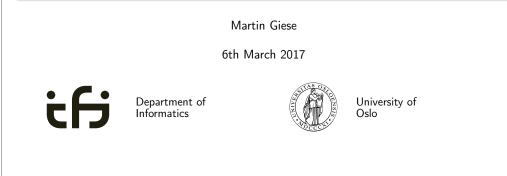
INF3580/4580 – Semantic Technologies – Spring 2017 Lecture 8: RDF and RDFS semantics



Oblig 5

- Published today
- First delivery due 21 March
- Final delivery due 11 April
- Extra question for INF4580 students
- "Real" semantics of RDF and RDFS
- Foundations book: Section 3.2
- Still OK to ignore some complications, see oblig text
- We provide an excerpt of Sect. 3.2 with unimportant parts removed.
- Go to group sessions!

INF3580/4580 :: Spring 2017

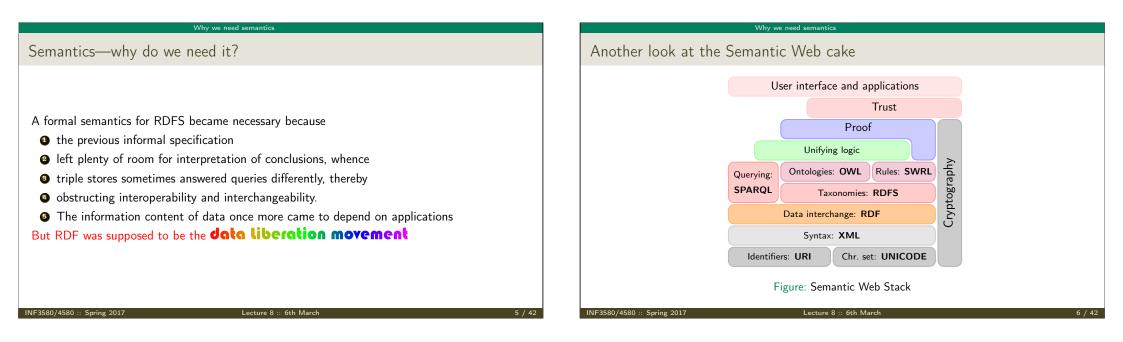
INF3580/4580 :: Spring 2017

Lecture 8 :: 6th March

2 / 42

Today's Plan Why we need semantics Model-theoretic semantics from a birds-eye perspective Repetition: Propositional Logic Simplified RDF semantics

Why we need semantics
Outline
Why we need semantics
2 Model-theoretic semantics from a birds-eye perspective
3 Repetition: Propositional Logic
Simplified RDF semantics



Why we need semantic

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - \bullet "Martin has a birthdate, and only people have birthdates, so. . . "
 - existential restrictions.

INF3580/4580 :: Spring 2017

- \bullet "all persons have parents, and Martin is a person, so. . . "
- ... to which we shall return in later lectures

To ensure that infinitely many conclusions will be agreed upon,

- RDF must be furnished with a model-theory
- that specifies how the different node types should be interpreted

Lecture 8 ··· 6th March

• and in particular what entailment should be taken to mean.

Why we need semantic

Example: What is the meaning of blank nodes?

Co-authors of Paul Erdős:

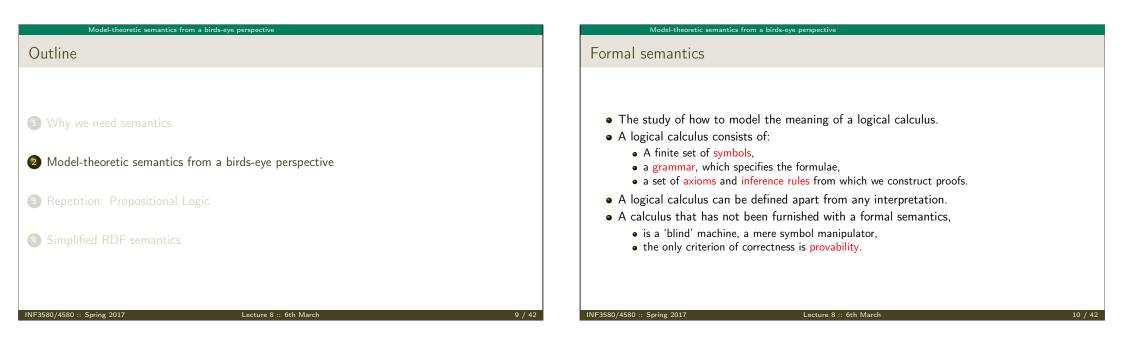
SELECT DISTINCT ?name WHERE {

_:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .

} SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes
- But.
 - which values are to count?
 - the problem becomes more acute under reasoning.
 - Should a value for foaf:familyname match a query for foaf:name?
 - Are blanks in SPARQL the same as blanks in RDF?

Lecture 8 :: 6th March



Model-theoretic semantics from a birds-eye perspective

Derivations

A proof typically looks something like this:

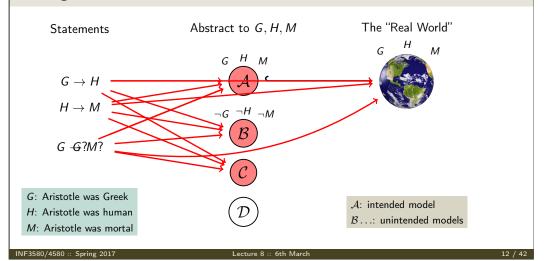
$$\begin{array}{c|c} \underline{P \vdash Q, P \quad Q, P \vdash Q} \\ \hline \hline \hline P \rightarrow Q, P \vdash Q \\ \hline \hline \hline P \rightarrow Q, P \vdash Q \\ \hline \hline \hline P \rightarrow Q, P \lor R \vdash Q \\ \hline \hline \hline P \rightarrow Q \vdash (P \lor R) \rightarrow Q \\ \hline \end{array}$$

Where each line represents an application of an inference rule.

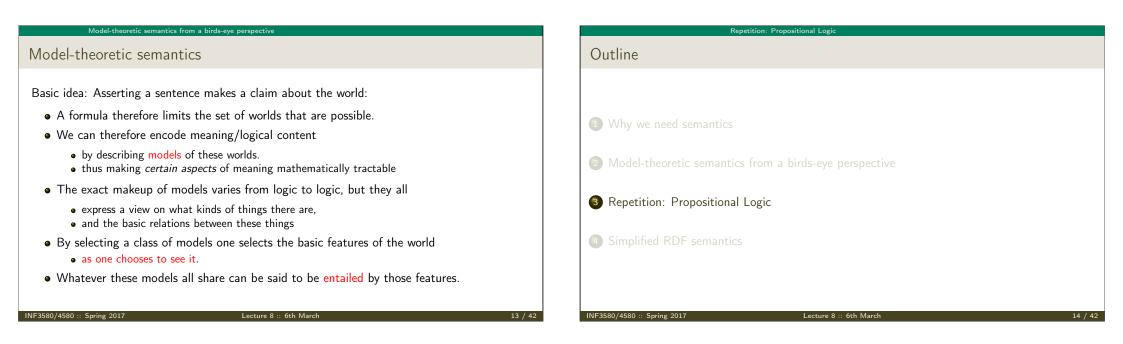
- How do we know that the inference rules are well-chosen?
- Which manipulations derive conclusions that hold in the real world?

Finding out stuff about the World

Model-theoretic semantics from a birds-eye perspective



11 /

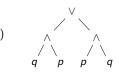


Repetition: Propositional Logic

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \ldots is a formula
- 2 if A and B are formulas, then
 - $(A \land B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $\neg A$ is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples of formulae: $p (p \land \neg r) (q \land \neg q) ((p \lor \neg q) \land \neg p)$
- Formulas are just a kind of strings until now:
 - no meaning
 - but every formula can be "parsed" uniquely.

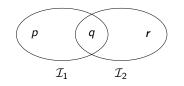
 $((q \land p) \lor (p \land q))$



Repetition: Propositional Logic

Interpretations

- Logic is about truth and falsity
- Truth of compound formulas depends on truth of letters.
- Idea: put all letters that are "true" into a set!
- \bullet Define: An interpretation ${\mathcal I}$ is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.
- E.g., in $\mathcal{I}_1 = \{p, q\}$, p is true, but r is false.

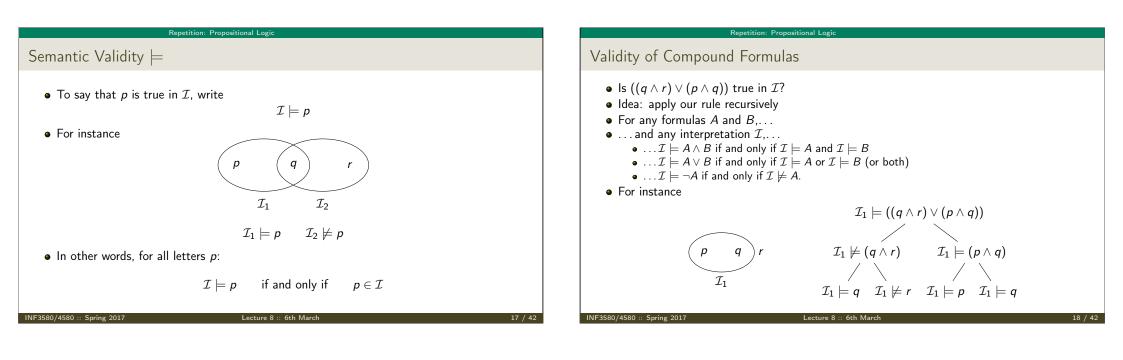


• But in $\mathcal{I}_2 = \{q, r\}$, p is false, but r is true.

NF3580/4580 :: Spring 2

15 / -

16 / 42



Repetitio	n: Propos	itional	Logic				
Truth Table							
• Semantics of \neg , \land , \lor often							
	A		$\neg A$		$A \lor B$		
	f	f	t	f	f		
	f	t	t	f f	t		
	t	f	f	f	t		
	t	t	f	t	t		
NF3580/4580 :: Spring 2017			:ure 8 :: (19

Tautologies

• A formula A that is true in all interpretations is called a tautology

Repetition: Propositional Logic

- also logically valid
- also a *theorem* (of propositional logic)
- written:

 $\models A$

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.
 - P.N. will win the 50km in 2016 or P.N. will not win the 50km in 2016.
 - $\bullet\,$ The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...
- ... without understanding their meaning!
- ... e.g. using truth tables for small cases.

Repetition: Propositional Logic Repetition: Propositional Logi Entailment Question • Tautologies are true in all interpretations • Some formulas are true only under certain assumptions Given the letters • A entails B, written $A \models B$ if P – Ola answers none of the questions correctly $\mathcal{I} \models B$ for all interpretations \mathcal{I} with $\mathcal{I} \models A$ Q – Ola fails the exam • Also: "B is a logical consequence of A" Which of the following are tautologies of propositional logic? • Whenever A holds, also B holds **0** Q • For instance: **②** ¬*Q* $p \land q \models p$ • Independent of meaning of *p* and *q*: $Q \rightarrow (P \rightarrow Q)$ • If it rains and the sky is blue, then it rains • If P.N. wins the race and the world ends, then P.N. wins the race • If 'tis brillig and the slythy toves do gyre, then 'tis brillig • Also entailment can be checked mechanically, without knowing the meaning of words. INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 21 / 42 INF3580/4580 :: Spring 2017 Lecture 8 :: 6th Marc

Simplified RDF semantics	Simplified RDF semantics
Outline	Taking the structure of triples into account
	Unlike propositions, triples have parts, namely:
1 Why we need semantics	• subject
	• predicates, and
2 Model-theoretic semantics from a birds-eye perspective	• objects
	Less abstractly, these may be:
3 Repetition: Propositional Logic	URI references
	 literal values, and
Simplified RDF semantics	 blank nodes
	Triples are true or false on the basis of what each part refers to.
INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 23 / 4	INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 24 / 42

Simplified RDF semantics

On what there is: Resources, Properties, Literals

The RDF data model consists of three object types; resources, properties and literals values:
Resources: All things described by RDF are called resources. Resources are identified by URIs
Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.
Literals: A literal value is a concrete data item, such as an integer or a string. String literals name themselves, i.e.
"Julius Ceasar" names the string "Julius Ceasar"
"42" names the string "42"

Restricting RDF/RDFS

• We will simplify things by only looking at certain kinds of RDF graphs.

lified RDF semantic

- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - *Classes* like foaf:Person
 - *Built-ins*, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms: individual property individual . individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

• Forget blank nodes and literals for a while!

NF3580/4580 :: Spring 2017

Lecti

26 / 42

Simplified RDF semantics

Short Forms

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

TriplesAbbreviationindi prop indi . $r(i_1, i_2)$ indi rdf:type class . $C(i_1)$ class rdfs:subClassOf class . $C \sqsubseteq D$ prop rdfs:subPropOf prop . $r \sqsubseteq s$ prop rdfs:domain class .dom(r, C)prop rdfs:range class .rg(r, C)

- This is called "Description Logic" (DL) Syntax
- Used much in particular for OWL

INF3580/4580 :: Spring 2017

27 / 4

Example

Triples:

ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .

• DL syntax, without namespaces:

loves(romeo, juliet)
Lady(juliet)

Lady ⊑ Person loves ⊑ knows dom(loves, Lover) rg(loves, Beloved)

INF3580/4580 :: Spring 2017

Interpretations for RDF

- To interpret propositional formulas, we need to know how to interpret
 Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- A DL-interpretation $\mathcal I$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI *C*, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - For each property URI *r*, a relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- Given these, it will be possible to say whether a triple holds or not.

Simplified RDF semantic

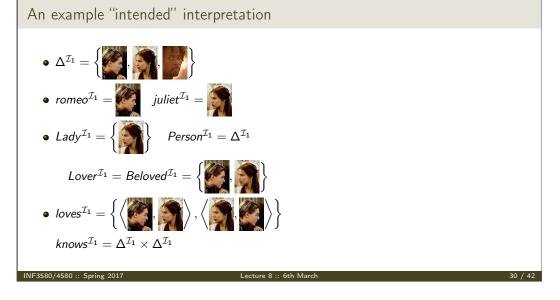
INF3580/4580 :: Spring 2017

ecture 8 :: 6th March

29 / 42

31 / 42

Simplified RDF semantic



An example "non-intended" interpretation • $\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, ...\}$ • $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$ • $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, ...\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, ...\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$ • $loves^{\mathcal{I}_2} = <= \{\langle x, y \rangle \mid x < y\}$ $knows^{\mathcal{I}_2} = \le = \{\langle x, y \rangle \mid x \le y\}$

- Just because names (URIs) look familiar, they don't need to denote what we think!
- In fact, there is *no way* of ensuring they denote only what we think!

Validity in Interpretations (RDF) • Given an interpretation \mathcal{I} , define \models as follows: • $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ • $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$ • Examples: • $\mathcal{I}_1 \models loves(juliet, romeo)$ because $\langle \bigotimes_{i}, \bigotimes_{i} \rangle \in loves^{\mathcal{I}_1} = \left\{ \langle \bigotimes_{i}, \bigotimes_{i} \rangle, \langle \bigotimes_{i}, \bigotimes_{i} \rangle \right\}$

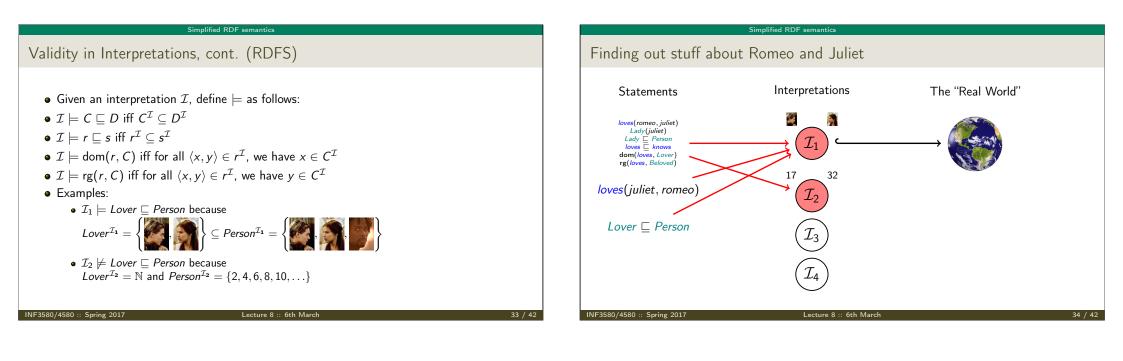
Simplified RDF semantics

• $\mathcal{I}_1 \models Person(romeo)$ because romeo $\mathcal{I}_1 = \bigcap \in Person^{\mathcal{I}_1} =$

$$heo^{\mathcal{I}_{1}} = \bigotimes \in Person^{\mathcal{I}_{1}} = \Delta^{\mathcal{I}_{1}}$$

- $\mathcal{I}_2 \not\models loves(juliet, romeo)$ because $loves^{\mathcal{I}_2} = \langle \text{ and } juliet^{\mathcal{I}_2} = 32 \not< romeo^{\mathcal{I}_2} = 17$
- $\mathcal{I}_2 \not\models Person(romeo)$ because
- $romeo^{I_2} = 17 \notin Person^{I_2} = \{2, 4, 6, 8, 10, \ldots\}$

Lecture 8 :: 6th Marcl



J	implified RDF semantics	
Example: Range/Domain	semantics	
because	$\mathcal{I}_2 \models dom(\textit{knows}, \textit{Beloved})$	
	$knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$ $Beloved^{\mathcal{I}_2} = \mathbb{N}$	
and for any x and y with		
	$\langle x, y \rangle \in knows^{\mathcal{I}_2}, \text{i.e.} x \leq y,$	
we also have	$x \in \mathbb{N}$ i.e. $x \in Beloved^{\mathcal{I}_2}$	
INF3580/4580 :: Spring 2017	Lecture 8 :: 6th March	35 / 42

Interpretation of	
 Given an interp 	retation ${\cal I}$
 And a set of tri 	ples ${\mathcal A}$ (any of the six kinds)
$ullet$ $\mathcal A$ is valid in $\mathcal I$,	written
	$\mathcal{I}\models\mathcal{A}$
• iff $\mathcal{I} \models A$ for al	$ A \in \mathcal{A}.$
\bullet Then ${\mathcal I}$ is also	called a model of \mathcal{A} .
• Examples:	
, ,	A = {loves(romeo, juliet), Lady(juliet), Lady ⊑ Person, loves ⊑ knows, dom(loves, Lover), rg(loves, Beloved)}
$ullet$ Then $\mathcal{I}_1 \models \mathcal{A}$ a	and $\mathcal{I}_2 \models \mathcal{A}$
INF3580/4580 :: Spring 2017	Lecture 8 :: 6th March 3

Entailment

• Given a set of triples \mathcal{A} (any of the six kinds)

nplified RDF semant

- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - \bullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models \mathcal{T}$.
- $\mathcal{A} \models \mathcal{B}$ iff $\mathcal{I} \models \mathcal{B}$ for all \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- Example:
- $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$ as before
- $\mathcal{A} \models Person(juliet)$ because...
- in any interpretation \mathcal{I} ...
- if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$
- then by set theory $juliet^{\mathcal{I}} \in Person^{\mathcal{I}}$

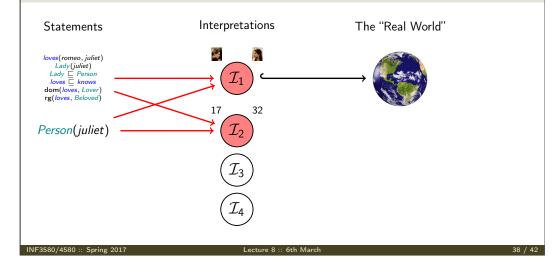
```
INF3580/4580 :: Spring 2017
```

ture 8 :: 6th March

37 / 42

Simplified RDF semantics

Finding out stuff about Romeo and Juliet



Countermodels

- If $\mathcal{A} \not\models T, \ldots$
- \bullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models T$, then $\mathcal{A} \not\models T$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails \mathcal{T})

Simplified RDF semantics

- To show that $\mathcal{A} \models T$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)
 - Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
 - Prove that $\mathcal{I} \not\models \mathcal{T}$ (using the semantics)

Countermodel Example

• \mathcal{A} as before:

 $\mathcal{A} = \{ \text{loves}(\text{romeo}, \text{juliet}), \text{ Lady}(\text{juliet}), \text{ Lady} \sqsubseteq \text{Person}, \\ \text{loves} \sqsubseteq \text{knows}, \text{ dom}(\text{loves}, \text{Lover}), \text{ rg}(\text{loves}, \text{Beloved}) \}$

- Does $\mathcal{A} \models Lover \sqsubseteq Beloved?$
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretaion with $\Delta^{\mathcal{I}} = \{a, b\}, a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$
- Then $\langle a, b \rangle \in loves^{\mathcal{I}}$, $a \in Lover^{\mathcal{I}}$, $b \in Beloved^{\mathcal{I}}$.
- With $Lover^{\mathcal{I}} = \{a\}$ and $Beloved^{\mathcal{I}} = \{b\}, \mathcal{I} \not\models Lover \sqsubseteq Beloved!$

Simplified RDF semantics

• Choose

to complete the counter-model while satisfying $\mathcal{I} \models \mathcal{A}$

Lecture 8 :: 6th Marc

40 / 42

