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Extra question for INF4580 students
“Real” semantics of RDF and RDFS
Foundations book: Section 3.2
Still OK to ignore some complications, see oblig text
We provide an excerpt of Sect. 3.2 with unimportant parts removed.
Go to group sessions!
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Today’s Plan

1 Why we need semantics

2 Model-theoretic semantics from a birds-eye perspective

3 Repetition: Propositional Logic

4 Simplified RDF semantics
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Why we need semantics

Semantics—why do we need it?

A formal semantics for RDFS became necessary because

1 the previous informal specification
2 left plenty of room for interpretation of conclusions, whence
3 triple stores sometimes answered queries differently, thereby
4 obstructing interoperability and interchangeability.
5 The information content of data once more came to depend on applications

But RDF was supposed to be the data Liberation movement
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Why we need semantics

Another look at the Semantic Web cake

Identifiers: URI Chr. set: UNICODE

Syntax: XML

Data interchange: RDF

Querying:

SPARQL Taxonomies: RDFS

Ontologies: OWL Rules: SWRL

Unifying logic

Proof

Trust

User interface and applications

C
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pt
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y

Figure: Semantic Web Stack
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Why we need semantics

Absolute precisision required

RDF is to serve as the foundation of the entire Semantic Web tower.

It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
type propagation/inheritance,

“Tweety is a penguin and a penguin is a bird, so. . . ”
domain and range restrictions,

“Martin has a birthdate, and only people have birthdates, so. . . ”
existential restrictions.

“all persons have parents, and Martin is a person, so. . . ”

. . . to which we shall return in later lectures
To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory
that specifies how the different node types should be interpreted
and in particular what entailment should be taken to mean.
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Why we need semantics

Example: What is the meaning of blank nodes?

Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {

_:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}

SPARQL must
match the query to graph patterns
which involves assigning values to variables and blank nodes

But,

which values are to count?
the problem becomes more acute under reasoning.
Should a value for foaf:familyname match a query for foaf:name?
Are blanks in SPARQL the same as blanks in RDF?
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Model-theoretic semantics from a birds-eye perspective

Formal semantics

The study of how to model the meaning of a logical calculus.

A logical calculus consists of:
A finite set of symbols,
a grammar, which specifies the formulae,
a set of axioms and inference rules from which we construct proofs.

A logical calculus can be defined apart from any interpretation.
A calculus that has not been furnished with a formal semantics,

is a ‘blind’ machine, a mere symbol manipulator,
the only criterion of correctness is provability.
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Model-theoretic semantics from a birds-eye perspective

Derivations

A proof typically looks something like this:

P ` Q,P Q,P ` Q

P → Q,P ` Q

R ` Q,P Q,R ` Q

P → Q,R ` Q

P → Q,P ∨ R ` Q

P → Q ` (P ∨ R)→ Q

Where each line represents an application of an inference rule.
How do we know that the inference rules are well-chosen?
Which manipulations derive conclusions that hold in the real world?
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Model-theoretic semantics from a birds-eye perspective

Finding out stuff about the World

The “Real World”

G
H

M

G : Aristotle was Greek
H: Aristotle was human
M: Aristotle was mortal

A: intended model
B . . .: unintended models
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Model-theoretic semantics from a birds-eye perspective

Model-theoretic semantics

Basic idea: Asserting a sentence makes a claim about the world:

A formula therefore limits the set of worlds that are possible.
We can therefore encode meaning/logical content

by describing models of these worlds.
thus making certain aspects of meaning mathematically tractable

The exact makeup of models varies from logic to logic, but they all

express a view on what kinds of things there are,
and the basic relations between these things

By selecting a class of models one selects the basic features of the world
as one chooses to see it.

Whatever these models all share can be said to be entailed by those features.
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Repetition: Propositional Logic

Propositional Logic: Formulas

Formulas are defined “by induction” or “recursively”:
1 Any letter p, q, r ,. . . is a formula
2 if A and B are formulas, then

(A ∧ B) is also a formula (read: “A and B”)
(A ∨ B) is also a formula (read: “A or B”)
¬A is also a formula (read: “not A”)

Nothing else is. Only what rules [1] and [2] say is a formula.
Examples of formulae: p (p ∧ ¬r) (q ∧ ¬q) ((p ∨ ¬q) ∧ ¬p)
Formulas are just a kind of strings until now:

no meaning
but every formula can be “parsed” uniquely.

((q ∧ p) ∨ (p ∧ q))

∨

∧

q p

∧

p q
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Repetition: Propositional Logic

Interpretations

Logic is about truth and falsity
Truth of compound formulas depends on truth of letters.
Idea: put all letters that are “true” into a set!
Define: An interpretation I is a set of letters.
Letter p is true in interpretation I if p ∈ I.
E.g., in I1 = {p, q}, p is true, but r is false.

p rrq

I1 I2

But in I2 = {q, r}, p is false, but r is true.

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 16 / 42



Repetition: Propositional Logic

Semantic Validity |=

To say that p is true in I, write
I |= p

For instance

p rq

I1 I2

I1 |= p I2 6|= p

In other words, for all letters p:

I |= p if and only if p ∈ I
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Repetition: Propositional Logic

Validity of Compound Formulas

Is ((q ∧ r) ∨ (p ∧ q)) true in I?
Idea: apply our rule recursively
For any formulas A and B ,. . .
. . . and any interpretation I,. . .

. . . I |= A ∧ B if and only if I |= A and I |= B

. . . I |= A ∨ B if and only if I |= A or I |= B (or both)

. . . I |= ¬A if and only if I 6|= A.
For instance

p rq

I1

I1 |= ((q ∧ r) ∨ (p ∧ q))

I1 6|= (q ∧ r)

I1 |= q I1 6|= r

I1 |= (p ∧ q)

I1 |= p I1 |= q
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Repetition: Propositional Logic

Truth Table

Semantics of ¬, ∧, ∨ often given as truth table:

A B ¬A A ∧ B A ∨ B

f f t f f
f t t f t
t f f f t
t t f t t
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Repetition: Propositional Logic

Tautologies

A formula A that is true in all interpretations is called a tautology
also logically valid
also a theorem (of propositional logic)
written:

|= A

(p ∨ ¬p) is a tautology
True whatever p means:

The sky is blue or the sky is not blue.
P.N. will win the 50km in 2016 or P.N. will not win the 50km in 2016.
The slithy toves gyre or the slithy toves do not gyre.

Possible to derive true statements mechanically. . .
. . . without understanding their meaning!
. . . e.g. using truth tables for small cases.
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Repetition: Propositional Logic

Entailment

Tautologies are true in all interpretations
Some formulas are true only under certain assumptions
A entails B , written A |= B if

I |= B
for all interpretations I with I |= A

Also: “B is a logical consequence of A”
Whenever A holds, also B holds
For instance:

p ∧ q |= p

Independent of meaning of p and q:
If it rains and the sky is blue, then it rains
If P.N. wins the race and the world ends, then P.N. wins the race
If ’tis brillig and the slythy toves do gyre, then ’tis brillig

Also entailment can be checked mechanically, without knowing the meaning of words.
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Repetition: Propositional Logic

Question

Given the letters
P – Ola answers none of the questions correctly
Q – Ola fails the exam

Which of the following are tautologies of propositional logic?
1 Q

2 ¬Q
3 P → Q

4 Q → (P → Q)
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Simplified RDF semantics

Taking the structure of triples into account

Unlike propositions, triples have parts, namely:

subject
predicates, and
objects

Less abstractly, these may be:
URI references
literal values, and
blank nodes

Triples are true or false on the basis of what each part refers to.
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Simplified RDF semantics

On what there is: Resources, Properties, Literals

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs
Properties: A property is a specific aspect, characteristic, attribute or relation

used to describe a resource. Properties are also resources, and therefore identified
by URIs.

Literals: A literal value is a concrete data item, such as an integer or a string.
String literals name themselves, i.e.

“Julius Ceasar” names the string “Julius Ceasar”
“42” names the string “42”

The semantics of typed and language tagged literals is considerably more complex.
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Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.

No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!
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individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person

Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

Individuals (all the rest, “usual” resources)
All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:
individual property individual .

individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .

property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .

property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .

property rdfs:range class .
Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint kinds:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!
INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 26 / 42



Simplified RDF semantics

Short Forms

Resources and Triples are no longer all alike

No need to use the same general triple notation
Use alternative notation

Triples Abbreviation
indi prop indi . r(i1, i2)
indi rdf:type class . C (i1)

class rdfs:subClassOf class . C v D
prop rdfs:subPropOf prop . r v s
prop rdfs:domain class . dom(r ,C )
prop rdfs:range class . rg(r ,C )

This is called “Description Logic” (DL) Syntax
Used much in particular for OWL

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 27 / 42



Simplified RDF semantics

Short Forms

Resources and Triples are no longer all alike
No need to use the same general triple notation

Use alternative notation

Triples Abbreviation
indi prop indi . r(i1, i2)
indi rdf:type class . C (i1)

class rdfs:subClassOf class . C v D
prop rdfs:subPropOf prop . r v s
prop rdfs:domain class . dom(r ,C )
prop rdfs:range class . rg(r ,C )

This is called “Description Logic” (DL) Syntax
Used much in particular for OWL

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 27 / 42



Simplified RDF semantics

Short Forms

Resources and Triples are no longer all alike
No need to use the same general triple notation
Use alternative notation

Triples Abbreviation
indi prop indi . r(i1, i2)
indi rdf:type class . C (i1)

class rdfs:subClassOf class . C v D
prop rdfs:subPropOf prop . r v s
prop rdfs:domain class . dom(r ,C )
prop rdfs:range class . rg(r ,C )

This is called “Description Logic” (DL) Syntax
Used much in particular for OWL

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 27 / 42



Simplified RDF semantics

Short Forms

Resources and Triples are no longer all alike
No need to use the same general triple notation
Use alternative notation

Triples Abbreviation
indi prop indi . r(i1, i2)
indi rdf:type class . C (i1)

class rdfs:subClassOf class . C v D
prop rdfs:subPropOf prop . r v s
prop rdfs:domain class . dom(r ,C )
prop rdfs:range class . rg(r ,C )

This is called “Description Logic” (DL) Syntax

Used much in particular for OWL

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 27 / 42



Simplified RDF semantics

Short Forms

Resources and Triples are no longer all alike
No need to use the same general triple notation
Use alternative notation

Triples Abbreviation
indi prop indi . r(i1, i2)
indi rdf:type class . C (i1)

class rdfs:subClassOf class . C v D
prop rdfs:subPropOf prop . r v s
prop rdfs:domain class . dom(r ,C )
prop rdfs:range class . rg(r ,C )

This is called “Description Logic” (DL) Syntax
Used much in particular for OWL

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 27 / 42



Simplified RDF semantics

Example

Triples:

ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .

DL syntax, without namespaces:

loves(romeo, juliet)
Lady(juliet)

Lady v Person
loves v knows
dom(loves, Lover)
rg(loves,Beloved)
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Simplified RDF semantics

Interpretations for RDF

To interpret propositional formulas, we need to know how to interpret

Letters
To interpret the six kinds of triples, we need to know how to interpret

Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of

A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.
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Simplified RDF semantics

An example “intended” interpretation

∆I1 =

{
, ,

}

romeoI1 = julietI1 =

LadyI1 =

{ }
PersonI1 = ∆I1

LoverI1 = BelovedI1 =

{
,

}
lovesI1 =

{〈
,

〉
,

〈
,

〉}
knowsI1 = ∆I1 ×∆I1
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Simplified RDF semantics

An example “non-intended” interpretation

∆I2 = N = {1, 2, 3, 4, . . .}

romeoI2 = 17
julietI2 = 32
LadyI2 = {2n | n ∈ N} = {2, 4, 8, 16, 32, . . .}
PersonI2 = {2n | n ∈ N} = {2, 4, 6, 8, 10, . . .}
LoverI2 = BelovedI2 = N
lovesI2 =<= {〈x , y〉 | x < y}
knowsI2 =≤= {〈x , y〉 | x ≤ y}

Just because names (URIs) look familiar, they don’t need to denote what we think!
In fact, there is no way of ensuring they denote only what we think!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 31 / 42



Simplified RDF semantics

An example “non-intended” interpretation

∆I2 = N = {1, 2, 3, 4, . . .}
romeoI2 = 17
julietI2 = 32

LadyI2 = {2n | n ∈ N} = {2, 4, 8, 16, 32, . . .}
PersonI2 = {2n | n ∈ N} = {2, 4, 6, 8, 10, . . .}
LoverI2 = BelovedI2 = N
lovesI2 =<= {〈x , y〉 | x < y}
knowsI2 =≤= {〈x , y〉 | x ≤ y}

Just because names (URIs) look familiar, they don’t need to denote what we think!
In fact, there is no way of ensuring they denote only what we think!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 31 / 42



Simplified RDF semantics

An example “non-intended” interpretation

∆I2 = N = {1, 2, 3, 4, . . .}
romeoI2 = 17
julietI2 = 32
LadyI2 = {2n | n ∈ N} = {2, 4, 8, 16, 32, . . .}
PersonI2 = {2n | n ∈ N} = {2, 4, 6, 8, 10, . . .}
LoverI2 = BelovedI2 = N

lovesI2 =<= {〈x , y〉 | x < y}
knowsI2 =≤= {〈x , y〉 | x ≤ y}

Just because names (URIs) look familiar, they don’t need to denote what we think!
In fact, there is no way of ensuring they denote only what we think!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 31 / 42



Simplified RDF semantics

An example “non-intended” interpretation

∆I2 = N = {1, 2, 3, 4, . . .}
romeoI2 = 17
julietI2 = 32
LadyI2 = {2n | n ∈ N} = {2, 4, 8, 16, 32, . . .}
PersonI2 = {2n | n ∈ N} = {2, 4, 6, 8, 10, . . .}
LoverI2 = BelovedI2 = N
lovesI2 =<= {〈x , y〉 | x < y}
knowsI2 =≤= {〈x , y〉 | x ≤ y}

Just because names (URIs) look familiar, they don’t need to denote what we think!
In fact, there is no way of ensuring they denote only what we think!

INF3580/4580 :: Spring 2017 Lecture 8 :: 6th March 31 / 42



Simplified RDF semantics

An example “non-intended” interpretation

∆I2 = N = {1, 2, 3, 4, . . .}
romeoI2 = 17
julietI2 = 32
LadyI2 = {2n | n ∈ N} = {2, 4, 8, 16, 32, . . .}
PersonI2 = {2n | n ∈ N} = {2, 4, 6, 8, 10, . . .}
LoverI2 = BelovedI2 = N
lovesI2 =<= {〈x , y〉 | x < y}
knowsI2 =≤= {〈x , y〉 | x ≤ y}

Just because names (URIs) look familiar, they don’t need to denote what we think!

In fact, there is no way of ensuring they denote only what we think!
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Simplified RDF semantics

Validity in Interpretations (RDF)

Given an interpretation I, define |= as follows:

I |= r(i1, i2) iff
〈
iI1 , i

I
2
〉
∈ rI

I |= C (i) iff iI ∈ CI

Examples:

I1 |= loves(juliet, romeo) because〈
,

〉
∈ lovesI1 =

{〈
,

〉
,

〈
,

〉}
I1 |= Person(romeo) because

romeoI1 = ∈ PersonI1 = ∆I1

I2 6|= loves(juliet, romeo) because
lovesI2 = < and julietI2 = 32 6< romeoI2 = 17

I2 6|= Person(romeo) because
romeoI2 = 17 6∈ PersonI2 = {2, 4, 6, 8, 10, . . .}
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Simplified RDF semantics

Validity in Interpretations, cont. (RDFS)

Given an interpretation I, define |= as follows:

I |= C v D iff CI ⊆ DI

I |= r v s iff rI ⊆ sI

I |= dom(r ,C ) iff for all 〈x , y〉 ∈ rI , we have x ∈ CI

I |= rg(r ,C ) iff for all 〈x , y〉 ∈ rI , we have y ∈ CI

Examples:

I1 |= Lover v Person because

LoverI1 =

{
,

}
⊆ PersonI1 =

{
, ,

}
I2 6|= Lover v Person because
LoverI2 = N and PersonI2 = {2, 4, 6, 8, 10, . . .}
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Simplified RDF semantics

Finding out stuff about Romeo and Juliet

The “Real World”Interpretations

I1

I2
17 32

I3

I4

Statements

loves(romeo, juliet)
Lady(juliet)

Lady v Person
loves v knows

dom(loves, Lover)
rg(loves, Beloved)

loves(juliet, romeo)

Lover v Person
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Simplified RDF semantics

Example: Range/Domain semantics

I2 |= dom(knows,Beloved)

because. . .

knowsI2 =≤= {〈x , y〉 | x ≤ y}

BelovedI2 = N

and for any x and y with

〈x , y〉 ∈ knowsI2 , i.e. x ≤ y ,

we also have
x ∈ N i.e. x ∈ BelovedI2
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Simplified RDF semantics

Interpretation of Sets of Triples

Given an interpretation I

And a set of triples A (any of the six kinds)
A is valid in I, written

I |= A

iff I |= A for all A ∈ A.
Then I is also called a model of A.
Examples:

A = {loves(romeo, juliet), Lady(juliet), Lady v Person,
loves v knows, dom(loves, Lover), rg(loves,Beloved)}

Then I1 |= A and I2 |= A
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Simplified RDF semantics

Entailment

Given a set of triples A (any of the six kinds)

And a further triple T (also any kind)
T is entailed by A, written A |= T

iff

For any interpretation I with I |= A
I |= T .

A |= B iff I |= B for all I with I |= A
Example:
A = {. . . , Lady(juliet), Lady v Person, . . .} as before
A |= Person(juliet) because. . .
in any interpretation I. . .
if julietI ∈ LadyI and LadyI ⊆ PersonI . . .
then by set theory julietI ∈ PersonI
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Simplified RDF semantics

Finding out stuff about Romeo and Juliet

The “Real World”Interpretations

I1

I2
17 32

I3

I4

Statements

loves(romeo, juliet)
Lady(juliet)

Lady v Person
loves v knows

dom(loves, Lover)
rg(loves, Beloved)

Person(juliet)
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Simplified RDF semantics

Countermodels

If A 6|= T ,. . .
then there is an I with

I |= A
I 6|= T

Vice-versa: if I |= A and I 6|= T , then A 6|= T

Such an I is called a counter-model (for the assumption that A entails T )
To show that A |= T does not hold:

Describe an interpretation I (using your fantasy)
Prove that I |= A (using the semantics)
Prove that I 6|= T (using the semantics)
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Simplified RDF semantics

Countermodel Example

A as before:

A = {loves(romeo, juliet), Lady(juliet), Lady v Person,
loves v knows, dom(loves, Lover), rg(loves,Beloved)}

Does A |= Lover v Beloved?
Holds in I1 and I2.
Try to find an interpretaion with ∆I = {a, b}, a 6= b.
Interpret romeoI = a and julietI = b

Then 〈a, b〉 ∈ lovesI , a ∈ LoverI , b ∈ BelovedI .
With LoverI = {a} and BelovedI = {b}, I 6|= Lover v Beloved !
Choose

lovesI = knowsI = {〈a, b〉} LadyI = PersonI = {b}

to complete the counter-model while satisfying I |= A
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Simplified RDF semantics

Countermodels about Romeo and Juliet

The “Real World”Interpretations

I1

I2
17 32

I3
a b

Statements

loves(romeo, juliet)
Lady(juliet)

Lady v Person
loves v knows

dom(loves, Lover)
rg(loves, Beloved)

Lover v Beloved

6 Counter-model!
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Simplified RDF semantics

Take aways

1 Model-theoretic semantics yields an unambigous notion of entailment,
2 which is necessary in order to liberate data from applications.
3 Shown today: A simplified semantics for parts of RDF

1 Only RDF/RDFS vocabulary to talk “about” predicates and classes
2 Literals and blank nodes next time

Supplementary reading on RDF and RDFS semantics:

http://www.w3.org/TR/rdf-mt/

Section 3.2 in Foundations of SW Technologies
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