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Reminder: OWL

ALCQ Semantics

Interpretation

An interpretation I fixes a set ∆I , the domain, AI ⊆ ∆ for each atomic
concept A, and RI ⊆ ∆×∆ for each role R

Interpretation of concept descriptions

>I = ∆I

⊥I = ∅
(¬C )I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C )I = {a ∈ ∆I | b ∈ CI for all b with 〈a, b〉 ∈ RI}
(∃R.C )I = {a ∈ ∆I | b ∈ CI for some b with 〈a, b〉 ∈ RI}

(≤n R.C )I = {a ∈ ∆I | #{b | 〈a, b〉 ∈ RI ∧ b ∈ CI} ≤ n}
(≥n R.C )I = {a ∈ ∆I | #{b | 〈a, b〉 ∈ RI ∧ b ∈ CI} ≥ n}
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Reminder: OWL

OWL 2 TBox and ABox

The TBox

is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ≡
roles symmetric, asymmetric, reflexive, irreflexive, transitive,. . .
roles functional, inverse functional
inverse roles: hasParent = hasChild−1

role inclusion hasBrother v hasSibling
role chains hasParent ◦ hasBrother v hasUncle

Only certain combinations allowed!

The ABox

is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of (negative) concept assertions C (a), ¬D(b) . . .
and (negative) role assertions R(b, c), ¬S(a, b)
also owl:sameAs: a = b
and owl:differentFrom: a 6= b
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Reminder: OWL

Nominals, Self-restrictions

Sometimes, all elements of a class are known, and can be given in a
list.

Allow concept expressions {a, b, c}
Does not imply that a, b, c are different!

Weekdays ≡ {mon, tue,wed , thu, fri , sat, sun}
r value x shorthand for ∃R.{x}

The class of things related to themselves by R:

∃R.Self

All people who know themselves:
Person u ∃knows.Self

Manchester Syntax:
Person and knows Self
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Reminder: OWL

A Strange Catalogue

We have seen many nice things that can be said in OWL

Why the strange restrictions, e.g. on role axioms?

Why not use 1st-order logic, could say much more?

Because of the reasoning!

Class satisfiability (C 6≡ ⊥)
Classification (C v D)
Instance Check (C (a))
. . .

All decidable

Algorithm gives a correct answer after finite time

Add a little more to OWL, and this is lost!
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Disjointness and Covering Axioms

Guys and Gals

Try to model the relationship between the concepts

Person
Man
Woman

First try:
Man v Person

Woman v Person

General shape of a model:

x is both Man and Woman, y is neither but a Person.
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Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Man and a Woman

Add a disjointness axiom for Man and Woman

Equivalent possibilities:

Man uWoman ≡ ⊥
Man v ¬Woman
Woman v ¬Man

General shape of a model:

Specific support in OWL (owl:disjointWith) and Protégé
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Disjointness and Covering Axioms

Covering Axioms

Any Person should be either a Man or a Woman.

Add a covering axiom

Person v Man tWoman

General shape of a model (with disjointness!):

Specific support in Protégé (“Add Covering Axiom”)

Compare to “abstract classes” in OO!
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Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering!

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both. . .

. . . in this lecture hall!

No disjointness axiom for MeatEatingMammal and
VeggieEatingMammal!
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Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal

Dog v Mammal

Nothing is both a cat and a dog. . .

Cat v ¬Dog

But there are mammals which are neither. . .

. . . in this lecture hall!

No covering axiom for subclasses Cat and Dog of Mammal
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Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither students nor teachers

though not in this lecture hall!

No covering axiom for these subclasses of Person

There are people who are both students and teachers

E.g. most PhD students

No disjointness axiom for Teacher and Student!
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Keys

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 More about Datatypes

5 What can’t be expressed in OWL 2
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Keys

Keys

A Norwegian is uniquely identified by his/her “personnummer”

Different Norwegians have different numbers

Each customer in the DB is uniquely identified by the customer ID

No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.

E.g. 〈INF3580, Spring, 2011〉

R is a key for some set A if for all x , y ∈ A

xRk and yRk imply x = y

That’s the same as R−1 being functional:

kR−1x and kR−1y imply x = y

So R is a key if it is “inverse functional”

There is a function giving exactly one object for every key value
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Keys

OWL Keys

Keys in applications are usually (tuples of) literals

In OWL: inverse functional datatype properties

Reasoning about these is problematic!

Therefore, datatype properties cannot be declared inverse functional
in OWL 2

OWL 2 includes special “hasKey” axioms

Example: Course hasKey {hasCode, hasSemester, hasYear}

Works for object properties and datatype properties.

OWL Keys apply only to explicitly named instances

Makes reasoning tractable.
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Keys

Reasoning with OWL Keys

Given:

:Norwegian hasKey {:personnr}

:drillo a :Norwegian

:drillo :personnr "12345698765"

:egil a :Norwegian

:egil :personnr "12345698765"

Can infer:

:drillo owl:sameAs :egil

Given:

:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:y a :Singleton

Can infer:

:x owl:sameAs :y
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Keys

What’s with the “named instances”?

Given:

:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some (:Singleton and not {:x})

:Singleton

:x

1

a a

:id :id

:other

not inconsistent, since the blank node is not “named”!

Distinct keys only required for explicitly named individuals.
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More about Datatypes

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 More about Datatypes

5 What can’t be expressed in OWL 2
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More about Datatypes

A tempting mistake

Cardinality restrictions are not suitable to express

durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:

Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch vWhisky u ≥3 age.int

Why?

This says that Scotch has at least 3 different ages
For instance -1, 0, 15
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More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked

domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive

Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances

Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner
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INF3580 :: Spring 2011 Lecture 12 :: 12th April 22 / 34



More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person

Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2011 Lecture 12 :: 12th April 22 / 34



More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person

Will kill almost any reasoner

INF3580 :: Spring 2011 Lecture 12 :: 12th April 22 / 34



More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch vWhisky u ≥3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked
for 10 years.

Reasoning about ≥n often works by generating n sample instances
Town ≡ ≥10000 inhabitant.Person
Metropolis ≡ ≥1000000 inhabitant.Person
Will kill almost any reasoner

INF3580 :: Spring 2011 Lecture 12 :: 12th April 22 / 34



More about Datatypes

Reminder: Datatype properties

OWL distinguishes between

object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available datatypes for literals

Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (Protégé 4.1 alpha for some of this)

Possible to define more (dates, date ranges, etc.)
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More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)

xsd:integer or xsd:string

xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets

xsd:integer[>= 9] – integers >= 9.
xsd:integer[>= 9, <= 11] – integers between 9, 10, and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length ≤ 5.
xsd:string[minLength 5] – strings of length ≥ 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.
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More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and nrInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties
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More about Datatypes

Pattern Examples

An integer or a string of digits

xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 --separted groups, first 978 or 979, last
a single digit.

Book v ISBN some string[length 17 ,

pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:

str a functional datatype property
A ≡ str some string[pattern "(ab)*"]

B ≡ str some string[pattern "a(ba)*b"]

Reasoner can find out that B v A.
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What can’t be expressed in OWL 2

Outline
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What can’t be expressed in OWL 2

Expressivity

Any concept or property can be described in OWL

Maybe not totally, with all its aspects

Might not be needed or meaningful

Remember: working with abstractions

Certain relationships between concepts and properties can’t be
expressed in OWL

E.g.

Given that property hasSibling and class Male are defined. . .
. . . cannot say that hasBrother(x , y) iff hasSibling(x , y) and Male(y).

Usually, adding such missing relationships would lead to undecidability

Not easy to show that something is not expressible

We look at some examples, not proofs
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What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel
hasSibling

a

hasBrother

Best try:

hasBrother v hasSibling
∀hasBrother .Male or: rg(hasBrother ,Male)
∃hasSibling .Male v ∃hasBrother .>

Not enough to infer that all male siblings are brothers!

(probably mostly an “accident” in the OWL 2 specification)
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What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:

hasParent ◦ hasBrother v hasUncle
hasUncle v hasParent ◦ hasBrother

properties cannot be declared sub-properties of property chains.

(can become problematic for reasoning in some constellations)
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What can’t be expressed in OWL 2

Diamond Properties

A semi-detached house has a left and a right unit

Each unit has a separating wall

The separating walls of the left and
right units are the same

“diamond property”

lUnit

house wall

rUnit

hasLef
tUnit

hasRightUnit

hasSeparatingWall

hasSep
aratin

gWall

Try. . .

SemiDetached v ∃hasLeftUnit.Unit u ∃hasRightUnit.Unit
Unit v ∃hasSeparatingWall .Wall

And now what?
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What can’t be expressed in OWL 2

Connecting Datatype Properties

Given terms

Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the
same birthday.

Try. . .

TwinParent ≡ Person u ∃hasChild .∃hasBirthday [. . .]
u ∃hasChild .∃hasBirthday [. . .]

No way to connect the two birthdays to say that they’re the same.

(and no way to say that the children are not the same)

Try. . .

TwinParent ≡ Person u ≥2hasChild .∃hasBirthday [. . .]

Still no way of connecting the birthdays!
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What can’t be expressed in OWL 2

Reasoning about Numbers

Reasoning about natural numbers is undecidable in general.

DL Reasoning is decidable

Therefore, general reasoning about numbers can’t be “encoded” in DL

For instance

∀n.∃p.(p > n ∧ ∀k, l .p = k · l → (k = 1 ∨ l = 1))

(There is no largest prime number)

Could try. . .

Number(zero)
Number v ∃hasSuccessor .Number

Cannot encode addition, multiplication, etc.

Note: a lot can be done with other logics, but not with DLs

Outside the intended scope of Description Logics
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What can’t be expressed in OWL 2

After the Easter Holidays

More (practical) details about SPARQL

RDF on the Web: Linked Open Data and RDFa

Exporting relational databases as RDF with D2R

Guest lecture: commercial projects with RDF
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