
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF3580 — Semantic Technologies

Day of examination: 13 June 2012

Examination hours: 09:00 – 13:00

This problem set consists of 10 pages.

Appendices: None

Permitted aids: Any printed or written course material

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

The exam consists of five questions with equal weight.

Problem 1 RDF (20 %)

Consider the RDF document below:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dbp: <http://dbpedia.org/resource/> .
@prefix dbp-owl: <http://dbpedia.org/ontology/> .
@prefix dbp-prop: <http://dbpedia.org/property/> .

_:x a dbp-owl:PopulatedPlace ;
rdfs:label "Oslo"@no ;
dbp-owl:country _:y .

_:y a dbp-owl:PopulatedPlace ;
rdfs:label "Norge"@no, "Norway"@en ;
dbp-prop:areaKm "385252"^^xsd:integer ;
dbp-owl:capital _:x .

dbp:UiO dbp-owl:country _:y;
dbp-owl:city _:x .

Answer the following questions:

(Continued on page 2.)

Examination in INF3580, 13 June 2012 Page 2

(a) Draw a graph representation of this RDF document.

(b) Explain briefly the difference between dbp:Oslo and "Oslo"@no.

(c) Add statements using the given dbp-owl properties to say that there is
a populated place which has the label "Bergen", and which lies in the
country with label “Norway” already mentioned.

Answer:

(a)

dbp-owl:PopulatedPlace

"Oslo"@no

"Norge"@no

"Norway"@en

dbp:UiO

"385252"^^xsd:integer

a

rdfs:label
dbp-owl:country

dbp-owl:capital

a

rd
fs:

lab
el

rdfs:label
db

p-
ow

l:c
ou

nt
ry

dbp-ow
l:city

dbp-prop:areaKm

(b) dbp:Oslo denotes a resource, the intension is that it denotes the city of
Oslo. "Oslo"@no denotes the (Norwegian) name of the city, i.e. a string
of characters and not a city.

(c) [a dbp-owl:PopulatedPlace;
rdfs:label "Bergen";
dbp-owl:country _:y]

Problem 2 SPARQL (20 %)

Consider an RDF document that contains information about airlines,
airplanes, and flights.

The data uses the following classes in the fly: namespace:

Airport an airport, which can be origin or target of a connection

Aircraft a particular aircraft

(Continued on page 3.)

Examination in INF3580, 13 June 2012 Page 3

Airline a company that owns aircraft and operates flights

Connection a connection between two airports that has a “flight number”
and that is usually flown regularly, e.g. once per day or once per week.

Flight a particular flight, which is some connection flown by some aircraft
on a particular day.

and the following properties:

rdfs:label links airlines, airports, and aircraft to their names

fly:airline links connections to the airline that operates them, and aircraft to
the airline that owns them.

fly:origin links a connection to the airport where it starts

fly:target links a connection to the airport where it ends

fly:flightNr links a connection to its flight number

fly:distanceKm links a connection to the distance between origin and target,
in Km.

fly:type links aircraft to their type, i.e. producer and model (as a literal for
simplicity)

fly:connection links a flight to the connection that is flown

fly:plane links a flight to the plane that is being used

fly:date links a flight to the day on which it starts

Here is some example data for one particular flight:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix fly: <http://example.org/fly#> .

fly:Norwegian a fly:Airline;
rdfs:label "Norwegian".

fly:OSL a fly:Airport;
rdfs:label "Oslo, Gardermoen".

fly:CPH a fly:Airport;
rdfs:label "Copenhagen, Kastrup".

(Continued on page 4.)

Examination in INF3580, 13 June 2012 Page 4

fly:DY940 a fly:Connection;
fly:airline fly:Norwegian;
fly:origin fly:OSL;
fly:target fly:CPH;
fly:flightNr "DY940";
fly:distanceKm "518"^^xsd:double.

fly:LN-DYT a fly:Aircraft;
rdfs:label "LN-DYT";
fly:airline fly:Norwegian;
fly:type "Boeing 737-8JP".

_:1 a fly:Flight;
fly:connection fly:DY940 ;
fly:plane fly:LN-DYT ;
fly:date "2012-05-25"^^xsd:date .

Imagine that we have data about many more airlines, airports, aircraft,
connections, and flights. In the queries you write to answer the following
questions, you are not required to write out the PREFIX declarations.

(a) Write a query that lists the flight numbers of all connections operated by
an airline called “Aeroflot”.

(b) Write a query that lists the names of all airlines that operate connections
with distance 5000km and more.

(c) The same flight number should not be used twice on the same day. Write
a query that finds a flight number and date such that two different flights
with that flight number go on that date.

(d) Sometimes, the aircraft that flies a connection is not owned by the same
airline that operates the connection. E.g. a SAS connection might be
flown by a plane that belongs to Lufthansa. Write a query that lists flight
number and date and the names of the airline operating the connection
and the airline owning the aircraft, for flights where these are not the
same airline.

(e) Write a query that lists the name of every airline and the number
of connections it operates which have a flight on 13 June 2012
("2012-06-13"^^xsd:date)

Answer:

(Continued on page 5.)

Examination in INF3580, 13 June 2012 Page 5

(a) SELECT ?fnr WHERE {
[] a fly:Connection ;

fly:airline [rdfs:label "Aeroflot"] ;
fly:flightNr ?fnr .

}

(b) SELECT DISTINCT ?name WHERE {
[] a fly:Connection ;

fly:airline [rdfs:label ?name] ;
fly:distanceKm ?d .

FILTER (?d > 5000)
}

(c) SELECT DISTINCT ?fnr ?date WHERE {
?f1 a fly:Flight ;

fly:connection [fly:flightNr ?fnr] ;
fly:date ?date .

?f2 a fly:Flight ;
fly:connection [fly:flightNr ?fnr] ;
fly:date ?date .

FILTER (?f1 != ?f2)
}

(d) SELECT ?fnr ?date ?op ?own WHERE {
[] a fly:Flight ;

fly:date ?date ;
fly:plane [fly:airline [rdfs:label ?own]] ;
fly:connection [fly:airline [rdfs:label ?op];

fly:flightNr ?fnr] .
FILTER (?own != ?op)

}

(e) SELECT ?name (COUNT(?c) as ?count) {
[] a fly:Flight ;

fly:date "2012-06-13"^^xsd:date ;
fly:connection ?c .

?c fly:airline [rdfs:label ?name] .
} GROUP BY ?name

Problem 3 RDFS Reasoning (20 %)

Let the following set of triples be given:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

(Continued on page 6.)

Examination in INF3580, 13 June 2012 Page 6

@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

@prefix v: <http://example.org/vocab/> .

@prefix f: <http://example.org/oilfields/> .

@prefix c: <http://example.org/companies/> .

(1) v:hasPartner rdfs:domain v:Oilfield .

(2) v:hasPartner rdfs:range v:Company .

(3) v:hasOperator rdfs:subPropertyOf v:hasPartner .

(4) v:hasNonOperatingPartner rdfs:subPropertyOf v:hasPartner .

(5) v:OperatingCompany rdfs:subClassOf v:Company .

(6) v:operates rdfs:domain v:OperatingCompany .

(7) v:operates rdfs:range v:Oilfield .

(8) f:ekofisk v:hasOperator c:conoco .

(9) f:ekofisk v:hasNonOperatingPartner c:statoil .

(10) f:troll v:hasOperator c:statoil .

For each of the following triples (or sets of triples, in (e)), either give a
derivation using the rules of RDFS and simple entailment, or give a short
explanation of why such a derivation does not exist. If no derivation exists,
also indicate whether the statement is entailed or not (under the simplified
RDF/RDFS semantics used in the course).

(a) f:ekofisk v:hasPartner c:statoil

(b) c:conoco a v:Company

(c) c:conoco a v:OperatingCompany

(d) v:hasOperator rdfs:domain v:Company

(e) _:x v:hasOperator _:y .
_:z v:hasNonOperatingPartner _:y .

Answer:

(a) (a1) f:ekofisk v:hasPartner c:statoil from (4) and (9) by rdfs7

(b) (b1) f:ekofisk v:hasPartner c:conoco from (3) and (8) by rdfs7

(b2) c:conoco a v:Company from (b1) and (2) by rdfs3

(Continued on page 7.)

Examination in INF3580, 13 June 2012 Page 7

(c) This cannot be derived and it isn’t entailed. We could derive it using (6)
if we knew e.g. c:conoco v:operates f:ekofisk. But RDFS cannot
express that v:operates is the inverse of v:hasOperator.

(d) This cannot be derived, since there is no rule to derive new rdfs:domain
statements. It isn’t entailed either (in fact, it is entailed that
v:hasOperator rdfs:range v:Company)

(e) (e1) _:x v:hasOperator c:statoil from (10) by se2, allocating _:x
to f:troll

(e2) _:x v:hasOperator _:y from (e1) by se1, allocating _:y to
c:statoil

(e3) _:z v:hasNonOperatingPartner c:statoil from (9) by se2,
allocating _:z to f:ekofisk

(e4) _:z v:hasNonOperatingPartner _:y from (e3) by se1, reusing
the allocation of _:y to c:statoil

Triples (e2) and (e4) are the ones that had to be derived.

Problem 4 Description logics/OWL (20 %)

Consider information about wines, wine growing regions, and producers
represented in the following way:

wine:mr1982 a :Wine ;
:name "Château Mouton Rothschild 1982" ;
:appelation :pauillac ;
:vintage "1982"^^xsd:int ;
:producer :mr .

:pauillac a :Appelation ;
:containedIn :hautMedoc .

:hautMedoc a :SubRegion ;
:containedIn :bordeaux .

:bordeaux a :Region ;
:containedIn :france .

:france a :Country .

:mr a :Producer ;
:produces wine:mr1982 .

(Continued on page 8.)

Examination in INF3580, 13 June 2012 Page 8

Note: An “appelation” is printed on the label to say where the wine comes
from. Pauillac in the example is a town, which lies in Haut-Médoc, which lies
in Bordeaux, etc.

Express each of the following statements as one or more OWL axioms. You
may use the following class and property (role) names without namespaces:

• Classes: Wine, Appelation, SubRegion, Region, Country, Producer

• Properties: name, appelation, vintage, producer, produces, containedIn

You may use DL syntax, Manchester syntax, or any other OWL syntax.

(a) Every producer produces at least one wine

(b) Every wine has exactly one producer

(c) From the containedIn-statements in the example, we would like to be able
to infer, e.g., that Pauillac is also contained in Haut-Médoc, Bordeaux,
France, etc. I.e. if a is containedIn b and b in c , then a is containedIn c .
How can this be required using OWL?

(d) If a wine w has a :producer p, then p :produces that wine w , and vice
versa.

(e) Wine was not produced before 8000 BC, i.e. every wine has a vintage
after −8000.

(f) A GrandOldProducer is defined to be a producer who produces at least
five wines with vintage 1980 or older.

Answer:

(a) P roducer v ∃produces.W ine
Producer SubClassOf produces some Wine

(b) Wine v =1 producer.P roducer

Wine SubClassOf producer exactly 1 Producer

(c) containedIn has to be declared to be transitive. DL syntax varies.
Manchester syntax:

ObjectProperty: containedIn
Characteristics: Transitive

(d) producer and produces need to be declared inverses of each other. DL
syntax varies. Manchester syntax:

(Continued on page 9.)

Examination in INF3580, 13 June 2012 Page 9

ObjectProperty: producer
InverseOf: produces

(e) Wine v ∃v intage.int[>= −8000]

Wine SubClassOf vintage some int [>= -8000]

(f) GrandOldP roducer ≡ P roduceru≥5 produces.(Wine u ∃v intage.int[<= 1980])

GrandOldProducer EquivalentTo Producer and produces min 5
(Wine and vintage some int [<= 1980]])

Problem 5 RDF and OWL semantics (20 %)

(a) Let C and D be classes, and R an object property. The following axiom
is valid in every interpretation:

∀R.(C uD) ≡ (∀R.C) u (∀R.D)

Give a short proof sketch of this fact.

(b) Now consider:
∀R.(C tD) ≡ (∀R.C) t (∀R.D)

Is this valid in all interpretations? If yes, give a proof sketch, if no, give an
interpretation (consisting of ∆I, CI, DI, and RI) where it is not valid.

(c) Let R be a datatype property. Give a DL-interpretation I, consisting of
∆I, CI, DI, and RI, that satisfies the following axioms:

• C EquivalentTo R min 2
or in DL syntax: C ≡ ≥2 R
• D EquivalentTo R some int [>= 2]
or in DL syntax: D ≡ ∃R.[>= 2]

such that each of (C u D)I, (C u ¬D)I, (¬C u D)I, and (¬C u ¬D)I

have at least one element.

Answer:

(a) Let I be an interpretation. Then

(∀R.(C uD))I = {x ∈ ∆I | for all y with xRIy , y ∈ CI and y ∈ DI}
= {x ∈ ∆I | for all y with xRIy , y ∈ CI}
∩ {x ∈ ∆I | for all y with xRIy , y ∈ DI}

= (∀R.C)I ∩ (∀R.D)I

= (∀R.C u ∀R.D)I

(Continued on page 10.)

Examination in INF3580, 13 June 2012 Page 10

(b) Define
∆I = {a, c, d}

CI = {c}

DI = {d}

RI = {(a, c), (a, d)}

Then
(∀R.(C tD))I = {a, c, d}

because every R-successor of a is either in C or in D. (c and d are
included because they don’t have R-successors) On the other hand,

(∀R.C)I = (∀R.D)I = {c, d}

because the R-successors of a are neither all in C nor all in D.

(c) C is the class of objects having at least two different values for R, while
D is the class of objects having at least one value for R that is larger
than 2.

We choose a domain ∆I = {o, c, d, cd} and

C = {c, cd} D = {d, cd}

which implies that cd ∈ (C uD)I, c ∈ (C u ¬D)I, d ∈ (¬C uD)I, and
o ∈ (¬C u ¬D)I.

To satisfy the axioms, we can define for instance:

RI = {(c, 0), (c, 1), (d, 2), (cd, 1), (cd, 2)}

