# INF3580/4580 – Semantic Technologies – Spring 2017 Lecture 8: RDF and RDFS semantics

Martin Giese

6th March 2017





University of Oslo

# Oblig 5

- Published today
- First delivery due 21 March
- Final delivery due 11 April
- Extra question for INF4580 students
- "Real" semantics of RDF and RDFS
- Foundations book: Section 3.2
- Still OK to ignore some complications, see oblig text
- We provide an excerpt of Sect. 3.2 with unimportant parts removed.
- Go to group sessions!

#### Why we need semantics

2 Model-theoretic semantics from a birds-eye perspective

- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

### Outline

#### Why we need semantics

2 Model-theoretic semantics from a birds-eye perspective

- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

A formal semantics for RDFS became necessary because

the previous informal specification

- the previous informal specification
- ② left plenty of room for interpretation of conclusions, whence

- the previous informal specification
- ② left plenty of room for interpretation of conclusions, whence
- Itriple stores sometimes answered queries differently, thereby

- the previous informal specification
- ② left plenty of room for interpretation of conclusions, whence
- triple stores sometimes answered queries differently, thereby
- obstructing interoperability and interchangeability.

- the previous informal specification
- ② left plenty of room for interpretation of conclusions, whence
- triple stores sometimes answered queries differently, thereby
- obstructing interoperability and interchangeability.
- It information content of data once more came to depend on applications

- the previous informal specification
- ② left plenty of room for interpretation of conclusions, whence
- Itriple stores sometimes answered queries differently, thereby
- obstructing interoperability and interchangeability.
- The information content of data once more came to depend on applications But RDF was supposed to be the **data liberation movement**

### Another look at the Semantic Web cake

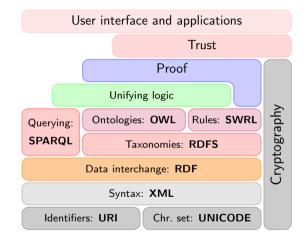


Figure: Semantic Web Stack

RDF is to serve as the foundation of the entire Semantic Web tower.

• It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."
  - domain and range restrictions,

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."
  - domain and range restrictions,
    - "Martin has a birthdate, and only people have birthdates, so..."

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."
  - domain and range restrictions,
    - "Martin has a birthdate, and only people have birthdates, so..."
  - existential restrictions.

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."
  - domain and range restrictions,
    - "Martin has a birthdate, and only people have birthdates, so..."
  - existential restrictions.
    - "all persons have parents, and Martin is a person, so..."

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."
  - domain and range restrictions,
    - "Martin has a birthdate, and only people have birthdates, so..."
  - existential restrictions.
    - "all persons have parents, and Martin is a person, so..."
  - ... to which we shall return in later lectures

RDF is to serve as the foundation of the entire Semantic Web tower.

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."
  - domain and range restrictions,
    - "Martin has a birthdate, and only people have birthdates, so..."
  - existential restrictions.
    - "all persons have parents, and Martin is a person, so..."

... to which we shall return in later lectures

To ensure that infinitely many conclusions will be agreed upon,

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."
  - domain and range restrictions,
    - "Martin has a birthdate, and only people have birthdates, so..."
  - existential restrictions.
    - "all persons have parents, and Martin is a person, so..."
  - ... to which we shall return in later lectures
- To ensure that infinitely many conclusions will be agreed upon,
  - RDF must be furnished with a model-theory

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."
  - domain and range restrictions,
    - "Martin has a birthdate, and only people have birthdates, so..."
  - existential restrictions.
    - "all persons have parents, and Martin is a person, so..."
  - ... to which we shall return in later lectures
- To ensure that infinitely many conclusions will be agreed upon,
  - RDF must be furnished with a model-theory
  - that specifies how the different node types should be interpreted

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
  - type propagation/inheritance,
    - "Tweety is a penguin and a penguin is a bird, so..."
  - domain and range restrictions,
    - "Martin has a birthdate, and only people have birthdates, so..."
  - existential restrictions.
    - "all persons have parents, and Martin is a person, so..."
  - ... to which we shall return in later lectures
- To ensure that infinitely many conclusions will be agreed upon,
  - RDF must be furnished with a model-theory
  - that specifies how the different node types should be interpreted
  - and in particular what entailment should be taken to mean.

Why we need semantics

### Example: What is the meaning of blank nodes?

```
Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {
  _:pub dc:creator [foaf:name "Paul Erdős"], [foaf:name ?name].
}
```

```
Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {
  _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

```
Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {
   _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

• match the query to graph patterns

```
Co-authors of Paul Erdős:
	SELECT DISTINCT ?name WHERE {
	_:pub dc:creator [foaf:name "Paul Erdős"], [foaf:name ?name].
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

```
Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {
   _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

But,

• which values are to count?

```
Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {
  _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

- which values are to count?
- the problem becomes more acute under reasoning.

```
Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {
   _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

- which values are to count?
- the problem becomes more acute under reasoning.
- Should a value for foaf:familyname match a query for foaf:name?

```
Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {
   _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

- which values are to count?
- the problem becomes more acute under reasoning.
- Should a value for foaf:familyname match a query for foaf:name?
- Are blanks in SPARQL the same as blanks in RDF?

```
Co-authors of Paul Erdős:
SELECT DISTINCT ?name WHERE {
   _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

- which values are to count?
- the problem becomes more acute under reasoning.
- Should a value for foaf:familyname match a query for foaf:name?
- Are blanks in SPARQL the same as blanks in RDF?

#### Outline

#### 1 Why we need semantics

#### 2 Model-theoretic semantics from a birds-eye perspective

- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

• The study of how to model the meaning of a logical calculus.

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
  - A finite set of symbols,

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
  - A finite set of symbols,
  - a grammar, which specifies the formulae,

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
  - A finite set of symbols,
  - a grammar, which specifies the formulae,
  - a set of axioms and inference rules from which we construct proofs.

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
  - A finite set of symbols,
  - a grammar, which specifies the formulae,
  - a set of axioms and inference rules from which we construct proofs.
- A logical calculus can be defined apart from any interpretation.

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
  - A finite set of symbols,
  - a grammar, which specifies the formulae,
  - a set of axioms and inference rules from which we construct proofs.
- A logical calculus can be defined apart from any interpretation.
- A calculus that has not been furnished with a formal semantics,

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
  - A finite set of symbols,
  - a grammar, which specifies the formulae,
  - a set of axioms and inference rules from which we construct proofs.
- A logical calculus can be defined apart from any interpretation.
- A calculus that has not been furnished with a formal semantics,
  - is a 'blind' machine, a mere symbol manipulator,

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
  - A finite set of symbols,
  - a grammar, which specifies the formulae,
  - a set of axioms and inference rules from which we construct proofs.
- A logical calculus can be defined apart from any interpretation.
- A calculus that has not been furnished with a formal semantics,
  - is a 'blind' machine, a mere symbol manipulator,
  - the only criterion of correctness is provability.

A proof typically looks something like this:

A proof typically looks something like this:

A proof typically looks something like this:

Where each line represents an application of an inference rule.

A proof typically looks something like this:

$$\frac{P \vdash Q, P \quad Q, P \vdash Q}{P \rightarrow Q, P \vdash Q} \quad \frac{R \vdash Q, P \quad Q, R \vdash Q}{P \rightarrow Q, R \vdash Q}$$
$$\frac{P \rightarrow Q, P \lor R \vdash Q}{P \rightarrow Q \vdash (P \lor R) \rightarrow Q}$$

Where each line represents an application of an inference rule.

• How do we know that the inference rules are well-chosen?

A proof typically looks something like this:

$$\begin{array}{c|c} P \vdash Q, P & Q, P \vdash Q \\ \hline \hline P \rightarrow Q, P \vdash Q & \hline P \rightarrow Q, R \vdash Q \\ \hline \hline \hline P \rightarrow Q, P \vdash Q & \hline \hline P \rightarrow Q, R \vdash Q \\ \hline \hline \hline \hline \hline P \rightarrow Q \vdash (P \lor R) \rightarrow Q \end{array}$$

Where each line represents an application of an inference rule.

- How do we know that the inference rules are well-chosen?
- Which manipulations derive conclusions that hold in the real world?

Model-theoretic semantics from a birds-eye perspective

# Finding out stuff about the World

The "Real World"



- G: Aristotle was Greek
- H: Aristotle was human
- M: Aristotle was mortal

Statements

 $G \to H$  $H \to M$ 

G: Aristotle was Greek

- H: Aristotle was human
- M: Aristotle was mortal

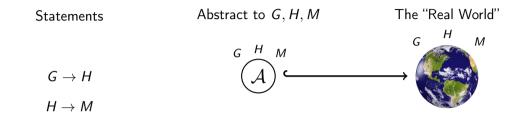
The "Real World"



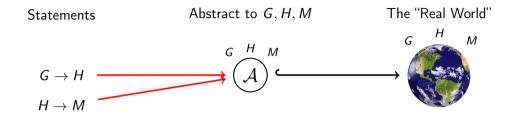


G: Aristotle was Greek

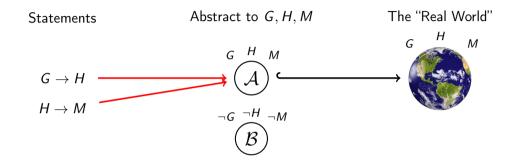
- H: Aristotle was human
- M: Aristotle was mortal



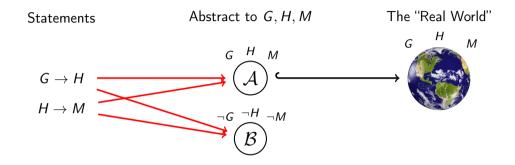
- G: Aristotle was Greek
- H: Aristotle was human
- M: Aristotle was mortal



- G: Aristotle was Greek
- H: Aristotle was human
- M: Aristotle was mortal



- G: Aristotle was Greek
- H: Aristotle was human
- *M*: Aristotle was mortal

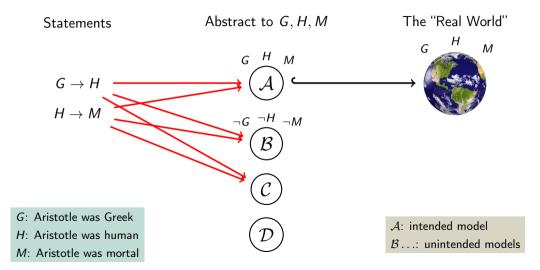


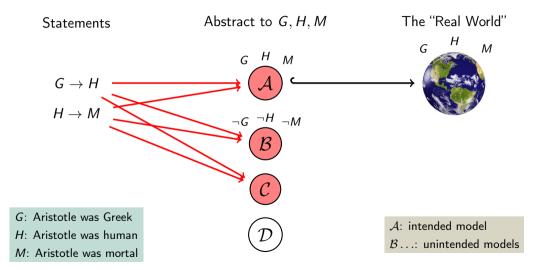
G: Aristotle was Greek

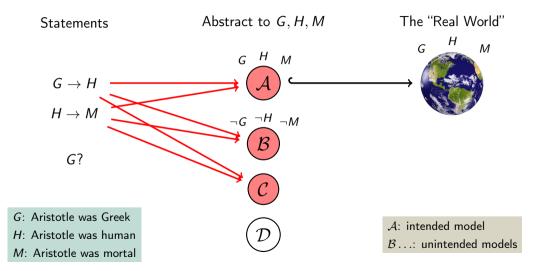
H: Aristotle was human

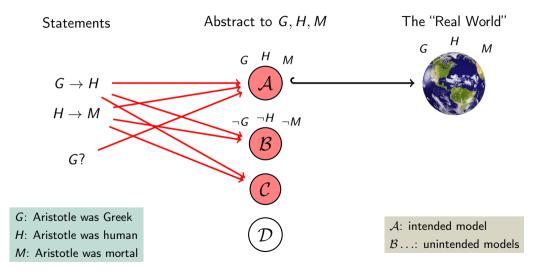
M: Aristotle was mortal

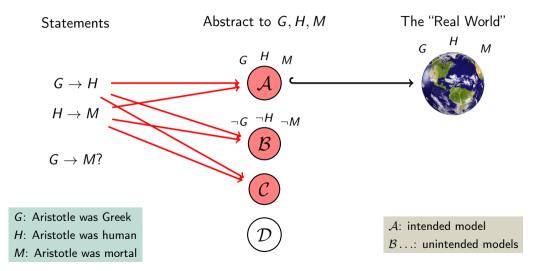
 $\mathcal{A}$ : intended model  $\mathcal{B}$ ...: unintended models

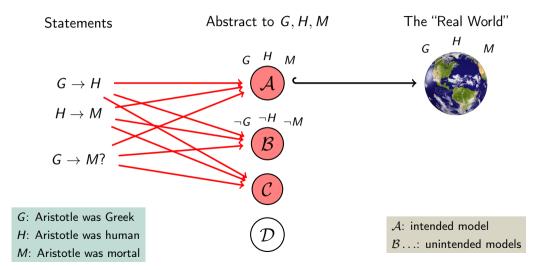


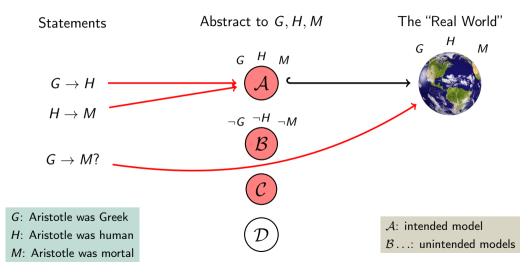












Basic idea: Asserting a sentence makes a claim about the world:

• A formula therefore limits the set of worlds that are possible.

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
  - by describing models of these worlds.

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
  - by describing models of these worlds.
  - thus making certain aspects of meaning mathematically tractable

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
  - by describing models of these worlds.
  - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
  - by describing models of these worlds.
  - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
  - express a view on what kinds of things there are,

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
  - by describing models of these worlds.
  - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
  - express a view on what kinds of things there are,
  - and the basic relations between these things

#### Model-theoretic semantics

Basic idea: Asserting a sentence makes a claim about the world:

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
  - by describing models of these worlds.
  - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
  - express a view on what kinds of things there are,
  - and the basic relations between these things
- By selecting a class of models one selects the basic features of the world

#### Model-theoretic semantics

Basic idea: Asserting a sentence makes a claim about the world:

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
  - by describing models of these worlds.
  - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
  - express a view on what kinds of things there are,
  - and the basic relations between these things
- By selecting a class of models one selects the basic features of the world
  - as one chooses to see it.

#### Model-theoretic semantics

Basic idea: Asserting a sentence makes a claim about the world:

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
  - by describing models of these worlds.
  - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
  - express a view on what kinds of things there are,
  - and the basic relations between these things
- By selecting a class of models one selects the basic features of the world
  - as one chooses to see it.
- Whatever these models all share can be said to be entailed by those features.

#### Outline

- Why we need semantics
- 2 Model-theoretic semantics from a birds-eye perspective
- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

## Propositional Logic: Formulas

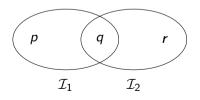
- Formulas are defined "by induction" or "recursively":
- 1 Any letter  $p, q, r, \ldots$  is a formula
- 2 if A and B are formulas, then
  - $(A \land B)$  is also a formula (read: "A and B")
  - $(A \lor B)$  is also a formula (read: "A or B")
  - $\neg A$  is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples of formulae:  $p (p \land \neg r) (q \land \neg q) ((p \lor \neg q) \land \neg p)$
- Formulas are just a kind of strings until now:
  - no meaning
  - but every formula can be "parsed" uniquely.

$$((q \land p) \lor (p \land q))$$

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

#### Interpretations

- Logic is about truth and falsity
- Truth of compound formulas depends on truth of letters.
- Idea: put all letters that are "true" into a set!
- $\bullet$  Define: An interpretation  ${\mathcal I}$  is a set of letters.
- Letter p is true in interpretation  $\mathcal{I}$  if  $p \in \mathcal{I}$ .
- E.g., in  $\mathcal{I}_1 = \{p, q\}$ , p is true, but r is false.



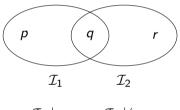
• But in  $\mathcal{I}_2 = \{q, r\}$ , p is false, but r is true.

# Semantic Validity $\models$

• To say that p is true in  $\mathcal{I}$ , write

 $\mathcal{I}\models p$ 

• For instance



$$\mathcal{I}_1 \models p \qquad \mathcal{I}_2 \not\models p$$

• In other words, for all letters *p*:

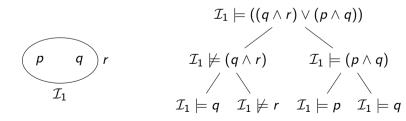
$$\mathcal{I} \models p$$
 if and only if  $p \in \mathcal{I}$ 

# Validity of Compound Formulas

- Is  $((q \land r) \lor (p \land q))$  true in  $\mathcal{I}$ ?
- Idea: apply our rule recursively
- For any formulas A and B,...
- $\bullet$  . . . and any interpretation  $\mathcal{I},\ldots$ 
  - $\ldots \mathcal{I} \models A \land B$  if and only if  $\mathcal{I} \models A$  and  $\mathcal{I} \models B$
  - ...  $\mathcal{I} \models A \lor B$  if and only if  $\mathcal{I} \models A$  or  $\mathcal{I} \models B$  (or both)

• 
$$\ldots \mathcal{I} \models \neg A$$
 if and only if  $\mathcal{I} \not\models A$ .

• For instance



## Truth Table

• Semantics of  $\neg$ ,  $\land$ ,  $\lor$  often given as *truth table*:

| Α | В | $\neg A$ | $A \wedge B$ | $A \lor B$ |
|---|---|----------|--------------|------------|
| f | f | t        | f            | f          |
| f | t | t        | f            | t          |
| t | f | f        | f            | t          |
| t | t | f        | t            | t          |

## Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

# $\models A$

- $(p \lor \neg p)$  is a tautology
- True whatever *p* means:
  - The sky is blue or the sky is not blue.
  - P.N. will win the 50km in 2016 or P.N. will not win the 50km in 2016.
  - The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...
- ... without understanding their meaning!
- $\bullet$  ...e.g. using truth tables for small cases.

## Entailment

- Tautologies are true in all interpretations
- Some formulas are true only under certain assumptions
- A entails B, written  $A \models B$  if

 $\mathcal{I} \models B$ 

for all interpretations  $\mathcal{I}$  with  $\mathcal{I} \models A$ 

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

$$p \wedge q \models p$$

- Independent of meaning of *p* and *q*:
  - If it rains and the sky is blue, then it rains
  - $\bullet\,$  If P.N. wins the race and the world ends, then P.N. wins the race
  - If 'tis brillig and the slythy toves do gyre, then 'tis brillig
- Also entailment can be checked mechanically, without knowing the meaning of words.

#### Question

#### Given the letters

- P Ola answers none of the questions correctly
- Q Ola fails the exam
- Which of the following are tautologies of propositional logic?
  - 0 Q
  - **2** ¬*Q*

#### Outline

- Why we need semantics
- 2 Model-theoretic semantics from a birds-eye perspective
- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

Unlike propositions, triples have parts, namely:

Unlike propositions, triples have parts, namely:

- subject
- predicates, and
- objects

Unlike propositions, triples have parts, namely:

- subject
- predicates, and
- objects

Less abstractly, these may be:

Unlike propositions, triples have parts, namely:

- subject
- predicates, and
- objects

Less abstractly, these may be:

- URI references
- literal values, and
- blank nodes

Unlike propositions, triples have parts, namely:

- subject
- predicates, and
- objects

Less abstractly, these may be:

- URI references
- literal values, and
- blank nodes

Triples are true or false on the basis of what each part refers to.

Simplified RDF semantics

#### On what there is: Resources, Properties, Literals

The RDF data model consists of three object types; resources, properties and literals values:

The RDF data model consists of three object types; resources, properties and literals values:

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.

The RDF data model consists of three object types; resources, properties and literals values:

- Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.
  - Literals: A literal value is a concrete data item, such as an integer or a string.

The RDF data model consists of three object types; resources, properties and literals values:

- Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.
  - Literals: A literal value is a concrete data item, such as an integer or a string. String literals name themselves, i.e.

The RDF data model consists of three object types; resources, properties and literals values:

- Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.
  - Literals: A literal value is a concrete data item, such as an integer or a string. String literals name themselves, i.e.
    - "Julius Ceasar" names the string "Julius Ceasar"

The RDF data model consists of three object types; resources, properties and literals values:

- Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.
  - Literals: A literal value is a concrete data item, such as an integer or a string. String literals name themselves, i.e.
    - "Julius Ceasar" names the string "Julius Ceasar"
    - "42" names the string "42"

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

- Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.
  - Literals: A literal value is a concrete data item, such as an integer or a string. String literals name themselves, i.e.
    - "Julius Ceasar" names the string "Julius Ceasar"
    - "42" names the string "42"

The semantics of typed and language tagged literals is considerably more complex.

• We will simplify things by only looking at certain kinds of RDF graphs.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - Classes like foaf:Person

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - *Classes* like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - *Classes* like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
  - Individuals (all the rest, "usual" resources)

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - *Classes* like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
  - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - *Classes* like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
  - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - *Classes* like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
  - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - Classes like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
  - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - Classes like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
  - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - Classes like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
  - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - Classes like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
  - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

```
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
  - Properties like foaf:knows, dc:title
  - Classes like foaf:Person
  - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
  - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

• Forget blank nodes and literals for a while!

• Resources and Triples are no longer all alike

- Resources and Triples are no longer all alike
- No need to use the same general triple notation

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

| Triples                                  | Abbreviation                             |
|------------------------------------------|------------------------------------------|
| indi prop indi .                         | $\frac{r(i_1, i_2)}{C(i_1)}$             |
| indi rdf:type class .                    | $C(i_1)$                                 |
| <pre>class rdfs:subClassOf class .</pre> | $C \sqsubseteq D$                        |
| <pre>prop rdfs:subPropOf prop .</pre>    | $r \sqsubseteq s$                        |
| <pre>prop rdfs:domain class .</pre>      | $r \sqsubseteq s$ $dom(r, C)$ $rg(r, C)$ |
| <pre>prop rdfs:range class .</pre>       | rg( <i>r</i> , <i>C</i> )                |

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

| Triples                                  | Abbreviation                             |
|------------------------------------------|------------------------------------------|
| indi prop indi .                         | $\frac{r(i_1, i_2)}{C(i_1)}$             |
| indi rdf:type class .                    | $C(i_1)$                                 |
| <pre>class rdfs:subClassOf class .</pre> | $C \sqsubseteq D$                        |
| <pre>prop rdfs:subPropOf prop .</pre>    | <i>r</i> ⊑ <i>s</i>                      |
| <pre>prop rdfs:domain class .</pre>      | $r \sqsubseteq s$ $dom(r, C)$ $rg(r, C)$ |
| <pre>prop rdfs:range class .</pre>       | rg( <i>r</i> , <i>C</i> )                |

• This is called "Description Logic" (DL) Syntax

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

| Triples                                  | Abbreviation                                                    |
|------------------------------------------|-----------------------------------------------------------------|
| indi prop indi .                         | $ \begin{array}{c} r(i_1, i_2) \\ C(i_1) \end{array} $          |
| indi rdf:type class .                    | $C(i_1)$                                                        |
| <pre>class rdfs:subClassOf class .</pre> | $C \sqsubseteq D$<br>$r \sqsubseteq s$<br>dom(r, C)<br>rg(r, C) |
| <pre>prop rdfs:subPropOf prop .</pre>    | <i>r</i> ⊑ <i>s</i>                                             |
| <pre>prop rdfs:domain class .</pre>      | dom( <i>r</i> , <i>C</i> )                                      |
| <pre>prop rdfs:range class .</pre>       | rg( <i>r</i> , <i>C</i> )                                       |

- This is called "Description Logic" (DL) Syntax
- Used much in particular for OWL



• Triples:

### Example

Triples:

ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .



### Example

Triples:

ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .

• DL syntax, without namespaces:



## Example

Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

• DL syntax, without namespaces:

```
loves(romeo, juliet)
Lady(juliet)
Lady ⊑ Person
loves ⊑ knows
dom(loves, Lover)
rg(loves, Beloved)
```



• To interpret propositional formulas, we need to know how to interpret

- To interpret propositional formulas, we need to know how to interpret
  - Letters

- To interpret propositional formulas, we need to know how to interpret
   Letters
- To interpret the six kinds of triples, we need to know how to interpret

- $\bullet$  To interpret propositional formulas, we need to know how to interpret
  - Letters
- To interpret the six kinds of triples, we need to know how to interpret
  - Individual URIs as real or imagined objects

- To interpret propositional formulas, we need to know how to interpret
  - Letters
- To interpret the six kinds of triples, we need to know how to interpret
  - Individual URIs as real or imagined objects
  - Class URIs as sets of such objects

- To interpret propositional formulas, we need to know how to interpret
  - Letters
- To interpret the six kinds of triples, we need to know how to interpret
  - Individual URIs as real or imagined objects
  - Class URIs as sets of such objects
  - Property URIs as relations between these objects

- To interpret propositional formulas, we need to know how to interpret
  - Letters
- To interpret the six kinds of triples, we need to know how to interpret
  - Individual URIs as real or imagined objects
  - Class URIs as sets of such objects
  - Property URIs as relations between these objects
- $\bullet$  A DL-interpretation  ${\mathcal I}$  consists of

- To interpret propositional formulas, we need to know how to interpret
  - Letters
- To interpret the six kinds of triples, we need to know how to interpret
  - Individual URIs as real or imagined objects
  - Class URIs as sets of such objects
  - Property URIs as relations between these objects
- $\bullet$  A DL-interpretation  ${\mathcal I}$  consists of
  - A set  $\Delta^{\mathcal{I}}$ , called the *domain* (sorry!) of  $\mathcal{I}$

- To interpret propositional formulas, we need to know how to interpret
  - Letters
- To interpret the six kinds of triples, we need to know how to interpret
  - Individual URIs as real or imagined objects
  - Class URIs as sets of such objects
  - Property URIs as relations between these objects
- $\bullet$  A DL-interpretation  ${\mathcal I}$  consists of
  - A set  $\Delta^{\mathcal{I}}$ , called the *domain* (sorry!) of  $\mathcal{I}$
  - For each individual URI *i*, an element  $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

- To interpret propositional formulas, we need to know how to interpret
  - Letters
- To interpret the six kinds of triples, we need to know how to interpret
  - Individual URIs as real or imagined objects
  - Class URIs as sets of such objects
  - Property URIs as relations between these objects
- $\bullet$  A DL-interpretation  ${\mathcal I}$  consists of
  - A set  $\Delta^{\mathcal{I}}$ , called the *domain* (sorry!) of  $\mathcal{I}$
  - For each individual URI *i*, an element  $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
  - For each class URI C, a subset  $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$

- To interpret propositional formulas, we need to know how to interpret
  - Letters
- To interpret the six kinds of triples, we need to know how to interpret
  - Individual URIs as real or imagined objects
  - Class URIs as sets of such objects
  - Property URIs as relations between these objects
- $\bullet$  A DL-interpretation  ${\mathcal I}$  consists of
  - A set  $\Delta^{\mathcal{I}}$ , called the *domain* (sorry!) of  $\mathcal{I}$
  - For each individual URI *i*, an element  $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
  - For each class URI *C*, a subset  $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
  - For each property URI r, a relation  $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

- To interpret propositional formulas, we need to know how to interpret
  - Letters
- To interpret the six kinds of triples, we need to know how to interpret
  - Individual URIs as real or imagined objects
  - Class URIs as sets of such objects
  - Property URIs as relations between these objects
- $\bullet$  A DL-interpretation  ${\mathcal I}$  consists of
  - A set  $\Delta^{\mathcal{I}}$ , called the *domain* (sorry!) of  $\mathcal{I}$
  - For each individual URI *i*, an element  $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
  - For each class URI *C*, a subset  $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
  - For each property URI r, a relation  $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- Given these, it will be possible to say whether a triple holds or not.

Simplified RDF semantics

• 
$$\Delta^{\mathcal{I}_1} = \left\{ \left| \left| \left| \left| \right\rangle \right| \right\rangle, \left| \left| \left| \right\rangle \right| \right\rangle \right\} \right\}$$

• 
$$\Delta^{\mathcal{I}_1} = \left\{ \overbrace{\begin{subarray}{c} \\ \hline \end{array}, \overbrace{\begin{subarray}{c} \end{array}, \overbrace{\begin{subarray}{c} \end{array}, \overbrace{\begin{subarray}{c} \end{array}, \overbrace{\begin{subarray}{c} \end{array}, \overbrace{\begin{subarray}{c} \end{array}, \rule \\ \hline \begin{subarray}{c} \end{array}, \rule \\ \hline \begin{subarray}{c} \end{array}, \rule \\ \begin{subarray}{c} \end{array}, \rule \begin{subarray}{c} \end{array}, \rule$$

• 
$$\Delta^{\mathcal{I}_1} = \left\{ \left| \left| \left| \right| \right| \right|, \left| \left| \right| \right| \right| \right\}$$
  
•  $romeo^{\mathcal{I}_1} = \left| \left| \left| \left| \right| \right| \right| \right| \left| \left| \left| \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| \right| \right| \right\}$   
•  $Lady^{\mathcal{I}_1} = \left\{ \left| \left| \left| \left| \left| \right| \right| \right| \right\} \right\}$   $Person^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1}$   
 $Lover^{\mathcal{I}_1} = Beloved^{\mathcal{I}_1} = \left\{ \left| \left| \left| \left| \left| \left| \right| \right| \right| \right\} \right\}$ 

• 
$$\Delta^{\mathcal{I}_{1}} = \left\{ \left| \overbrace{}^{\mathcal{I}_{1}}, \overbrace{}^{\mathcal{I}_{1}}, \overbrace{}^{\mathcal{I}_{2}}, \overbrace{}^{\mathcal{I}_{2}} \right| \right\}$$
  
•  $romeo^{\mathcal{I}_{1}} = \left| \overbrace{}^{\mathcal{I}_{2}} \right| \quad person^{\mathcal{I}_{1}} = \Delta^{\mathcal{I}_{1}}$   
•  $Lady^{\mathcal{I}_{1}} = \left\{ \left| \overbrace{}^{\mathcal{I}_{2}} \right| \right\} \quad Person^{\mathcal{I}_{1}} = \Delta^{\mathcal{I}_{1}}$   
 $Lover^{\mathcal{I}_{1}} = Beloved^{\mathcal{I}_{1}} = \left\{ \left| \overbrace{}^{\mathcal{I}_{2}} \right|, \overbrace{}^{\mathcal{I}_{2}} \right\} \right\}$   
•  $loves^{\mathcal{I}_{1}} = \left\{ \left\langle \left| \overbrace{}^{\mathcal{I}_{2}} \right|, \overbrace{}^{\mathcal{I}_{2}} \right\rangle, \left\langle \left| \overbrace{}^{\mathcal{I}_{2}} \right|, \overbrace{}^{\mathcal{I}_{2}} \right\rangle \right\}$ 

• 
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

• 
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

•  $romeo^{\mathcal{I}_2} = 17$  $juliet^{\mathcal{I}_2} = 32$ 

• 
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- $romeo^{\mathcal{I}_2} = 17$  $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$   $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$  $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$

• 
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- $romeo^{\mathcal{I}_2} = 17$  $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$   $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$  $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$

• 
$$loves^{\mathcal{I}_2} = <= \{ \langle x, y \rangle \mid x < y \}$$
  
 $knows^{\mathcal{I}_2} = \le = \{ \langle x, y \rangle \mid x \le y \}$ 

• 
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- $romeo^{\mathcal{I}_2} = 17$  $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$   $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$  $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = <= \{ \langle x, y \rangle \mid x < y \}$  $knows^{\mathcal{I}_2} = \le= \{ \langle x, y \rangle \mid x \le y \}$
- Just because names (URIs) look familiar, they don't need to denote what we think!

#### An example "non-intended" interpretation

• 
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- $romeo^{\mathcal{I}_2} = 17$  $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$   $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$  $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = <= \{ \langle x, y \rangle \mid x < y \}$  $knows^{\mathcal{I}_2} = \le= \{ \langle x, y \rangle \mid x \le y \}$
- Just because names (URIs) look familiar, they don't need to denote what we think!
- In fact, there is no way of ensuring they denote only what we think!

• Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:

- Given an interpretation *I*, define ⊨ as follows: *I* ⊨ *r*(*i*<sub>1</sub>, *i*<sub>2</sub>) iff ⟨*i*<sub>1</sub><sup>*T*</sup>, *i*<sub>2</sub><sup>*T*</sup>⟩ ∈ *r*<sup>*T*</sup>

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2)$  iff  $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$   $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2)$  iff  $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$   $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2)$  iff  $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models \textit{loves(juliet, romeo)}$  because

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2)$  iff  $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$   $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models loves(iuliet, romeo)$  because

$$\left| \left\langle \right\rangle \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle \right\rangle, \left\langle \right\rangle \right\rangle, \left\langle \left\langle \right\rangle \right\rangle, \left\langle \right\rangle \right\rangle \right\}$$

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2)$  iff  $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$   $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models loves(juliet, romeo)$  because

$$\left\langle \left\langle \right\rangle \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \left\langle \right\rangle \right\rangle , \left\langle \left\langle \right\rangle \right\rangle , \left\langle \left\langle \left\langle \right\rangle \right\rangle , \left\langle \left\langle \right\rangle \right\rangle \right\rangle \right\rangle \right\} \right\}$$

•  $\mathcal{I}_1 \models Person(romeo)$  because

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2)$  iff  $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$   $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models loves(juliet, romeo)$  because

•  $\mathcal{I}_1 \models Person(romeo)$  because

$$romeo^{\mathcal{I}_1} = \bigotimes \in Person^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1}$$

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2)$  iff  $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$   $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models loves(iuliet, romeo)$  because

•  $\mathcal{I}_1 \models Person(romeo)$  because

$$\mathsf{romeo}^{\mathcal{I}_1} = \bigotimes \in \mathsf{Person}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1}$$

•  $\mathcal{I}_2 \not\models loves(juliet, romeo)$  because

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models loves(juliet, romeo)$  because

•  $\mathcal{I}_1 \models Person(romeo)$  because

$$comeo^{\mathcal{I}_{\mathbf{1}}} = egin{matrix} \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} \end{pmatrix} \in \mathit{Person}^{\mathcal{I}_{\mathbf{1}}} = \Delta^{\mathcal{I}_{\mathbf{1}}}$$

•  $\mathcal{I}_2 \not\models loves(juliet, romeo)$  because  $loves^{\mathcal{I}_2} = < and juliet^{\mathcal{I}_2} = 32 \not< romeo^{\mathcal{I}_2} = 17$ 

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models loves(juliet, romeo)$  because

•  $\mathcal{I}_1 \models \textit{Person(romeo)}$  because

$$\mathsf{romeo}^{\mathcal{I}_1} = \bigotimes \in \mathsf{Person}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1}$$

- $\mathcal{I}_2 \not\models loves(juliet, romeo)$  because  $loves^{\mathcal{I}_2} = < and juliet^{\mathcal{I}_2} = 32 \not< romeo^{\mathcal{I}_2} = 17$
- $\mathcal{I}_2 \not\models \textit{Person(romeo)}$  because

- Given an interpretation  $\mathcal I,$  define  $\models$  as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$  iff  $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models loves(juliet, romeo)$  because

•  $\mathcal{I}_1 \models \textit{Person(romeo)}$  because

$$romeo^{\mathcal{I}_1} = egin{matrix} \mathcal{I}_1 \ \mathcal{I}_2 \ \mathcal{I}_1 \ \mathcal{I}_1$$

- $\mathcal{I}_2 \not\models loves(juliet, romeo)$  because  $loves^{\mathcal{I}_2} = < and juliet^{\mathcal{I}_2} = 32 \not< romeo^{\mathcal{I}_2} = 17$
- $\mathcal{I}_2 \not\models Person(romeo)$  because
- romeo<sup> $\mathcal{I}_2$ </sup> = 17  $\notin$  Person<sup> $\mathcal{I}_2$ </sup> = {2, 4, 6, 8, 10, ...}

• Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$  iff  $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$  iff  $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{dom}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $x \in C^{\mathcal{I}}$

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$  iff  $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{dom}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{rg}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $y \in C^{\mathcal{I}}$

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$  iff  $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{dom}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{rg}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $y \in C^{\mathcal{I}}$
- Examples:

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$  iff  $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{dom}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{rg}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $y \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models Lover \sqsubseteq Person$  because

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$  iff  $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{dom}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{rg}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $y \in C^{\mathcal{I}}$
- Examples:
  - $\mathcal{I}_1 \models Lover \sqsubseteq Person$  because

$$Lover^{\mathcal{I}_1} = \left\{ \bigotimes_{i=1}^{\infty}, \bigotimes_{i=1}^{\infty} \right\} \subseteq Person^{\mathcal{I}_1} = \left\{ \bigotimes_{i=1}^{\infty}, \bigotimes_{i=1}^{\infty}, \bigotimes_{i=1}^{\infty} \right\}$$

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$  iff  $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{dom}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{rg}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $y \in C^{\mathcal{I}}$
- Examples:

• 
$$\mathcal{I}_1 \models Lover \sqsubseteq Person \text{ because}$$
  
 $Lover^{\mathcal{I}_1} = \left\{ \bigotimes_{i=1}^{m}, \bigotimes_{i=1}^{m} \right\} \subseteq Person^{\mathcal{I}_1} = \left\{ \bigotimes_{i=1}^{m}, \bigotimes_{i=1}^{m}, \bigotimes_{i=1}^{m} \right\}$ 

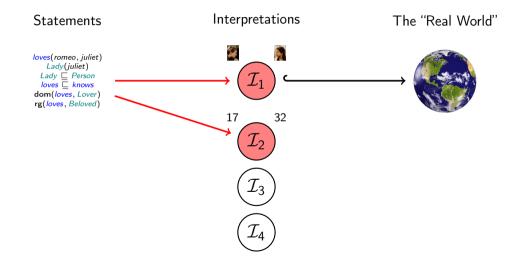
•  $\mathcal{I}_2 \not\models \textit{Lover} \sqsubseteq \textit{Person}$  because

- Given an interpretation  $\mathcal{I}$ , define  $\models$  as follows:
- $\mathcal{I} \models C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$  iff  $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{dom}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{rg}(r, C)$  iff for all  $\langle x, y \rangle \in r^{\mathcal{I}}$ , we have  $y \in C^{\mathcal{I}}$
- Examples:

• 
$$\mathcal{I}_{1} \models Lover \sqsubseteq Person \text{ because}$$
  
 $Lover^{\mathcal{I}_{1}} = \left\{ \bigotimes_{i=1}^{m}, \bigotimes_{i=1}^{m} \right\} \subseteq Person^{\mathcal{I}_{1}} = \left\{ \bigotimes_{i=1}^{m}, \bigotimes_{i=1}^{m}, \bigotimes_{i=1}^{m} \right\}$ 

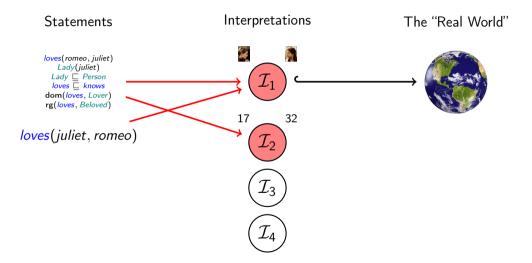
•  $\mathcal{I}_2 \not\models Lover \sqsubseteq Person$  because  $Lover^{\mathcal{I}_2} = \mathbb{N}$  and  $Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$  Simplified RDF semantics

### Finding out stuff about Romeo and Juliet



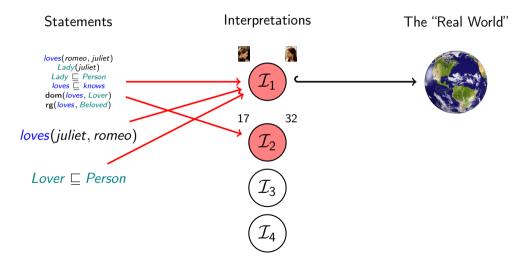
Simplified RDF semantics

### Finding out stuff about Romeo and Juliet



Simplified RDF semantics

### Finding out stuff about Romeo and Juliet



 $\mathcal{I}_2 \models \mathsf{dom}(\mathit{knows}, \mathit{Beloved})$ 

because...

 $\mathcal{I}_2 \models \mathsf{dom}(\mathit{knows}, \mathit{Beloved})$ 

because...

$$knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$$
  
 $Beloved^{\mathcal{I}_2} = \mathbb{N}$ 

 $\mathcal{I}_2 \models \mathsf{dom}(\mathit{knows}, \mathit{Beloved})$ 

because...

$$knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$$
  
 $Beloved^{\mathcal{I}_2} = \mathbb{N}$ 

and for any x and y with

$$\langle x, y \rangle \in knows^{\mathcal{I}_2}$$
, i.e.  $x \leq y$ ,

 $\mathcal{I}_2 \models \mathsf{dom}(\mathit{knows}, \mathit{Beloved})$ 

because...

$$knows^{\mathcal{I}_{2}} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$$
  
 $Beloved^{\mathcal{I}_{2}} = \mathbb{N}$ 

and for any x and y with

$$\langle x, y \rangle \in knows^{\mathcal{I}_2}, \quad \text{i.e.} \quad x \leq y,$$

we also have

$$x \in \mathbb{N}$$
 i.e.  $x \in Beloved^{\mathcal{I}_2}$ 

 $\bullet$  Given an interpretation  ${\cal I}$ 

- $\bullet$  Given an interpretation  ${\cal I}$
- And a set of triples  $\mathcal{A}$  (any of the six kinds)

- $\bullet$  Given an interpretation  ${\cal I}$
- And a set of triples  $\mathcal{A}$  (any of the six kinds)
- $\mathcal{A}$  is valid in  $\mathcal{I}$ , written

 $\mathcal{I} \models \mathcal{A}$ 

- $\bullet$  Given an interpretation  ${\cal I}$
- And a set of triples  $\mathcal{A}$  (any of the six kinds)
- $\bullet~\mathcal{A}$  is valid in  $\mathcal{I},$  written

 $\mathcal{I} \models \mathcal{A}$ 

• iff  $\mathcal{I} \models A$  for all  $A \in \mathcal{A}$ .

- $\bullet$  Given an interpretation  ${\cal I}$
- And a set of triples  $\mathcal{A}$  (any of the six kinds)
- $\bullet~\mathcal{A}$  is valid in  $\mathcal{I},$  written

 $\mathcal{I} \models \mathcal{A}$ 

- iff  $\mathcal{I} \models A$  for all  $A \in \mathcal{A}$ .
- Then  $\mathcal{I}$  is also called a model of  $\mathcal{A}$ .

- $\bullet$  Given an interpretation  ${\cal I}$
- And a set of triples  $\mathcal{A}$  (any of the six kinds)
- $\bullet~\mathcal{A}$  is valid in  $\mathcal{I},$  written

$$\mathcal{I} \models \mathcal{A}$$

- iff  $\mathcal{I} \models A$  for all  $A \in \mathcal{A}$ .
- Then  $\mathcal{I}$  is also called a model of  $\mathcal{A}$ .
- Examples:

$$\mathcal{A} = \{ loves(romeo, juliet), \ Lady(juliet), \ Lady \sqsubseteq Person, \\ loves \sqsubseteq knows, \ dom(loves, Lover), \ rg(loves, Beloved) \}$$

## Interpretation of Sets of Triples

- $\bullet$  Given an interpretation  ${\cal I}$
- And a set of triples  $\mathcal{A}$  (any of the six kinds)
- $\bullet~\mathcal{A}$  is valid in  $\mathcal{I},$  written

$$\mathcal{I} \models \mathcal{A}$$

- iff  $\mathcal{I} \models A$  for all  $A \in \mathcal{A}$ .
- Then  $\mathcal{I}$  is also called a model of  $\mathcal{A}$ .
- Examples:

$$\mathcal{A} = \{ \textit{loves}(\textit{romeo}, \textit{juliet}), \textit{Lady}(\textit{juliet}), \textit{Lady} \sqsubseteq \textit{Person}, \\ \textit{loves} \sqsubseteq \textit{knows}, \textit{dom}(\textit{loves}, \textit{Lover}), \textit{rg}(\textit{loves}, \textit{Beloved}) \}$$

 $\bullet \ \, {\sf Then} \ \, {\cal I}_1 \models {\cal A} \ {\sf and} \ \, {\cal I}_2 \models {\cal A}$ 

• Given a set of triples  $\mathcal{A}$  (any of the six kinds)

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple *T* (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple *T* (also any kind)
- T is entailed by A, written  $A \models T$
- iff

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$
- iff
  - For any interpretation  $\mathcal I$  with  $\mathcal I \models \mathcal A$

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$
- iff
  - For any interpretation  $\mathcal I$  with  $\mathcal I \models \mathcal A$
  - $\mathcal{I} \models T$ .

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$
- iff
  - $\bullet~$  For any interpretation  $\mathcal I$  with  $\mathcal I \models \mathcal A$
  - $\mathcal{I} \models T$ .
- $\mathcal{A} \models \mathcal{B}$  iff  $\mathcal{I} \models \mathcal{B}$  for all  $\mathcal{I}$  with  $\mathcal{I} \models \mathcal{A}$

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$
- iff
  - $\bullet~$  For any interpretation  $\mathcal I$  with  $\mathcal I \models \mathcal A$
  - $\mathcal{I} \models T$ .
- $\bullet \ \mathcal{A} \models \mathcal{B} \text{ iff } \mathcal{I} \models \mathcal{B} \text{ for all } \mathcal{I} \text{ with } \mathcal{I} \models \mathcal{A}$
- Example:

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$
- iff
  - $\bullet~$  For any interpretation  $\mathcal I$  with  $\mathcal I \models \mathcal A$
  - $\mathcal{I} \models T$ .
- $\bullet \ \mathcal{A} \models \mathcal{B} \text{ iff } \mathcal{I} \models \mathcal{B} \text{ for all } \mathcal{I} \text{ with } \mathcal{I} \models \mathcal{A}$
- Example:
- $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$  as before

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$
- iff
  - $\bullet~$  For any interpretation  $\mathcal I$  with  $\mathcal I \models \mathcal A$
  - $\mathcal{I} \models T$ .
- $\bullet \ \mathcal{A} \models \mathcal{B} \text{ iff } \mathcal{I} \models \mathcal{B} \text{ for all } \mathcal{I} \text{ with } \mathcal{I} \models \mathcal{A}$
- Example:
- $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$  as before
- $\mathcal{A} \models Person(juliet)$  because...

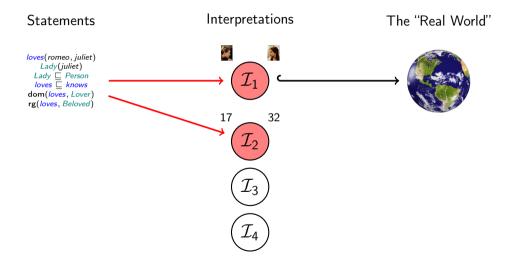
- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$
- iff
  - $\bullet~$  For any interpretation  $\mathcal I$  with  $\mathcal I \models \mathcal A$
  - $\mathcal{I} \models T$ .
- $\bullet \ \mathcal{A} \models \mathcal{B} \text{ iff } \mathcal{I} \models \mathcal{B} \text{ for all } \mathcal{I} \text{ with } \mathcal{I} \models \mathcal{A}$
- Example:
- $A = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$  as before
- $\mathcal{A} \models Person(juliet)$  because...
- in *any* interpretation  $\mathcal{I}$ ...

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$
- iff
  - $\bullet~$  For any interpretation  $\mathcal I$  with  $\mathcal I \models \mathcal A$
  - $\mathcal{I} \models T$ .
- $\bullet \ \mathcal{A} \models \mathcal{B} \text{ iff } \mathcal{I} \models \mathcal{B} \text{ for all } \mathcal{I} \text{ with } \mathcal{I} \models \mathcal{A}$
- Example:
- $A = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$  as before
- $\mathcal{A} \models Person(juliet)$  because...
- in *any* interpretation  $\mathcal{I}$ ...
- if  $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$  and  $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$

- Given a set of triples  $\mathcal{A}$  (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by  $\mathcal{A}$ , written  $\mathcal{A} \models T$
- iff
  - $\bullet~$  For any interpretation  $\mathcal I$  with  $\mathcal I\models \mathcal A$
  - $\mathcal{I} \models T$ .
- $\bullet \ \mathcal{A} \models \mathcal{B} \text{ iff } \mathcal{I} \models \mathcal{B} \text{ for all } \mathcal{I} \text{ with } \mathcal{I} \models \mathcal{A}$
- Example:
- $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$  as before
- $\mathcal{A} \models Person(juliet)$  because...
- in *any* interpretation  $\mathcal{I}$ ...
- if  $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$  and  $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$
- $\bullet$  then by set theory  $\textit{juliet}^\mathcal{I} \in \textit{Person}^\mathcal{I}$

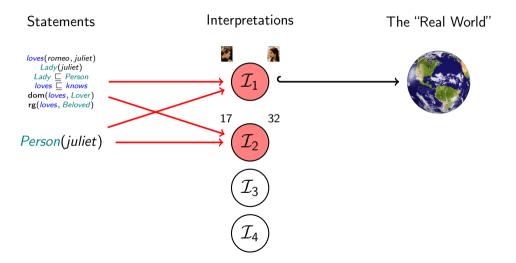
Simplified RDF semantics

# Finding out stuff about Romeo and Juliet



Simplified RDF semantics

# Finding out stuff about Romeo and Juliet



## Countermodels

- If  $\mathcal{A} \not\models \mathcal{T}, \ldots$
- $\bullet\,$  then there is an  ${\cal I}$  with
  - $\mathcal{I} \models \mathcal{A}$
  - $\mathcal{I} \not\models T$
- Vice-versa: if  $\mathcal{I} \models \mathcal{A}$  and  $\mathcal{I} \not\models \mathcal{T}$ , then  $\mathcal{A} \not\models \mathcal{T}$
- Such an  $\mathcal{I}$  is called a *counter-model* (for the assumption that  $\mathcal{A}$  entails  $\mathcal{T}$ )
- To show that  $\mathcal{A} \models \mathcal{T}$  does *not* hold:
  - Describe an interpretation  $\mathcal{I}$  (using your fantasy)
  - Prove that  $\mathcal{I} \models \mathcal{A}$  (using the semantics)
  - Prove that  $\mathcal{I} \not\models \mathcal{T}$  (using the semantics)

$$\mathcal{A} = \{ loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, \\ loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved) \}$$

•  $\mathcal{A}$  as before:

$$\mathcal{A} = \{ loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, \\ loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved) \}$$

• Does  $\mathcal{A} \models Lover \sqsubseteq Beloved$ ?

$$\mathcal{A} = \{ loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, \\ loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved) \}$$

- Does  $\mathcal{A} \models Lover \sqsubseteq Beloved$ ?
- Holds in  $\mathcal{I}_1$  and  $\mathcal{I}_2$ .

$$\mathcal{A} = \{ loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, \\ loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved) \}$$

- Does  $\mathcal{A} \models Lover \sqsubseteq Beloved?$
- Holds in  $\mathcal{I}_1$  and  $\mathcal{I}_2$ .
- Try to find an interpretaion with  $\Delta^{\mathcal{I}} = \{a, b\}, a \neq b$ .

$$\mathcal{A} = \{ loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, \\ loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved) \}$$

- Does  $\mathcal{A} \models Lover \sqsubseteq Beloved$ ?
- Holds in  $\mathcal{I}_1$  and  $\mathcal{I}_2$ .
- Try to find an interpretaion with  $\Delta^{\mathcal{I}} = \{a, b\}$ ,  $a \neq b$ .
- Interpret  $\textit{romeo}^{\mathcal{I}} = a$  and  $\textit{juliet}^{\mathcal{I}} = b$

$$\mathcal{A} = \{ loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, \\ loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved) \}$$

- Does  $\mathcal{A} \models Lover \sqsubseteq Beloved$ ?
- Holds in  $\mathcal{I}_1$  and  $\mathcal{I}_2$ .
- Try to find an interpretaion with  $\Delta^{\mathcal{I}} = \{a, b\}$ ,  $a \neq b$ .
- Interpret  $romeo^{\mathcal{I}} = a$  and  $juliet^{\mathcal{I}} = b$
- Then  $\langle a, b \rangle \in loves^{\mathcal{I}}$ ,  $a \in Lover^{\mathcal{I}}$ ,  $b \in Beloved^{\mathcal{I}}$ .

•  $\mathcal{A}$  as before:

 $\mathcal{A} = \{ \text{loves}(\text{romeo}, \text{juliet}), \text{ Lady}(\text{juliet}), \text{ Lady} \sqsubseteq \text{Person}, \\ \text{loves} \sqsubseteq \text{knows}, \text{ dom}(\text{loves}, \text{Lover}), \text{ rg}(\text{loves}, \text{Beloved}) \}$ 

- Does  $\mathcal{A} \models Lover \sqsubseteq Beloved$ ?
- Holds in  $\mathcal{I}_1$  and  $\mathcal{I}_2$ .
- Try to find an interpretaion with  $\Delta^{\mathcal{I}} = \{a, b\}$ ,  $a \neq b$ .
- Interpret  $romeo^{\mathcal{I}} = a$  and  $juliet^{\mathcal{I}} = b$
- Then  $\langle a, b \rangle \in loves^{\mathcal{I}}$ ,  $a \in Lover^{\mathcal{I}}$ ,  $b \in Beloved^{\mathcal{I}}$ .
- With  $Lover^{\mathcal{I}} = \{a\}$  and  $Beloved^{\mathcal{I}} = \{b\}$ ,  $\mathcal{I} \not\models Lover \sqsubseteq Beloved!$

•  $\mathcal{A}$  as before:

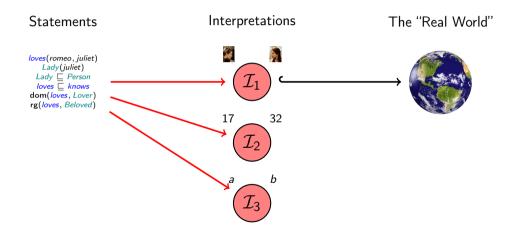
 $\mathcal{A} = \{ \textit{loves}(\textit{romeo}, \textit{juliet}), \textit{Lady}(\textit{juliet}), \textit{Lady} \sqsubseteq \textit{Person}, \\ \textit{loves} \sqsubseteq \textit{knows}, \textit{dom}(\textit{loves}, \textit{Lover}), \textit{rg}(\textit{loves}, \textit{Beloved}) \}$ 

- Does  $\mathcal{A} \models Lover \sqsubseteq Beloved$ ?
- Holds in  $\mathcal{I}_1$  and  $\mathcal{I}_2$ .
- Try to find an interpretaion with  $\Delta^{\mathcal{I}} = \{a, b\}$ ,  $a \neq b$ .
- Interpret  $romeo^{\mathcal{I}} = a$  and  $juliet^{\mathcal{I}} = b$
- Then  $\langle a, b \rangle \in \mathit{loves}^{\mathcal{I}}$ ,  $a \in \mathit{Lover}^{\mathcal{I}}$ ,  $b \in \mathit{Beloved}^{\mathcal{I}}$ .
- With  $Lover^{\mathcal{I}} = \{a\}$  and  $Beloved^{\mathcal{I}} = \{b\}$ ,  $\mathcal{I} \not\models Lover \sqsubseteq Beloved!$
- Choose

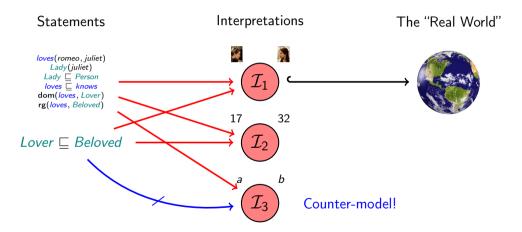
$$\textit{loves}^{\mathcal{I}} = \textit{knows}^{\mathcal{I}} = \{ \langle a, b \rangle \} \qquad \textit{Lady}^{\mathcal{I}} = \textit{Person}^{\mathcal{I}} = \{ b \}$$

to complete the counter-model while satisfying  $\mathcal{I} \models \mathcal{A}$ 

# Countermodels about Romeo and Juliet



# Countermodels about Romeo and Juliet





• Model-theoretic semantics yields an unambigous notion of entailment,

- **1** Model-theoretic semantics yields an unambigous notion of entailment,
- 2 which is necessary in order to liberate data from applications.

- O Model-theoretic semantics yields an unambigous notion of entailment,
- **2** which is necessary in order to liberate data from applications.
- Shown today: A simplified semantics for parts of RDF
  - Only RDF/RDFS vocabulary to talk "about" predicates and classes
  - Literals and blank nodes next time

- O Model-theoretic semantics yields an unambigous notion of entailment,
- 2 which is necessary in order to liberate data from applications.
- Shown today: A simplified semantics for parts of RDF
  - Only RDF/RDFS vocabulary to talk "about" predicates and classes
  - Literals and blank nodes next time

Supplementary reading on RDF and RDFS semantics:

- http://www.w3.org/TR/rdf-mt/
- Section 3.2 in Foundations of SW Technologies