Still no way of connecting the birthdays!

INF3580 :: Spring 2011

Lecture 12 :: 12th April

What can’t be expressed in OWL 2 What can't be expressed in OWL 2

Reasoning about Numbers After the Easter Holidays
@ Reasoning about natural numbers is undecidable in general.
@ DL Reasoning is decidable
@ Therefore, general reasoning about numbers can't be “encoded” in DL
@ For instance

@ More (practical) details about SPARQL
vn.3p.(p > nAVk,l.p=k-1—(k=1VI=1)) @ RDF on the Web: Linked Open Data and RDFa
@ (There is no largest prime number) @ Exporting relational databases as RDF with D2R
e Could try... @ Guest lecture: commercial projects with RDF
Number(zero)
Number T JhasSuccessor. Number
@ Cannot encode addition, multiplication, etc.

Note: a lot can be done with other logics, but not with DLs
e Qutside the intended scope of Description Logics

INF3580 :: Spring 2011 Lecture 12 :: 12th April INF3580 :: Spring 2011 Lecture 12 :: 12th April

	Reminder: OWL
	Disjointness and Covering Axioms
	Keys
	More about Datatypes
	What can't be expressed in OWL 2

