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Repetition: RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.

No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint types:

Properties like foaf:knows, dc:title
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

Forget blank nodes and literals for a while!
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Repetition: RDF semantics

Short Forms

Resources and Triples are no longer all alike

No need to use the same general triple notation
Use alternative notation

Triples Abbreviation
indi prop indi . r(i1, i2)
indi rdf:type class . C (i1)

class rdfs:subClassOf class . C v D
prop rdfs:subPropertyOf prop . r v s
prop rdfs:domain class . dom(r ,C )
prop rdfs:range class . rg(r ,C )

This is called “Description Logic” (DL) Syntax
Used much in particular for OWL
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Repetition: RDF semantics

Example

Triples:

ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .

DL syntax, without namespaces:

loves(romeo, juliet)
Lady(juliet)

Lady v Person
loves v knows
dom(loves, Lover)
rg(loves,Beloved)
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Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret

Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of

A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects

Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of

A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects
Class URIs as sets of such objects

Property URIs as relations between these objects
A DL-interpretation I consists of

A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of

A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of

A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of
A set ∆I , called the domain (sorry!) of I

For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of
A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of
A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of
A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of
A set ∆I , called the domain (sorry!) of I
For each individual URI i , an element iI ∈ ∆I

For each class URI C , a subset CI ⊆ ∆I

For each property URI r , a relation rI ⊆ ∆I ×∆I

Given these, it will be possible to say whether a triple holds or not.

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 7 / 44



Repetition: RDF semantics

An example “intended” interpretation

∆I1 =

{
, ,

}

romeoI1 = julietI1 =

LadyI1 =

{ }
PersonI1 = ∆I1

LoverI1 = BelovedI1 =

{
,

}
lovesI1 =

{〈
,

〉
,

〈
,

〉}
knowsI1 = ∆I1 ×∆I1

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 8 / 44



Repetition: RDF semantics

An example “intended” interpretation

∆I1 =

{
, ,

}
romeoI1 = julietI1 =

LadyI1 =

{ }
PersonI1 = ∆I1

LoverI1 = BelovedI1 =

{
,

}
lovesI1 =

{〈
,

〉
,

〈
,

〉}
knowsI1 = ∆I1 ×∆I1

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 8 / 44



Repetition: RDF semantics

An example “intended” interpretation

∆I1 =

{
, ,

}
romeoI1 = julietI1 =

LadyI1 =

{ }
PersonI1 = ∆I1

LoverI1 = BelovedI1 =

{
,

}

lovesI1 =

{〈
,

〉
,

〈
,

〉}
knowsI1 = ∆I1 ×∆I1

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 8 / 44



Repetition: RDF semantics

An example “intended” interpretation

∆I1 =

{
, ,

}
romeoI1 = julietI1 =

LadyI1 =

{ }
PersonI1 = ∆I1

LoverI1 = BelovedI1 =

{
,

}
lovesI1 =

{〈
,

〉
,

〈
,

〉}
knowsI1 = ∆I1 ×∆I1

INF3580/4580 :: Spring 2017 Lecture 9 :: 13th March 8 / 44



Repetition: RDF semantics

An example “non-intended” interpretation

∆I2 = N = {1, 2, 3, 4, . . .}

romeoI2 = 17
julietI2 = 32
LadyI2 = {2n | n ∈ N} = {2, 4, 8, 16, 32, . . .}
PersonI2 = {2n | n ∈ N} = {2, 4, 6, 8, 10, . . .}
LoverI2 = BelovedI2 = N
lovesI2 =<= {〈x , y〉 | x < y}
knowsI2 =≤= {〈x , y〉 | x ≤ y}

Just because names (URIs) look familiar, they don’t need to denote what we think!
In fact, there is no way of ensuring they denote only what we think!
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Repetition: RDF semantics

Validity in Interpretations

Given an interpretation I, define |= as follows:

I |= r(i1, i2) iff
〈
iI1 , i

I
2
〉
∈ rI

I |= C (i) iff iI ∈ CI

I |= C v D iff CI ⊆ DI

I |= r v s iff rI ⊆ sI

I |= dom(r ,C ) iff dom rI ⊆ CI

I |= rg(r ,C ) iff rg rI ⊆ CI

For a set of triples A (any of the six kinds)
A is valid in I, written

I |= A

iff I |= A for all A ∈ A.
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Repetition: RDF semantics

Validity Examples

I1 |= loves(juliet, romeo) because

〈
,

〉
∈ lovesI1 =

{〈
,

〉
,

〈
,

〉}
I2 6|= Person(romeo) because
romeoI2 = 17 6∈ PersonI2 = {2, 4, 6, 8, 10, . . .}
I1 |= Lover v Person because

LoverI1 =

{
,

}
⊆ PersonI1 =

{
, ,

}
I2 6|= Lover v Person because
LoverI2 = N and PersonI2 = {2, 4, 6, 8, 10, . . .}
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Repetition: RDF semantics

Finding out stuff about Romeo and Juliet

The “Real World”Interpretations

I1

I2
17 32

I3

I4

Statements

loves(romeo, juliet)
Lady(juliet)

Lady v Person
loves v knows

dom(loves, Lover)
rg(loves, Beloved)

loves(juliet, romeo)

Lover v Person
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Repetition: RDF semantics

Entailment

Given a set of triples A (any of the six kinds)

And a further triple T (also any kind)
T is entailed by A, written A |= T

iff

For any interpretation I with I |= A
I |= T .

Example:

A = {. . . , Lady(juliet), Lady v Person, . . .} as before
A |= Person(juliet) because. . .
in any interpretation I. . .
if julietI ∈ LadyI and LadyI ⊆ PersonI . . .
then by set theory julietI ∈ PersonI

Not about T being (intuitively) true or not
Only about whether T is a consequence of A
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Repetition: RDF semantics

Countermodels

If A 6|= T ,. . .

then there is an I with

I |= A
I 6|= T

Vice-versa: if I |= A and I 6|= T , then A 6|= T

Such an I is called a counter-model (for the assumption that A entails T )
To show that A |= T does not hold:

Describe an interpretation I (using your fantasy)
Prove that I |= A (using the semantics)
Prove that I 6|= T (using the semantics)

Countermodels for intuitively true statements are always unintuitive! (Why?)
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Repetition: RDF semantics

Countermodel Example

A as before:

A = {loves(romeo, juliet), Lady(juliet), Lady v Person,
loves v knows, dom(loves, Lover), rg(loves,Beloved)}

Does A |= Lover v Beloved?
Holds in I1 and I2.
Try to find an interpretation with ∆I = {a, b}, a 6= b.
Interpret romeoI = a and julietI = b

Then 〈a, b〉 ∈ lovesI , a ∈ LoverI , b ∈ BelovedI .
With LoverI = {a} and BelovedI = {b}, I 6|= Lover v Beloved !
Choose

lovesI = knowsI = {〈a, b〉} LadyI = PersonI = {b}

to complete the count-model while satisfying I |= A
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Repetition: RDF semantics

Countermodels about Romeo and Juliet

The “Real World”Interpretations

I1

I2
17 32

I3
a b

Statements

loves(romeo, juliet)
Lady(juliet)

Lady v Person
loves v knows

dom(loves, Lover)
rg(loves, Beloved)

Person v Beloved

6 Counter-model!
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Literal Semantics

Outline

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability
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Literal Semantics

Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "food" .

We simplify things by:

considering only string literals without language tag, and
allowing either resource objects or literal objects for any predicate

Five types of resources:

Object Properties like foaf:knows
Datatype Properties like dc:title, foaf:name
Classes like foaf:Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

Why? – simpler, object/datatype split is in OWL
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Literal Semantics

Allowed triples

Allow only triples using object properties and datatype properties as intended

Triples Abbreviation
indi o-prop indi . r(i1, i2)
indi d-prop "lit" . a(i , l)
indi rdf:type class . C (i1)

class rdfs:subClassOf class . C v D
o-prop rdfs:subPropertyOf o-prop . r v s
d-prop rdfs:subPropertyOf d-prop . a v b
o-prop rdfs:domain class . dom(r ,C )
o-prop rdfs:range class . rg(r ,C )
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Literal Semantics

Interpretation with Literals

Let Λ be the set of all literal values, i.e. all strings

Chosen once and for all, same for all interpretations
A DL-interpretation I consists of

A set ∆I , called the domain of I
Interpretations iI ∈ ∆I , CI ⊆ ∆I , and rI ⊆ ∆I ×∆I as before
For each datatype property URI a, a relation aI ⊆ ∆I × Λ

Semantics:

I |= r(i1, i2) iff
〈
iI1 , i

I
2
〉
∈ rI for object property r

I |= a(i , l) iff
〈
iI , l

〉
∈ aI for datatype property a

I |= r v s iff rI ⊆ sI for object properties r , s
I |= a v b iff aI ⊆ bI for datatype properties a, b

Note: Literals l are in Λ, don’t need to be interpreted.
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Literal Semantics

Example: Interpretation with a Datatype Property

∆I1 =

{
, ,

}

lovesI1 =

{〈
,

〉
,

〈
,

〉}
knowsI1 = ∆I1 ×∆I1

ageI1 =

{〈
, "16"

〉
,

〈
, "almost 14"

〉
,

〈
, "13"

〉}
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Blank Node Semantics

Outline

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability
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Blank Node Semantics

Blank Nodes

Remember: Blank nodes are just like resources. . .

. . . but without a “global” URI.
Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. . .
. . . but they have to be in the same “file” or “data set”
Semantics of blank nodes require looking at a set of triples

But we still need to interpret single triples.
Solution: pass in blank node interpretation, deal with sets later!
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Blank Node Semantics

Blank Node Valuations

Given an interpretation I with domain ∆I . . .

A blank node valuation β. . .
. . . gives a domain element or literal value β(b) ∈ ∆I ∪ Λ. . .
. . . for every blank node ID b

Now define ·I,β

iI,β = iI for individual URIs i
lI,β = l for literals l
bI,β = β(b) for blank node IDs b

Interpretation:

I, β |= r(x , y) iff
〈
xI,β , yI,β〉 ∈ rI . . .

. . . for any legal combination of URIs/literals/blank nodes x , y

. . . and object/datatype property r
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Blank Node Semantics

Sets of Triples with Blank Nodes

Given a set A of triples with blank nodes. . .

I, β |= A iff I, β |= A for all A ∈ A

A is valid in I
I |= A

if there is a β such that I, β |= A

I.e. if there exists some valuation for the blank nodes that makes all triples true.
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Blank Node Semantics

Example: Blank Node Semantics

∆I1 =

{
, ,

}

lovesI1 =

{〈
,

〉
,

〈
,

〉}
knowsI1 = ∆I1 ×∆I1

ageI1 =

{〈
, "16"

〉
,

〈
, "almost 14"

〉
,

〈
, "13"

〉
,

}
Let b1, b2, b3 be blank nodes
A = {age(b1, "16"), knows(b1, b2), loves(b2, b3), age(b3, "13")}
Valid in I1?

Pick β(b1) = β(b2) = , β(b3) = .

Then I1, β |= A
So, yes, I1 |= A.
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Blank Node Semantics

Entailment with Blank Nodes

Entailment is defined just like without blank nodes:

Given sets of triples A and B,
A entails B, written A |= B
iff for any interpretation I with I |= A, also I |= B.

This expands to: for any interpretation I

such that there exists a β with I, β |= A
there also exists a β such that I, β |= B

Two different blank node valuations!
Can evaluate the same blank node name differently in A and B.
Example:

{loves(b1, juliet), knows(juliet, romeo), age(juliet, "13")}
|= {loves(b2, b1), knows(b1, romeo)}
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Properties of Entailment by Model Semantics

Outline

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability
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Properties of Entailment by Model Semantics

Monotonicity

Assume A |= B

Now add information to A, i.e. A′ ⊇ A
Then B is still entailed: A′ |= B

We say that RDF/RDFS entailment is monotonic

Non-monotonic reasoning:

{Bird v CanFly ,Bird(tweety)} |= CanFly(tweety)
{. . . ,Penguin v Bird ,Penguin(tweety),Penguin v ¬CanFly} 6|= CanFly(tweety)
Interesting for human-style reasoning
Hard to combine with semantic web technologies
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Properties of Entailment by Model Semantics

Entailment and SPARQL

Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. ?y :q ?z.}

The query means: find x , y , z with p(x , y) and q(y , z)

Semantics: find x , y , z with
KB |= {p(x , y), q(y , z)}

E.g. an answer
x ← “a” y ← 2 z ← �

means
KB |= {p(“a”, 2), q(2,�)}

Monotonicity:
KB ∪ {· · · } |= {p(“a”, 2), q(2,�)}

Answers remain valid with new information!
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Properties of Entailment by Model Semantics

Database Lookup versus Entailment

Knowledge base KB :

Person(harald) Person(haakon) father(harald , haakon)

Question: is there a person without a father?
Ask a database:

Yes: harald

ask a semantics based system

find x with KB |= x has no father
No answer: don’t know

Why?

Monotonicity!
KB ∪ {father(olav , harald)} |= harald does have a father
In some models of KB, harald has a father, in others not.
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Properties of Entailment by Model Semantics

Open World versus Closed World

Closed World Assumption (CWA)

If a thing is not listed in the knowledge base, it doesn’t exist
If a fact isn’t stated (or derivable) it’s false
Typical semantics for database systems

Open World Assumption (OWA)

There might be things not mentioned in the knowledge base
There might be facts that are true, although they are not stated
Typical semantics for logic-based systems

What is best for the Semantic Web?

Will never know all information sources
Can “discover” new information by following links
New information can be produced at any time
Therefore: Open World Assumption
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Properties of Entailment by Model Semantics

Consequences of the Open World Assumption

Robust under missing information

Any answer given by

Entailment
KB |= Person(juliet)

SPARQL query answering (entailment in disguise)

KB |= {p(“a”, 2), q(2,�)}

remains valid when new information is added to KB

Some things make no sense with this semantics

Queries with negation (“not”)

might be satisfied later on

Queries with aggregation (counting, adding,. . . )

can change when more information comes
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Entailment and Derivability

Outline

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability
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Entailment and Derivability

Two Kinds of Consequence?

We now have two ways of describing logical consequence. . .

1. Using RDFS rules:
:Lady rdfs:subClassOf :Person . :juliet a :Lady .

rdfs9:juliet a :Person .

Lady v Person Lady(juliet)
rdfs9

Person(juliet)

2. Using the model semantics

If I |= Lady v Person and I |= Lady(juliet). . .
. . . then LadyI ⊆ PersonI and julietI ∈ LadyI . . .
. . . so by set theory, julietI ∈ PersonI . . .
. . . and therefore I |= Person(juliet).

Together: {Lady v Person, Lady(juliet)} |= Person(juliet)

What is the connection between these two?
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Entailment and Derivability

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived

derivability
provability

Entailment

is closely related to the meaning of things
higher confidence in model semantics than in a bunch of rules
The semantics given by the standard, rules are just “informative”
can’t be directly checked mechanically (∞ many interpretations)

Derivability

can be checked mechanically
forward or backward chaining

Want these notions to correspond:

A |= B iff B can be derived from A
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Entailment and Derivability

Soundness

Two directions:

1 If A |= B then B can be derived from A
2 If B can be derived from A then A |= B

Nr. 2 usually considered more important:
If the calculus says that something is entailed then it is really entailed.
The calculus gives no “wrong” answers.
This is known as soundness
The calculus is said to be sound (w.r.t. the model semantics)
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Entailment and Derivability

Showing Soundness

Soundness of every rule has to be (manually) checked!

E.g. rdfs11,
A v B B v C

rdfs11
A v C

Soundness means that

For any choice of three classes A, B, C
{A v B,B v C} |= A v C

Proof:

Let I be an arbitrary interpretation with I |= {A v B,B v C}
Then by model semantics, AI ⊆ BI and BI ⊆ CI

By set theory, AI ⊆ CI

By model semantics, I |= A v C
Q.E.D.

This can be done similarly for all of the rules.

All given RDF/RDFS rules are sound w.r.t. the model semantics!
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Entailment and Derivability

Completeness

Two directions:

1 If A |= B then B can be derived from A
2 If B can be derived from A then A |= B

Nr. 1 says that any entailment can be found using the rules.
I.e. we have “enough” rules.
Can’t be checked separately for each rule, only for whole rule set
Proofs are more complicated than soundness
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Entailment and Derivability

Simple Entailment Rules

r(u, x)
se1

r(u, b1)

r(u, x)
se2

r(b1, x)

Where b1 is a blank node identifier, that either

has not been used before in the graph, or
has been used, but for the same URI/Literal/Blank node x resp. u.

Simple entailment is entailment

With blank nodes and literals
but without RDFS
and without RDF axioms like rdf:type rdf:type rdf:Property .

se1 and se2 are complete for simple entailment, i.e.

A simply entails B
iff A can be extended with se1 and se2 to A′ with B ⊆ A′.

(requires blank node IDs in A and B to be disjoint)
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se1 and se2 are complete for simple entailment, i.e.

A simply entails B
iff A can be extended with se1 and se2 to A′ with B ⊆ A′.

(requires blank node IDs in A and B to be disjoint)
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Entailment and Derivability

Simple Entailment Example

{loves(b1, juliet), knows(juliet, romeo), age(juliet, "13")}

loves(b2, juliet) (b2 → b1)

loves(b2, b3) (b3 → juliet)

knows(b3, romeo) (reusing b3 → juliet)

|= {loves(b2, b3), knows(b3, romeo)}
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Entailment and Derivability

Rules for (simplified) RDF/RDFS

See Foundations book, Sect. 3.3

Many rules and axioms not needed for our “simplified” RDF/RDFS

rdfs:range rdfs:domain rdfs:Class ...

Important rules for us:

dom(r ,A) r(x , y)
rdfs2

A(x)

rg(r ,B) r(x , y)
rdfs3

B(y)

r v s s v t
rdfs5r v t rdfs6r v r

r v s r(x , y)
rdfs7

s(x , y)

A v B A(x)
rdfs9

B(x) rdfs10
A v A

A v B B v C
rdfs11

A v C
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Entailment and Derivability

Complete?

These rules are not complete for our RDF/RDFS semantics

For instance

{rg(loves,Beloved),Beloved v Person} |= rg(loves,Person)

Because for every interpretation I,

if I |= {rg(loves,Beloved),Beloved v Person}
then by semantics, for all 〈x , y〉 ∈ lovesI , y ∈ BelovedI ; and BelovedI ⊆ PersonI .
Therefore, by set theory, for all 〈x , y〉 ∈ lovesI , y ∈ PersonI .
By semantics, I |= rg(loves,Person)

But there is no way to derive this using the given rules

There is no rule which allows to derive a range statement.

We could now add rules to make the system complete
Won’t bother to do that now. Will get completeness for OWL.
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Entailment and Derivability

Outlook

RDFS allows some simple modelling: “all ladies are persons”

The following lectures will be about OWL
Will allow to say things like

Every car has a motor
Every car has at least three parts of type wheel
A mother is a person who is female and has at least one child
The friends of my friends are also my friends
A metropolis is a town with at least a million inhabitants
. . . and many more

Modeling will not be done by writing triples manually:
Will use ontology editor Protégé.
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