INF3580/4580 – Semantic Technologies – Spring 2017 Lecture 9: Model Semantics & Reasoning

Martin Giese

13th March 2017

Department of Informatics

University of Oslo

Today's Plan

- Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- Properties of Entailment by Model Semantics
- 5 Entailment and Derivability

NF3580/4580 :: Spring 2017

Lecture 9 :: 13th March

2/4/

Repetition: RDF semantics

Outline

- 1 Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- Properties of Entailment by Model Semantics
- 5 Entailment and Derivability

Repetition: RDF semantics

Restricting RDF/RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .
```

• Forget blank nodes and literals for a while!

Torget blank nedes and needs for a wine.

INF3580/4580 :: Spring 2017

Lecture 9 :: 13th March

/ 44

4

Repetition: RDF semantic

Short Forms

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$r(i_1, i_2)$ $C(i_1)$
indi rdf:type class .	$C(i_1)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
<pre>prop rdfs:subPropertyOf prop .</pre>	$r \sqsubseteq s$
<pre>prop rdfs:domain class .</pre>	dom(r, C) $rg(r, C)$
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

- This is called "Description Logic" (DL) Syntax
- Used much in particular for OWL

Example

Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

• DL syntax, without namespaces:

loves(romeo, juliet) Lady(juliet) Lady

□ Person *loves* □ *knows* dom(loves, Lover) rg(loves, Beloved)

Repetition: RDF semantics

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- \bullet A *DL-interpretation* \mathcal{I} consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI C, a subset $C^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$
 - For each property URI r, a relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- Given these, it will be possible to say whether a triple holds or not.

An example "intended" interpretation

$$ullet$$
 $\Delta^{\mathcal{I}_1} = igg\{$

juliet
$$^{\mathcal{I}_1} = igwedge$$

$$Person^{\mathcal{I}_1} = \Delta^{\mathcal{I}}$$

$$\mathit{Lover}^{\mathcal{I}_1} = \mathit{Beloved}^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & &$$

 $knows^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_1}$

An example "non-intended" interpretation

 $\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$

• $romeo^{I_2} = 17$ $iuliet^{\mathcal{I}_2}=32$

• $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$

• $loves^{\mathcal{I}_2} = \langle = \{ \langle x, y \rangle \mid x < y \}$ $knows^{\mathcal{I}_2} = \leq = \{\langle x, y \rangle \mid x < y\}$

• Just because names (URIs) look familiar, they don't need to denote what we think!

• In fact, there is no way of ensuring they denote only what we think!

Validity in Interpretations

• Given an interpretation \mathcal{I} , define \models as follows:

• $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$

• $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

• $\mathcal{I} \models C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

• $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$

• $\mathcal{I} \models \mathsf{dom}(r, C)$ iff $\mathsf{dom}\,r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

• $\mathcal{I} \models \operatorname{rg}(r,C)$ iff $\operatorname{rg} r^{\mathcal{I}} \subseteq C^{\overline{\mathcal{I}}}$

• For a set of triples A (any of the six kinds)

• \mathcal{A} is valid in \mathcal{I} , written

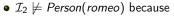
 $\mathcal{I} \models \mathcal{A}$

• iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.

Repetition: RDF semantics

Validity Examples

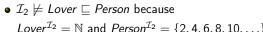
• $\mathcal{I}_1 \models loves(juliet, romeo)$ because



• $romeo^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$

• $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

$$\mathit{Lover}^{\mathcal{I}_1} = \left\{ igotimes_{i}, igotimes_{i}
ight\} \subseteq \mathit{Person}^{\mathcal{I}_1} = \left\{ igotimes_{i}, igotimes_{i}
ight\}$$



 $Lover^{\mathcal{I}_2} = \mathbb{N}$ and $Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$

Finding out stuff about Romeo and Juliet Statements Interpretations The "Real World" loves(romeo, juliet) Lady(juliet)

Lady ☐ Person

loves ☐ knows dom(loves, Lover) rg(loves, Beloved 17 loves(juliet, romeo) Lover

□ Person

Repetition: RDF semantics

Entailment

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - ullet For any interpretation ${\mathcal I}$ with ${\mathcal I} \models {\mathcal A}$
 - $\mathcal{I} \models \mathcal{T}$.
- Example:
 - $A = \{..., Lady(juliet), Lady \subseteq Person,...\}$ as before
 - $A \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...
 - if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$. . .
 - then by set theory $juliet^{\mathcal{I}} \in Person^{\mathcal{I}}$
- Not about T being (intuitively) true or not
- ullet Only about whether T is a consequence of ${\cal A}$

NF3580/4580 :: Spring 2017

_ecture 9 :: 13th Marc

12 / 44

Repetition: RDF semantic

Countermodels

- If $A \not\models T$,...
- ullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models T$, then $\mathcal{A} \not\models T$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails \mathcal{T})
- To show that $A \models T$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)
 - Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
 - Prove that $\mathcal{I} \not\models T$ (using the semantics)
- Countermodels for intuitively true statements are always unintuitive! (Why?)

NF3580/4580 :: Spring 2017

ecture 9 :: 13th March

.

Repetition: RDF semantics

Countermodel Example

A as before:

 $A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}$

- Does $A \models Lover \sqsubseteq Beloved$?
- ullet Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- ullet Try to find an interpretation with $\Delta^{\mathcal{I}}=\{a,b\}$, a
 eq b.
- ullet Interpret $\mathit{romeo}^{\mathcal{I}} = \mathit{a}$ and $\mathit{juliet}^{\mathcal{I}} = \mathit{b}$
- Then $\langle a, b \rangle \in loves^{\mathcal{I}}$, $a \in Lover^{\mathcal{I}}$, $b \in Beloved^{\mathcal{I}}$.
- With $Lover^{\mathcal{I}} = \{a\}$ and $Beloved^{\mathcal{I}} = \{b\}$, $\mathcal{I} \not\models Lover \sqsubseteq Beloved!$
- Choose

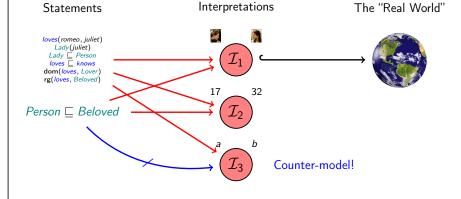
$$loves^{\mathcal{I}} = knows^{\mathcal{I}} = \{\langle a, b \rangle\}$$
 $Lady^{\mathcal{I}} = Person^{\mathcal{I}} = \{b\}$

to complete the count-model while satisfying $\mathcal{I} \models \mathcal{A}$

15 / 44 IN

repetition: 1151 semantic

Countermodels about Romeo and Juliet



Lecture 9 ·· 13th March

16 / 44

Literal Semantio

Outline

Repetition: RDF semantics

2 Literal Semantics

Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability

INF3580/4580 :: Spring 2017

Lecture 9 :: 13th March

4-7 / 44

Literal Semant

Simplifying Literals

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .

- We simplify things by:
 - considering only string literals without language tag, and
 - allowing either resource objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf: knows
 - Datatype Properties like dc:title, foaf:name
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- Why? simpler, object/datatype split is in OWL

NF3580/4580 :: Spring 2017

Lecture 9 :: 13th March

Literal Semantics

Allowed triples

Allow only triples using object properties and datatype properties as intended

Triples	Abbreviation
indi o-prop indi .	$r(i_1,i_2)$
indi d-prop "lit" .	a (<i>i</i> , <i>l</i>)
<pre>indi rdf:type class .</pre>	$C(i_1)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
o-prop rdfs:subPropertyOf o-prop .	$r \sqsubseteq s$
d-prop rdfs:subPropertyOf d-prop .	a⊑b
o-prop rdfs:domain class .	dom(r, C)
o-prop rdfs:range class .	rg(<i>r</i> , <i>C</i>)

Literal Semantics

Interpretation with Literals

- ullet Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
 - For each datatype property URI a, a relation $a^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Lambda$
- Semantics:
 - $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ for object property r
 - $\mathcal{I} \models a(i, l)$ iff $\langle i^{\mathcal{I}}, l \rangle \in a^{\mathcal{I}}$ for datatype property a
 - $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$ for object properties r, s
 - $\mathcal{I} \models a \sqsubseteq b$ iff $a^{\mathcal{I}} \subseteq b^{\mathcal{I}}$ for datatype properties a, b
- Note: Literals / are in Λ, don't need to be interpreted.

Example: Interpretation with a Datatype Property

$$ullet$$
 $age^{\mathcal{I}_1} = \left\{ \left\langle igwedge^{\mathbf{I}_1}, "16" \right
angle, \left\langle igwedge^{\mathbf{I}_1}, "almost 14" \right
angle, \left\langle igwedge^{\mathbf{I}_1}, "13" \right
angle
ight\}$

Outline

- Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- Properties of Entailment by Model Semantics
- **5** Entailment and Derivability

Blank Node Semantics

Blank Nodes

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples. . .
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples
- But we still need to interpret single triples.
- Solution: pass in blank node interpretation, deal with sets later!

Blank Node Semantics

Blank Node Valuations

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}}$...
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:
 - $\mathcal{I}, \beta \models r(x, y) \text{ iff } \langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}}...$
 - ... for any legal combination of URIs/literals/blank nodes x, y
 - ... and object/datatype property r

Sets of Triples with Blank Nodes

- ullet Given a set ${\mathcal A}$ of triples with blank nodes...
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models A \text{ for all } A \in \mathcal{A}$
- \bullet \mathcal{A} is valid in \mathcal{I}

$$\mathcal{I} \models \mathcal{A}$$

if there is a β such that $\mathcal{I}, \beta \models \mathcal{A}$

• I.e. if there exists some valuation for the blank nodes that makes all triples true.

Example: Blank Node Semantics

 $\textit{knows}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} imes \Delta^{\mathcal{I}_1}$

$$\bullet \ \textit{age}^{\mathcal{I}_1} = \left\{ \left\langle \boxed{ }, "16" \right\rangle, \left\langle \boxed{ }, "almost \ 14" \right\rangle, \left\langle \boxed{ }, "13" \right\rangle, \right\}$$

- Let b_1 , b_2 , b_3 be blank nodes
- $A = \{age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13")\}$
- Valid in \mathcal{I}_1 ?

• Pick $\beta(b_1) = \beta(b_2) = \emptyset$, $\beta(b_3) = \emptyset$.

- Then $\mathcal{I}_1, \beta \models \mathcal{A}$
- So, yes, $\mathcal{I}_1 \models \mathcal{A}$.

Blank Node Semantics

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
 - Given sets of triples A and B,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- ullet This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- ullet Can evaluate the same blank node name differently in ${\mathcal A}$ and ${\mathcal B}$.
- Example:

{ $loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")}$ $\models \{loves(b_2, b_1), knows(b_1, romeo)\}$

Properties of Entailment by Model Semantics

Outline

- Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- Properties of Entailment by Model Semantics
- **5** Entailment and Derivability

Properties of Entailment by Model Semantics

Monotonicity

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to \mathcal{A} , i.e. $\mathcal{A}' \supset \mathcal{A}$
- ullet Then ${\mathcal B}$ is still entailed: ${\mathcal A}' \models {\mathcal B}$
- We say that RDF/RDFS entailment is *monotonic*
- Non-monotonic reasoning:
 - $\{Bird \sqsubseteq CanFly, Bird(tweety)\} \models CanFly(tweety)$
 - $\{\ldots, Penguin \sqsubseteq Bird, Penguin(tweety), Penguin \sqsubseteq \neg CanFly\} \not\models CanFly(tweety)$
 - Interesting for human-style reasoning
 - Hard to combine with semantic web technologies

INF3580/4580 :: Spring 2017

Lecture 9 :: 13th Mar

20 / 44

Properties of Entailment by Model Semantic

Entailment and SPARQL

- Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. ?y :q ?z.}
- The query means: find x, y, z with p(x, y) and q(y, z)
- Semantics: find x, y, z with

$$KB \models \{p(x,y), q(y,z)\}$$

• E.g. an answer

$$x \leftarrow$$
 "a" $y \leftarrow 2$ $z \leftarrow \square$

means

$$KB \models \{p(\text{``a''}, 2), q(2, \square)\}$$

Monotonicity:

$$KB \cup \{\cdots\} \models \{p(\text{``a''},2), q(2,\square)\}$$

• Answers remain valid with new information!

NF3580/4580 :: Spring 2017

Lecture 9 :: 13th March

20 / 44

Properties of Entailment by Model Semantics

Database Lookup versus Entailment

• Knowledge base KB:

Person(harald) Person(haakon) father(harald, haakon)

- Question: is there a person without a father?
- Ask a database:
 - Yes: harald
- ask a semantics based system
 - find x with $KB \models x$ has no father
 - No answer: don't know
- Why?
 - Monotonicity!
 - KB ∪ {father(olav, harald)} ⊨ harald does have a father
 - In some models of KB, harald has a father, in others not.

Properties of Entailment by Model Semantics

Open World versus Closed World

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)
 - There might be things not mentioned in the knowledge base
 - \bullet There might be facts that are true, although they are not stated
 - Typical semantics for logic-based systems
- What is best for the Semantic Web?
 - Will never know all information sources
 - Can "discover" new information by following links
 - New information can be produced at any time
 - Therefore: Open World Assumption

March 31 / 44 INF3580/4580 ·· Spring 2017 Lecture 9 ·· 13th March 32 / 4

Properties of Entailment by Model Semantics

Consequences of the Open World Assumption

- Robust under missing information
- Any answer given by
 - Entailment

$$KB \models Person(juliet)$$

• SPARQL query answering (entailment in disguise)

$$KB \models \{p(\text{``a''}, 2), q(2, \square)\}$$

remains valid when new information is added to KB

- Some things make no sense with this semantics
 - Queries with negation ("not")
 - might be satisfied later on
 - Queries with aggregation (counting, adding,...)
 - can change when more information comes

NF3580/4580 :: Spring 2017

_ecture 9 :: 13th Marc

22 / 44

Outline

- Repetition: RDF semantics
- 2 Literal Semantics
- 3 Blank Node Semantics
- Properties of Entailment by Model Semantics
- 5 Entailment and Derivability

NF3580/4580 :: Spring 2017

Lecture 9 :: 13th March

Entailment and Derivabilit

Two Kinds of Consequence?

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

$$\frac{\textit{Lady} \sqsubseteq \textit{Person} \quad \textit{Lady(juliet})}{\textit{Person(juliet)}} \text{ rdfs9}$$

- 2. Using the model semantics
 - $\bullet \ \ \mathsf{If} \ \mathcal{I} \models \mathit{Lady} \sqsubseteq \mathit{Person} \ \mathsf{and} \ \mathcal{I} \models \mathit{Lady}(\mathit{juliet}). \ . \ .$
 - ullet ... then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...
 - ullet ... so by set theory, $juliet^{\mathcal{I}} \in \mathring{Person^{\mathcal{I}}}$...
 - ullet ...and therefore $\mathcal{I} \models \textit{Person(juliet)}$.
 - Together: $\{Lady \sqsubseteq Person, Lady(juliet)\} \models Person(juliet)$
- What is the connection between these two?

Entailment and Derivability

Entailment and Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be derived
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - can't be directly checked mechanically (∞ many interpretations)
- Derivability
 - can be checked mechanically
 - forward or backward chaining
- Want these notions to correspond:
 - $\mathcal{A} \models \mathcal{B}$ iff \mathcal{B} can be derived from \mathcal{A}

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 35 / 44 INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March

Entailment and Derivability

Soundness

- Two directions:

 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.
- This is known as soundness
- The calculus is said to be *sound* (w.r.t. the model semantics)

INF3580/4580 :: Spring 2017

Lecture 9 :: 13th March

37 / 44

Entailment and Derivabilit

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs} 11$$

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - By set theory, $A^{\mathcal{I}} \subset C^{\mathcal{I}}$
 - By model semantics, $\mathcal{I} \models A \sqsubseteq C$
 - Q.E.D.
- This can be done similarly for all of the rules.
 - All given RDF/RDFS rules are sound w.r.t. the model semantics!

NF3580/4580 :: Spring 2017

Lecture 9 :: 13th March

20 / 44

Entailment and Derivability

Completeness

- Two directions:

 - ② If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.
- Can't be checked separately for each rule, only for whole rule set
- Proofs are more complicated than soundness

Entailment and Derivability

Simple Entailment Rules

$$\frac{r(u,x)}{r(u,b_1)} \text{ se1} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal/Blank node x resp. u.
- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS
 - and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.

 ${\mathcal A}$ simply entails ${\mathcal B}$

iff \mathcal{A} can be extended with se1 and se2 to \mathcal{A}' with $\mathcal{B} \subseteq \mathcal{A}'$.

• (requires blank node IDs in A and B to be disjoint)

Entailment and Derivability

Simple Entailment Example

```
 \begin{aligned} &\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\} \\ &loves(b_2, juliet) & (b_2 \rightarrow b_1) \\ &loves(b_2, b_3) & (b_3 \rightarrow juliet) \\ &knows(b_3, romeo) & (reusing \ b_3 \rightarrow juliet) \\ &\models \{loves(b_2, b_3), knows(b_3, romeo)\} \end{aligned}
```

INF3580/4580 :: Spring 2017

Lecture 9 :: 13th Marcl

Entailment and Derivabil

Rules for (simplified) RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
 - rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$\frac{\text{dom}(r,A) \qquad r(x,y)}{A(x)} \text{ rdfs2} \qquad \frac{\text{rg}(r,B) \qquad r(x,y)}{B(y)} \text{ rdfs3}$$

$$\frac{r \sqsubseteq s \qquad s \sqsubseteq t}{r \sqsubseteq t} \text{ rdfs5} \qquad \frac{r \sqsubseteq r}{r \sqsubseteq r} \text{ rdfs6} \qquad \frac{r \sqsubseteq s \qquad r(x,y)}{s(x,y)} \text{ rdfs7}$$

$$\frac{A \sqsubseteq B \qquad A(x)}{B(x)} \text{ rdfs9} \qquad \frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}$$

NF3580/4580 :: Spring 2017

ecture 9 :: 13th March

Entailment and Derivability

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

$$\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)$$

- Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ rg(loves, Beloved), Beloved \sqsubseteq Person \}$
 - then by semantics, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Beloved^{\mathcal{I}}$; and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Person^{\mathcal{I}}$.
 - By semantics, $\mathcal{I} \models rg(loves, Person)$
- But there is no way to derive this using the given rules
 - There is no rule which allows to derive a range statement.
- We could now add rules to make the system complete
- Won't bother to do that now. Will get completeness for OWL.

Entailment and Derivability

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends
 - A metropolis is a town with at least a million inhabitants
 - ... and many more
- Modeling will not be done by writing triples manually:
- Will use ontology editor Protégé.