UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF3580/INF4580 — Semantic Technologies
Day of examination: 17 June 2016

Examination hours: 14:30-18:30

This problem set consists of 11 pages.

Appendices: None

Permitted aids: Any printed or written course material

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

The exam consists of 5 questions with equal weight.

Problem 1 RDF/D2R (20 %)

Given the following D2RQ mapping file:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .
@prefix map: <http://inf3580.no/mapping/> .
@prefix emp: <http://inf3580.no/data/> .

_:Employee a d2rq:ClassMap ;
d2rq:dataStorage map:EmployeeDB ;
d2rq:uriPattern "http://inf3580.no/data/emp@QEmployee.IDCR" ;
d2rq:class emp:Employee ;
d2rqg:classDefinitionLabel "Employee"@en, "Ansatt"®Ono .

_:EmployeeName a d2rq:PropertyBridge ;
d2rq:belongsToClassMap _:Employee ;

d2rq:property emp:name ;
d2rq:column "Employee.Name"

and the following DB table:

(Continued on page 2.)

Examination in INF3580/INF4580, 17 June 2016 Page 2

Employee:
Id | Name Boss
"Green, Eric" 2

"Johnson, Carl" | 3
"Teller, Anne" 3

w N =

where each row represents one employee: the ID-column contains the
employee’s unique 1D, the Name-column contains the employee's name, and
the Boss-column contains the employee ID of the boss of the employee.

(a) Draw the RDF-graph of the triples that represents the mappings, that is,
the triples in the D2RQ-mapping file.

(b) Write down the triples generated by the mappings when applied to the
Employee database. You can use the prefixes defined in the mappings,
so you do not have to write out the full URIs.

(c) Define a mapping that generates triples x emp:boss y whenever x has
y as boss according to the Employee table. Note that emp:boss Is a
property between the individuals generated by the mapping _:Employee.

Answer:

(a) The graph is drawn below:

d2rq:ClassMap map: EmployeeDB

d2rq:ClassDefinitionLabe’
"Employee'"Qen ks

emp:Employee

3
xdﬁﬁbe
o
z
"Ansatt"@no 5 "http://inf3580.no/data/emp@@Employee . IDGQ"
3
%
5
S
©
Q
-
5
rdf :type d2rq:property
d2rq:PropertyBridge emp : name
A2, .
rq. Colllmu

"Employee.Name"

(Continued on page 3.)

Examination in INF3580/INF4580, 17 June 2016 Page 3

(b) The triples generated are

emp:Employee rdfs:label "Employee"@en, "Ansatt"®Ono
emp:empl a emp:Employee ;
emp:name "Green, Eric"
emp:emp2 a emp:Employee ;
emp:name "Johnson, Carl"
emp:emp3 a emp:Employee ;
emp:name "Teller, Anne"

(c) The mapping that makes emp:boss is:

_:EmployeeToBoss a d2rq:PropertyBridge ;
d2rq:belongsToClassMap _:Employee ;
d2rq:property emp:boss ;
d2rq:refersToClassMap _:Employee ;
d2rq:join "Employee.Boss=>Employee.ID"

or
_:EmployeeToBoss a d2rq:PropertyBridge ;
d2rq:belongsToClassMap _:Employee ;

d2rq:property emp:boss ;
d2rq:uriPattern "http://inf3580.no/data/emp@0Boss.IDER"

Problem 2 SPARQL (20 %)

Assume we have the following RDFS classes

e hs:House - The class of all houses.
e hs:Sale - The class of house sales.

e hs:Distance - The class of distances, each distance has an integer
value (in meters), and is related to at least two houses, representing
the distance between the two.

and properties

e hs:house - The relationship between a sale and the house for sale.

(Continued on page 4.)

Examination in INF3580/INF4580, 17 June 2016 Page 4

e hs:price - The relationship between a sale and a positive integer literal

representing the price (in NOK).

hs:address - The relationship between a house and the a string
denoting that house's address.

hs:openHouseDate - The relationship between a sale and the date
(xsd:dateTime) of the open house for that sale.

hs:distanceValue - The relationship between a distance individual and
the integer literal denoting the value of the distance in meters.

hs:between - The relationship between a distance instance and a house
instance. Every distance is related to at least two houses via this
relation, such that if :d hs:between :hl, :h2. then :d describes
the distance between :hi1 and :h2.

Below are some example triples:

O@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix hs: <http://inf3580.no/houses/> .

hs:housel a hs:House ;

hs:address "Problemveien 7, 0123 Oslo"

hs:house2 a hs:House ;

hs:address "Moldegata 1, 1234 Oslo"

The distance between housel and house2 is 2500m
[] a hs:Distance ;

hs:between hs:housel, hs:house2 ;
hs:distanceValue "2500"~"xsd:int

housel is for sale with a price of 1500000 NOK
with open house 17.06.16.
[] a hs:Sale ;

(]

hs:house hs:housel ;
hs:price "1500000"~"xsd:int ;
hs:openHouseDate "2016-06-17"""xsd:dateTime .

a hs:Sale ;
hs:house [a hs:House;

hs:address "Nygata 4, 2345 0Oslo"] ;

hs:openHouseDate "2015-01-02"""xsd:dateTime .

(a) Write a SPARQL query that lists the price and date of all sales with an

open house date in 2016.

(Continued on page 5.)

Examination in INF3580/INF4580, 17 June 2016 Page 5

(b)

(c)

(d)

(e)

Assume that not all sales have a price set. Write a SPARQL query that
for all sales lists the address of the house to be sold, such that if there is
a price, the price should be less than 1,000,000 NOK.

Write a SPARQL query that returns true if there are two sales for the
same house but with different prices, and false otherwise.

Write a SPARQL query that constructs an RDF-graph of triples x
rdf:type hs:ExpensiveHouse for every house x that either has a price
greater than 10,000,000 NOK or where the house is closer than 500
meters to a house that has a price greater than 10,000,000 NOK.

Let two houses be close neighbors if the distance between them is less
than 100 meters. Write a SPARQL query that for all houses that have
less than 5 close neighbors, lists the address of the house and the number
of close neighbors. The list should be ordered by the number of close
neighbors from lowest to highest.

Answer:

(a)

(b)

SELECT DISTINCT 7date, 7price
WHERE {
[] a hs:Sale ;
hs:openHouseDate 7date ;
hs:price 7price .
FILTER (7date >= "2016-01-01"""xsd:dateTime &&
7date < "2017-01-01"""xsd:dateTime)

SELECT DISTINCT 7address
WHERE {
_:sale a hs:Sale ;
hs:house [a hs:House ;
hs:address 7address]
FILTER NOT EXISTS {
_:sale hs:price 7price .
FILTER (7price > "1000000"~"xsd:int)
}

ASK
WHERE {
[] a hs:Sale ;
hs:price 7pricel ;

(Continued on page 6.)

Examination in INF3580/INF4580, 17 June 2016 Page 6

hs:house 7house .

[] a hs:Sale ;
hs:price 7price2 ;
hs:house 7house .
FILTER (pricel != price2);

(d) CONSTRUCT { ?x rdf:type hs:ExpensiveHouse }
WHERE {
{

?x a hs:House .

[] a hs:Sale ;
hs:price 7price ;
hs:house 7x .
FILTER (?price > 10000000)
+
UNION
{

?x a hs:House

[] a hs:Sale ;
hs:price 7price ;
hs:house 7o

7?0 a hs:House .

[] a hs:Distance ;
hs:between 70, 7x ;
hs:distanceValue 7distVal .
FILTER (7price > 10000000 && 7distVal < 500)

(e) SELECT 7address, count(?close) AS 7count
WHERE {
?house a hs:House ;
hs:address 7address

?close a hs:House .

[] a hs:Distance ;
hs:between 7house, 7close ;

(Continued on page 7.)

Examination in INF3580/INF4580, 17 June 2016 Page 7

hs:distanceValue 7distVal

FILTER (distVal < 100)
} GROUP BY ?7address HAVING (?count < 5)
ORDER BY ASC(?count)

Problem 3 RDFS Reasoning (20 %)

Consider the following triples about companies, and their roles as being each
others suppliers and/or customers:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <http://www.ifi.uio.no/companies#> .
1) :Customer rdfs:subClass0f :Company .
pany
?2) :Supplier rdfs:subClass0f :Company .
pp pany
3) :hasCustomer rdfs:domain :Supplier .
pPp
(4) :hasCustomer rdfs:range :Customer .
5) :hasSupplier rdfs:domain :Customer .
(5) PP
6) :hasSupplier rdfs:range :Supplier .
PP g PP
(7) :hasCustomer rdfs:subPropertyOf :hasAssociate
8) :hasSupplier rdfs:subProperty0f :hasAssociate
pp p y
9) :maxMusli :hasCustomer :coop .
(9) p
10) :maxMusli :hasSupplier :allNuts
pp
11) :coo :hasSupplier _:1
p Pp
(12) _:1 :hasSupplier :allNuts .

For the triples in (a)—(c), and the set of triples in (d), either give a derivation
using the rules of RDFS and simple entailment, or give a short explanation
of why such a derivation does not exist. If no derivation exists, also indicate
whether the statement is entailed or not (under the simplified RDF/RDFS
semantics used in the course).
(a) :allNuts a :Company .

(b) :hasAssociate rdfs:range :Company .

(c) :coop :hasSupplier :maxMusli

(Continued on page 8.)

Examination in INF3580/INF4580, 17 June 2016 Page 8

(d) :coop :hasAssociate _:a .
_:a a :Customer .

(e) Give an example of a triple that is entailed (under the simplified
RDF/RDFS semantics used in the course) by this RDF graph, but that
cannot be derived by the RDFS and simple entailment rules.

(f) Intuitively, when one company is a customer of another, that other
company is a supplier for the first one, and vice versa. Is it possible
in RDFS to specify that relationship between :hasSupplier and
:hasCustomer? Are there any other ways to achieve this?

Answer:

(a)
(al) :allNuts a :Supplier (by rule rdfs3 on (6), (10) or (12))
(a2) :allNuts a :Company (by rule rdfs9 on (2), (a))

(b) The only information given about :hasAssociate is that :hasCustomer
and :hasSupplier are subproperties. So :hasAssociate could relate
many other resources, that are not in :Company. Therefore, this triple is
not entailed, and consequently it cannot be derived.

(c) This triple is not entailed, and therefore cannot be derived either. In
particular, :maxMusli :hasCustomer :coop does not entail this triple,
since the RDFS axioms don't express anything about the relationship
between :hasCustomer and :hasSupplier. And furthermore, triples
(11) and (12) don't entail this one, since the blank node can be
instantiated by some other resource that is a supplier of :coop and that
in turn has :allNuts as supplier.

(d) (d1) :coop :hasSupplier _:a (by rule sel on (11) assigning _:1 to
the new blank node _:a)

(d2) _:a :hasSupplier :allNuts (by rule se2 on (12) reusing the
assignment for _:a)

_:a (by rule rdfs7 on (8) and (d1))
(d4) _:a a :Customer (by rule rdfs2 on (5) and (d2))

(d3) :coop :hasAssociate

(e) Two examples are
:hasSupplier rdfs:range :Company .
:hasSupplier rdfs:domain :Company .
These, and corresponding triples with :hasCustomer are entailed
semantically, since the ranges and domains of :hasCustomer and
:hasSupplier are subclasses of :Customer. But they are not derivable,
since there are no RDFS rules which produce range or domain statements.

(Continued on page 9.)

Examination in INF3580/INF4580, 17 June 2016 Page 9

(f) The relationship to be expressed is that :hasCustomer is the inverse of
:hasSupplier. This cannot be expressed in RDFS. However, It can be
expressed using an OWL axiom. It is also possible to use a rule engine or
simply a Java program to add the corresponding inverse relationship for
every :hasCustomer and :hasSupplier triple in a data store.

Problem 4 Description logics/OWL (20 %)

We use the following vocabulary:

Classes: Student, Delivery, Assignment, PendingDelivery, PassedDelivery,
FailedDelivery.

Properties: hasDelivery, forAssignment, hasAttempted.

The idea is that hasDelivery connects students to their deliveries.
forAssignment connects deliveries to the assignments (e.g. mandatories) the
delivery was for. And hasAttempted connects students to the assignments
they have attempted.

The Delivery class has several subclasses to indicate whether the delivery was
graded as passed or failed, or whether it is still “pending,” i.e. it is hasn't been
graded.

(a) Write DL axioms that express that every delivery is either pending, or
passed, or failed, but only one of these.

(b) Write a DL axiom that expresses that every delivery is for exactly one
assignment

(c) Write a DL axiom that expresses that anything that delivers a delivery is
a student

(d) Write a DL concept expression for “Student who has at least 5 passed
deliveries”

(e) Write a DL concept expression for “Assignment for which there is no
pending delivery”

(f) Write a DL axiom that expresses that when a student has handed
in a delivery for an assignment, then the student has attempted that
assignment.

Answer:

(Continued on page 10.)

Examination in INF3580/INF4580, 17 June 2016 Page 10

(a)
Delivery C PendingDelivery LI PassedDelivery LI FailedDelivery
PendingDelivery M PassedDelivery = |
PendingDelivery M FailedDelivery = |
PassedDelivery ' FailedDelivery = 1
(b)
Delivery £ =; forAssignment.Assignment
(c)
JhasDelivery. T C Student
(d)
Student M >5 hasDelivery.PassedDelivery
(e)
Assignment M —3forAssignment ™ .PendingDelivery
(f)

hasDelivery o forAssignment C hasAttempted

Problem 5 RDF and OWL semantics (20 %)

Consider the following set of description logic axioms:

JR.B
IR.C

A
A
A < RT

IRRImRIN

(a) Provide a DL-interpretation Z; with At # () that satisfies all of these
axioms, or explain why none exists.

(b) To the first three axioms, add a fourth one:

Bncct L

Provide a DL-interpretation Z, with A% # () that satisfies all of these
axioms, or explain why none exists.

Answer:

(Continued on page 11.)

Examination in INF3580/INF4580, 17 June 2016 Page 11

(a) We define

A = {a, bc}
AL = {3}
Bh = {bc}
Ch = {bc}

R = {(a bc)}

So a is R-related to only one domain element, which belongs to the
interpretation of both B and C.

(b) We show that these four axioms together cannot be satisfied by an
interpretation with A% # ().

Assume a € A2, Then due to the first axiom, there must be a domain
element b € B% with (a, b) € R%2 . Due to the second axiom, there
must also be a ¢ € C%2 with (a, ¢) € R%.

The fourth axiom tells us that B% and C%2 have no common elements,
so b # c¢. Therefore {x | {a, x) € R%2} has at least two elements, and
there fore the third axiom cannot be satisfied.

