INF3580/4580 – Semantic Technologies – Spring 2017 Lecture 9: Model Semantics & Reasoning

Martin Giese

13th March 2017

Department of Informatics

University of Oslo

- [Repetition: RDF semantics](#page-2-0)
- [Literal Semantics](#page-103-0)
- [Blank Node Semantics](#page-135-0)
- [Properties of Entailment by Model Semantics](#page-183-0)
- [Entailment and Derivability](#page-233-0)

Outline

- 1 [Repetition: RDF semantics](#page-2-0)
- 2 [Literal Semantics](#page-103-0)
- **[Blank Node Semantics](#page-135-0)**
- 4 [Properties of Entailment by Model Semantics](#page-183-0)
- **[Entailment and Derivability](#page-233-0)**

We will simplify things by only looking at certain kinds of RDF graphs.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf:Person

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf:Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf:Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf: Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf: Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf: Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual . individual rdf:type class .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf: Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual . individual rdf:type class .

class rdfs:subClassOf class.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf:Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual . individual rdf:type class .

class rdfs:subClassOf class. property rdfs:subPropertyOf property .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf: Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual . individual rdf:type class .

class rdfs:subClassOf class. property rdfs: subPropertyOf property. property rdfs:domain class .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf: Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual . individual rdf:type class .

```
class rdfs:subClassOf class.
property rdfs: subPropertyOf property.
property rdfs:domain class .
property rdfs:range class .
```
- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
	- Properties like foaf: knows, dc:title
	- Classes like foaf: Person
	- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual . individual rdf:type class .

class rdfs:subClassOf class. property rdfs: subPropertyOf property. property rdfs:domain class . property rdfs:range class .

Forget blank nodes and literals for a while!

• Resources and Triples are no longer all alike

- Resources and Triples are no longer all alike
- No need to use the same general triple notation

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- **•** Use alternative notation

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- **a** Use alternative notation

This is called "Description Logic" (DL) Syntax

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- **a** Use alternative notation

- This is called "Description Logic" (DL) Syntax
- Used much in particular for OWL

• Triples:

Example

```
• Triples:
```
ws:romeo ws:loves ws:juliet . ws:juliet rdf:type ws:Lady . ws:Lady rdfs:subClassOf foaf:Person . ws:loves rdfs:subPropertyOf foaf:knows . ws:loves rdfs:domain ws:Lover . ws:loves rdfs:range ws:Beloved .

Example

• Triples:

ws:romeo ws:loves ws:juliet . ws:juliet rdf:type ws:Lady . ws:Lady rdfs:subClassOf foaf:Person . ws:loves rdfs:subPropertyOf foaf:knows . ws:loves rdfs:domain ws:Lover . ws:loves rdfs:range ws:Beloved .

• DL syntax, without namespaces:

Example

```
• Triples:
```
ws:romeo ws:loves ws:juliet . ws:juliet rdf:type ws:Lady . ws:Lady rdfs:subClassOf foaf:Person . ws:loves rdfs:subPropertyOf foaf:knows . ws:loves rdfs:domain ws:Lover . ws:loves rdfs:range ws:Beloved .

• DL syntax, without namespaces:

loves(romeo, juliet) L ady $(i$ uliet) L ady \Box Person $loves \mathrel{\sqsubset}$ knows dom(loves, Lover) rg(loves, Beloved)

To interpret the six kinds of triples, we need to know how to interpret

- To interpret the six kinds of triples, we need to know how to interpret
	- Individual URIs as real or imagined objects

- To interpret the six kinds of triples, we need to know how to interpret
	- Individual URIs as real or imagined objects
	- Class URIs as sets of such objects

- To interpret the six kinds of triples, we need to know how to interpret
	- Individual URIs as real or imagined objects
	- Class URIs as sets of such objects
	- Property URIs as relations between these objects

- To interpret the six kinds of triples, we need to know how to interpret
	- Individual URIs as real or imagined objects
	- Class URIs as sets of such objects
	- Property URIs as relations between these objects
- \bullet A DL-interpretation $\mathcal I$ consists of

- To interpret the six kinds of triples, we need to know how to interpret
	- Individual URIs as real or imagined objects
	- Class URIs as sets of such objects
	- Property URIs as relations between these objects
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* (sorry!) of $\mathcal I$

- To interpret the six kinds of triples, we need to know how to interpret
	- Individual URIs as real or imagined objects
	- Class URIs as sets of such objects
	- Property URIs as relations between these objects
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* (sorry!) of $\mathcal I$
	- For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

- To interpret the six kinds of triples, we need to know how to interpret
	- Individual URIs as real or imagined objects
	- Class URIs as sets of such objects
	- Property URIs as relations between these objects
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* (sorry!) of $\mathcal I$
	- For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
	- For each class URI C, a subset $\mathcal{C}^\mathcal{I} \subseteq \Delta^\mathcal{I}$

- To interpret the six kinds of triples, we need to know how to interpret
	- Individual URIs as real or imagined objects
	- Class URIs as sets of such objects
	- Property URIs as relations between these objects
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* (sorry!) of $\mathcal I$
	- For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
	- For each class URI C, a subset $\mathcal{C}^\mathcal{I} \subseteq \Delta^\mathcal{I}$
	- For each property URI r , a relation $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$
Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
	- Individual URIs as real or imagined objects
	- Class URIs as sets of such objects
	- Property URIs as relations between these objects
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* (sorry!) of $\mathcal I$
	- For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
	- For each class URI C, a subset $\mathcal{C}^\mathcal{I} \subseteq \Delta^\mathcal{I}$
	- For each property URI r , a relation $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$
- Given these, it will be possible to say whether a triple holds or not.

[Repetition: RDF semantics](#page-2-0)

$$
\bullet \;\Delta^{\mathcal{I}_1} = \left\{\begin{matrix} \bullet & \bullet \\ \bullet & \bullet \end{matrix} \right\}
$$

•
$$
\Delta^{\mathcal{I}_1} = \left\{ \begin{matrix} \mathbb{C}^1, & \mathbb{C}^2 \end{matrix} \right\}
$$

• $romeo^{\mathcal{I}_1} = \begin{matrix} \mathbb{C}^2 & juliet^{\mathcal{I}_1} \end{matrix} = \begin{matrix} \mathbb{C}^2 & \mathbb{C}^2 \end{matrix}$

\n- $$
\Delta^{\mathcal{I}_1} = \left\{ \bigotimes_{j \text{uliet}} \mathcal{I}_1 = \bigotimes_{j \text{uliet}} \mathcal{I}_2 = \Delta^{\mathcal{I}_1}
$$
\n- $L \text{over}^{\mathcal{I}_1} = \left\{ \bigotimes_{j \text{uliet}} \bigotimes_{j \text{person}} \mathcal{I}_1 = \Delta^{\mathcal{I}_1} \right\}$
\n
\nEvery matrix is given by the formula $L \text{over}^{\mathcal{I}_1} = \text{Beloved}^{\mathcal{I}_1} = \left\{ \bigotimes_{j \text{ullet}} \mathcal{I}_2 = \bigotimes_{j \text{ullet}} \mathcal{I}_3 = \bigotimes_{j \text{ullet}} \mathcal{I}_4 = \left\{ \bigotimes_{j \text{ullet}} \mathcal{I}_5 = \bigotimes_{j \text{ullet}} \mathcal{I}_5 = \bigotimes_{j \text{ullet}} \mathcal{I}_6 = \bigotimes_{j \text{ullet}} \mathcal{I}_7 = \bigotimes_{j \text{ullet}} \mathcal{I}_8 = \bigotimes_{j \text{ullet}} \mathcal{I}_9 = \bigotimes_{j$

$$
\Delta^{\mathcal{I}_1} = \left\{ \bigotimes_{j \text{uliet}}^{\mathcal{I}_1} \mathbf{I}_1 = \bigotimes_{j \text{uliet}}^{\mathcal{I}_1} \mathbf{I}_2 = \bigotimes_{j \text{uliet}}^{\mathcal{I}_2} \mathbf{I}_3
$$
\n
$$
\text{Lover}^{\mathcal{I}_1} = \left\{ \bigotimes_{j \text{uliet}}^{\mathcal{I}_2} \mathbf{I}_2 = \bigotimes_{j \text{uliet}}^{\mathcal{I}_3} \mathbf{I}_3 \right\}
$$
\n
$$
\text{Lover}^{\mathcal{I}_1} = \left\{ \bigotimes_{j \text{ullet}}^{\mathcal{I}_2} \mathbf{I}_2 \right\}, \bigotimes_{k \text{now}}^{\mathcal{I}_3} \mathbf{I}_3 \right\}
$$

$$
\bullet\ \Delta^{\mathcal{I}_2}=\mathbb{N}=\{1,2,3,4,\ldots\}
$$

$$
\bullet\ \Delta^{\mathcal{I}_2}=\mathbb{N}=\{1,2,3,4,\ldots\}
$$

• romeo $\mathcal{I}_2 = 17$ juliet $I^{\mathcal{I}₂ = 32}$

$$
\bullet\ \Delta^{\mathcal{I}_2}=\mathbb{N}=\{1,2,3,4,\ldots\}
$$

- **e** romeo I_2 17 iuliet $\mathcal{I}^{\mathcal{I}_2}=32$
- $\text{Lady}^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lower^{\mathcal{I}_2} - Roloved^{\mathcal{I}_2} - N$

$$
\bullet\ \Delta^{\mathcal{I}_2}=\mathbb{N}=\{1,2,3,4,\ldots\}
$$

- **e** romeo I_2 17 iuliet $\mathcal{I}^{\mathcal{I}_2}=32$
- $\text{Lady}^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lower^{\mathcal{I}_2} - Roloved^{\mathcal{I}_2} - N$

•
$$
loves^{T_2} = \langle = \{ \langle x, y \rangle \mid x < y \}
$$
\n
$$
knows^{T_2} = \langle = \{ \langle x, y \rangle \mid x \le y \}
$$

$$
\bullet\ \Delta^{\mathcal{I}_2}=\mathbb{N}=\{1,2,3,4,\ldots\}
$$

- **e** romeo I_2 17 iuliet $\mathcal{I}^{\mathcal{I}_2}=32$
- $\text{Lady}^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} - Beloved^{\mathcal{I}_2} - N$

•
$$
loves^{T_2} = \leq = \{ \langle x, y \rangle \mid x < y \}
$$
\n
$$
knows^{T_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}
$$

Just because names (URIs) look familiar, they don't need to denote what we think!

$$
\bullet\ \Delta^{\mathcal{I}_2}=\mathbb{N}=\{1,2,3,4,\ldots\}
$$

- **e** romeo \mathcal{I}_2 17 iuliet $\mathcal{I}_2 = 32$
- $\text{Lady}^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lower^{\mathcal{I}_2} - Roloved^{\mathcal{I}_2} - N$
- loves^{$\mathcal{I}_2 = \leq \leq \{ \langle x, y \rangle \mid x \leq y \}$} knows^{$\mathcal{I}_2 = \leq \leq \{ \langle x, v \rangle \mid x \leq v \}$}
- Just because names (URIs) look familiar, they don't need to denote what we think!
- In fact, there is no way of ensuring they denote only what we think!

- Given an interpretation \mathcal{I} , define \models as follows:
	- $\mathcal{I}\models$ $r(i_1,i_2)$ iff $\left\langle i_1^\mathcal{I},i_2^\mathcal{I}\right\rangle \in r^\mathcal{I}$

\n- \n
$$
\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}
$$
\n
\n- \n $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$ \n
\n

• Given an interpretation \mathcal{I} , define \models as follows:

\n- \n
$$
\mathcal{I} \models r(i_1, i_2)
$$
\n iff\n $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ \n
\n- \n $\mathcal{I} \models C(i)$ \n iff\n $i^{\mathcal{I}} \in C^{\mathcal{I}}$ \n
\n

 $\mathcal{I} \models \mathcal{C} \sqsubseteq D$ iff $\mathcal{C}^\mathcal{I} \subseteq D^\mathcal{I}$

\n- \n
$$
\mathcal{I} \models r(i_1, i_2)
$$
 iff\n $\langle i_1^T, i_2^T \rangle \in r^T$ \n
\n- \n $\mathcal{I} \models C(i)$ iff\n $i^T \in C^T$ \n
\n- \n $\mathcal{I} \models C \sqsubseteq D$ iff\n $C^T \subseteq D^T$ \n
\n- \n $\mathcal{I} \models r \sqsubseteq s$ iff\n $r^T \subseteq s^T$ \n
\n

\n- \n
$$
\mathcal{I} \models r(i_1, i_2)
$$
 iff\n $\langle i_1^T, i_2^T \rangle \in r^T$ \n
\n- \n $\mathcal{I} \models C(i)$ iff\n $i^T \in C^T$ \n
\n- \n $\mathcal{I} \models C \sqsubseteq D$ iff\n $C^T \subseteq D^T$ \n
\n- \n $\mathcal{I} \models r \sqsubseteq s$ iff\n $r^T \subseteq s^T$ \n
\n- \n $\mathcal{I} \models \text{dom}(r, C)$ iff\n $\text{dom } r^T \subseteq C^T$ \n
\n

\n- \n
$$
\mathcal{I} \models r(i_1, i_2)
$$
 iff $\langle i_1^T, i_2^T \rangle \in r^T$ \n
\n- \n $\mathcal{I} \models C(i)$ iff $i^T \in C^T$ \n
\n- \n $\mathcal{I} \models C \sqsubseteq D$ iff $C^T \subseteq D^T$ \n
\n- \n $\mathcal{I} \models r \sqsubseteq s$ iff $r^T \subseteq s^T$ \n
\n- \n $\mathcal{I} \models \text{dom}(r, C)$ iff $\text{dom}(r^T \subseteq C^T$ \n
\n- \n $\mathcal{I} \models \text{rg}(r, C)$ iff $\text{rg}(r^T \subseteq C^T$ \n
\n

• Given an interpretation \mathcal{I} , define \models as follows:

\n- \n
$$
\mathcal{I} \models r(i_1, i_2)
$$
 iff\n $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ \n
\n- \n $\mathcal{I} \models C(i)$ iff\n $i^{\mathcal{I}} \in C^{\mathcal{I}}$ \n
\n- \n $\mathcal{I} \models C \sqsubseteq D$ iff\n $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ \n
\n- \n $\mathcal{I} \models r \sqsubseteq s$ iff\n $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$ \n
\n- \n $\mathcal{I} \models \text{dom}(r, C)$ iff\n $\text{dom}(r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$ \n
\n- \n $\mathcal{I} \models \text{rg}(r, C)$ iff\n $\text{gr}^{\mathcal{I}} \subseteq C^{\mathcal{I}}$ \n
\n

• For a set of triples A (any of the six kinds)

\n- \n
$$
\mathcal{I} \models r(i_1, i_2)
$$
 iff\n $\langle i_1^T, i_2^T \rangle \in r^T$ \n
\n- \n $\mathcal{I} \models C(i)$ iff\n $i^T \in C^T$ \n
\n- \n $\mathcal{I} \models C \sqsubseteq D$ iff\n $C^T \subseteq D^T$ \n
\n- \n $\mathcal{I} \models r \sqsubseteq s$ iff\n $r^T \subseteq s^T$ \n
\n- \n $\mathcal{I} \models \text{dom}(r, C)$ iff\n $\text{dom}(r^T \subseteq C^T)$ \n
\n- \n $\mathcal{I} \models \text{rg}(r, C)$ iff\n $\text{rg}(r^T \subseteq C^T)$ \n
\n

- For a set of triples A (any of the six kinds)
- \bullet A is valid in \mathcal{I} , written

$$
\mathcal{I}\models \mathcal{A}
$$

• Given an interpretation \mathcal{I} , define \models as follows:

\n- \n
$$
\mathcal{I} \models r(i_1, i_2)
$$
 iff\n $\langle i_1^T, i_2^T \rangle \in r^T$ \n
\n- \n $\mathcal{I} \models C(i)$ iff\n $i^T \in C^T$ \n
\n- \n $\mathcal{I} \models C \sqsubseteq D$ iff\n $C^T \subseteq D^T$ \n
\n- \n $\mathcal{I} \models r \sqsubseteq s$ iff\n $r^T \subseteq s^T$ \n
\n- \n $\mathcal{I} \models \text{dom}(r, C)$ iff\n $\text{dom}(r^T \subseteq C^T$ \n
\n- \n $\mathcal{I} \models \text{rg}(r, C)$ iff\n $\text{rg}(r^T \subseteq C^T$ \n
\n

- For a set of triples A (any of the six kinds)
- \bullet A is valid in \mathcal{I} , written

$$
\mathcal{I}\models \mathcal{A}
$$

• iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.

 \bullet $\mathcal{I}_1 \models$ loves(juliet, romeo) because

 \bullet $\mathcal{I}_1 \models$ loves(juliet, romeo) because

 $\bigg)$

TUY₁

 \bullet $\mathcal{I}_1 \models$ loves(juliet, romeo) because

, ∈ lovesI¹ = , , ,

 \bullet $\mathcal{I}_2 \not\models$ Person(romeo) because

 $\bigg)$

 \bullet $\mathcal{I}_1 \models$ loves(juliet, romeo) because

- \bullet $\mathcal{I}_2 \not\models$ Person(romeo) because
- romeo^{$\mathcal{I}_2 = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, ...\}$}

 \bullet $\mathcal{I}_1 \models$ loves(juliet, romeo) because

$$
\in \textit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix} \right\rangle, \left\langle \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix} \right\rangle \right\}
$$

- \bullet $\mathcal{I}_2 \not\models$ Person(romeo) because
- romeo^{$\mathcal{I}_2 = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$}
- \bullet $\mathcal{I}_1 \models$ Lover \sqsubset Person because

 \bullet $\mathcal{I}_1 \models$ loves(juliet, romeo) because

$$
\in \textit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \begin{matrix} 0 \\ 0 \end{matrix} \right\rangle, \left\langle \begin{matrix} \bullet \\ \bullet \end{matrix} \right\rangle \right\}
$$

- \bullet $\mathcal{I}_2 \not\models$ Person(romeo) because
- romeo^{$\mathcal{I}_2 = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, ...\}$}
- \bullet $\mathcal{I}_1 \models$ Lover \sqsubset Person because

$$
Lower^{\mathcal{I}_1} = \left\{ \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix}, \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix} \right\} \subseteq Person^{\mathcal{I}_1} = \left\{ \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix}, \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix} \right\}
$$

 \setminus

 \bullet $\mathcal{I}_1 \models$ loves(juliet, romeo) because

$$
\in \textit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \begin{matrix} 0 \\ 0 \end{matrix} \right\rangle, \left\langle \begin{matrix} \bullet \\ \bullet \end{matrix} \right\rangle \right\}
$$

- \bullet $\mathcal{I}_2 \not\models$ Person(romeo) because
- romeo^{$\mathcal{I}_2 = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, ...\}$}
- \bullet $\mathcal{I}_1 \models$ Lover \sqsubset Person because

$$
Lower^{\mathcal{I}_1} = \left\{ \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix}, \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix} \right\} \subseteq Person^{\mathcal{I}_1} = \left\{ \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix}, \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix} \right\}
$$

 \bullet $\mathcal{I}_2 \not\models$ Lover \sqsubseteq Person because

,

 \setminus

 \bullet $\mathcal{I}_1 \models$ loves(juliet, romeo) because

$$
\in \textit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \begin{matrix} \mathbb{Z}_2 & \mathbb{Z}_3 \\ \mathbb{Z}_4 & \mathbb{Z}_5 \end{matrix} \right\rangle, \left\langle \begin{matrix} \mathbb{Z}_4 \\ \mathbb{Z}_5 \end{matrix} \right\rangle \right\}
$$

- \bullet $\mathcal{I}_2 \not\models$ Person(romeo) because
- romeo^{$\mathcal{I}_2 = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, ...\}$}
- \bullet $\mathcal{I}_1 \models$ Lover \sqsubset Person because

$$
Lower^{\mathcal{I}_1} = \left\{ \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix}, \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix} \right\} \subseteq Person^{\mathcal{I}_1} = \left\{ \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix}, \begin{matrix} \bullet \\ \bullet \\ \bullet \end{matrix} \right\}
$$

 \bullet $\mathcal{I}_2 \not\models$ Lover \sqsubseteq Person because Lover $I_2 = N$ and $Person^{I_2} = \{2, 4, 6, 8, 10, ...\}$ \setminus

Finding out stuff about Romeo and Juliet

Finding out stuff about Romeo and Juliet

Finding out stuff about Romeo and Juliet

• Given a set of triples A (any of the six kinds)

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- \bullet iff
- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$

 \bullet iff

• For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$

 \bullet iff

- For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
- \bullet $\mathcal{I} \models \mathcal{T}$.

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- \bullet iff
	- For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
	- \bullet $\mathcal{I} \models \mathcal{T}$.
- **•** Example:

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- o iff
	- For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
	- \bullet $\mathcal{I} \models \mathcal{T}$.
- **•** Example:
	- \bullet $\mathcal{A} = \{ \dots, \text{Lady}(juliet), \text{Lady } \sqsubseteq \text{Person}, \dots \}$ as before

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- \bullet iff
	- For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
	- \bullet $\mathcal{I} \models \mathcal{T}$.
- **•** Example:
	- \bullet $\mathcal{A} = \{ \dots, \text{Lady}(juliet), \text{Lady } \sqsubseteq \text{Person}, \dots \}$ as before
	- \bullet $A \models$ Person(juliet) because...

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- \bullet iff
	- For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
	- \bullet $\mathcal{I} \models \mathcal{T}$.
- **•** Example:
	- \bullet $\mathcal{A} = \{ \dots, \text{Lady(juliet)}, \text{Lady } \sqsubseteq \text{Person}, \dots \}$ as before
	- \bullet $A \models$ Person(juliet) because...
	- \bullet in any interpretation $\mathcal{I} \dots$

- Given a set of triples $\mathcal A$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- \bullet iff
	- For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
	- \bullet $\mathcal{I} \models \mathcal{T}$.
- **•** Example:
	- \bullet $\mathcal{A} = \{ \dots, \text{Lady}(\text{juliet}), \text{Lady } \sqsubset \text{Person}, \dots \}$ as before
	- \bullet $\mathcal{A} \models$ Person(juliet) because...
	- \bullet in any interpretation $\mathcal{I} \dots$
	- if *juliet* $^{\mathcal{I}} \in \mathit{Lady}^{\mathcal{I}}$ and $\mathit{Lady}^{\mathcal{I}} \subseteq \mathit{Person}^{\mathcal{I}}$ \dots

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- \bullet iff
	- For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
	- \bullet $\mathcal{I} \models \mathcal{T}$.
- **•** Example:
	- \bullet $\mathcal{A} = \{ \dots, \text{Lady}(\text{juliet}), \text{Lady } \sqsubset \text{Person}, \dots \}$ as before
	- \bullet $\mathcal{A} \models$ Person(juliet) because...
	- \bullet in any interpretation $\mathcal{I} \dots$
	- if *juliet* $^{\mathcal{I}} \in \mathit{Lady}^{\mathcal{I}}$ and $\mathit{Lady}^{\mathcal{I}} \subseteq \mathit{Person}^{\mathcal{I}}$ \dots
	- then by set theory juliet $I \in Person^{\mathcal{I}}$

- Given a set of triples $\mathcal A$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- \bullet iff
	- For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
	- \bullet $\mathcal{I} \models \mathcal{T}$.
- **•** Example:
	- \bullet $\mathcal{A} = \{ \dots, \text{Lady}(\text{juliet}), \text{Lady } \sqsubset \text{Person}, \dots \}$ as before
	- \bullet $\mathcal{A} \models$ Person(juliet) because...
	- \bullet in any interpretation $\mathcal{I} \dots$
	- if *juliet* $^{\mathcal{I}} \in \mathit{Lady}^{\mathcal{I}}$ and $\mathit{Lady}^{\mathcal{I}} \subseteq \mathit{Person}^{\mathcal{I}}$ \dots
	- then by set theory juliet $I \in Person^{\mathcal{I}}$
- Not about T being (intuitively) true or not

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- \bullet iff
	- For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
	- \bullet $\mathcal{I} \models \mathcal{T}$.
- **•** Example:
	- \bullet $\mathcal{A} = \{ \dots, \text{Lady}(\text{juliet}), \text{Lady } \sqsubset \text{Person}, \dots \}$ as before
	- \bullet $\mathcal{A} \models$ Person(juliet) because...
	- \bullet in any interpretation $\mathcal{I} \dots$
	- if *juliet* $^{\mathcal{I}} \in \mathit{Lady}^{\mathcal{I}}$ and $\mathit{Lady}^{\mathcal{I}} \subseteq \mathit{Person}^{\mathcal{I}}$ \dots
	- then by set theory juliet $I \in Person^{\mathcal{I}}$
- Not about T being (intuitively) true or not
- Only about whether T is a consequence of A

• If $A \not\models T, \ldots$

- If $A \not\models T, \ldots$
- \bullet then there is an $\mathcal I$ with

- If $A \not\models T, \ldots$
- \bullet then there is an $\mathcal I$ with
	- \bullet $\mathcal{I} \models \mathcal{A}$

- If $A \not\models T, \ldots$
- \bullet then there is an $\mathcal I$ with
	- \bullet $\mathcal{I} \models \mathcal{A}$
	- \bullet $\mathcal{I} \not\models \mathcal{T}$

- If $A \not\models T, \ldots$
- then there is an $\mathcal I$ with
	- \bullet $\mathcal{I} \models \mathcal{A}$ \bullet $\mathcal{I} \not\models \mathcal{T}$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$

- If $A \not\models T, \ldots$
- then there is an $\mathcal I$ with
	- \bullet $\mathcal{I} \models \mathcal{A}$ \bullet $\mathcal{I} \not\models \mathcal{T}$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an I is called a *counter-model* (for the assumption that A entails T)

- If $A \not\models T,...$
- then there is an $\mathcal I$ with
	- \bullet $\mathcal{I} \models \mathcal{A}$ \bullet $\mathcal{I} \not\models \mathcal{T}$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an I is called a *counter-model* (for the assumption that A entails T)
- To show that $A \models T$ does not hold:

- If $A \not\models T,...$
- then there is an $\mathcal I$ with
	- \bullet $\mathcal{I} \models \mathcal{A}$ \bullet $\mathcal{I} \not\models \mathcal{T}$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an I is called a *counter-model* (for the assumption that A entails T)
- To show that $A \models T$ does not hold:
	- Describe an interpretation $\mathcal I$ (using your fantasy)

- If $A \not\models T,...$
- then there is an $\mathcal I$ with
	- $\bullet \mathcal{I} \models \mathcal{A}$ \bullet $\mathcal{I} \not\models \mathcal{T}$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an I is called a *counter-model* (for the assumption that A entails T)
- To show that $A \models T$ does not hold:
	- Describe an interpretation $\mathcal I$ (using your fantasy)
	- Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)

- If $A \not\models T,...$
- then there is an $\mathcal I$ with
	- $\bullet \mathcal{I} \models \mathcal{A}$ \bullet $\mathcal{I} \not\models \mathcal{T}$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an I is called a *counter-model* (for the assumption that A entails T)
- To show that $A \models T$ does not hold:
	- Describe an interpretation $\mathcal I$ (using your fantasy)
	- Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
	- Prove that $\mathcal{I} \not\models \mathcal{T}$ (using the semantics)

- If $A \not\models T,...$
- then there is an $\mathcal I$ with
	- $\bullet \mathcal{I} \models \mathcal{A}$ \bullet $\mathcal{I} \not\models \mathcal{T}$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an I is called a *counter-model* (for the assumption that A entails T)
- To show that $A \models T$ does not hold:
	- Describe an interpretation $\mathcal I$ (using your fantasy)
	- Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
	- Prove that $\mathcal{I} \not\models \mathcal{T}$ (using the semantics)
- Countermodels for intuitively true statements are always unintuitive! (Why?)

 \bullet A as before:

$$
\mathcal{A} = \{loves(\text{romeo}, \text{juliet}), \text{ Lady}(\text{juliet}), \text{ Lady } \sqsubseteq \text{Person}, \\ \text{loves } \sqsubseteq \text{knows}, \text{ dom}(\text{loves}, \text{Lover}), \text{ rg}(\text{loves}, \text{Belowd})\}
$$

 \bullet A as before:

 $A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person,$ $loves \sqsubseteq$ knows, dom(loves, Lover), rg(loves, Beloved)}

• Does $A \models \text{Lower} \sqsubseteq \text{Belowed}$?

 \bullet A as before:

$$
\mathcal{A} = \{loves(\text{romeo}, \text{juliet}), \text{ Lady}(\text{juliet}), \text{ Lady } \sqsubseteq \text{Person}, \\ \text{loves } \sqsubseteq \text{knows}, \text{ dom}(\text{loves}, \text{Lover}), \text{ rg}(\text{loves}, \text{Belowd})\}
$$

- Does $A \models \text{Lower} \sqsubseteq \text{Beloved}$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .

 \bullet A as before:

$$
\mathcal{A} = \{loves(\text{romeo}, \text{juliet}), \text{ Lady}(\text{juliet}), \text{ Lady } \sqsubseteq \text{Person}, \\ \text{loves } \sqsubseteq \text{knows}, \text{ dom}(\text{loves}, \text{Lover}), \text{ rg}(\text{loves}, \text{Belowd})\}
$$

- Does $A \models \text{Lower} \sqsubseteq \text{Belowed}$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.

 \bullet A as before:

 $A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person,$ $loves \nightharpoonup$ knows, dom(loves, Lover), rg(loves, Beloved)}

- Does $A \models \text{Lower} \sqsubset \text{Beloved}$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret romeo $\mathcal{I} = a$ and juliet $\mathcal{I} = b$

 \bullet A as before:

 $\mathcal{A} = \{\text{loves}(\text{romeo}, \text{juliet}), \text{ Lady}(\text{juliet}), \text{ Lady } \sqsubseteq \text{Person},\}$ $loves \nightharpoonup$ knows, dom(loves, Lover), rg(loves, Beloved)}

- Does $A \models \text{Lower} \sqsubseteq \text{Belowed}$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret romeo $I = a$ and juliet $I = b$
- Then $\langle a, b\rangle \in \mathit{loves}^{\mathcal{I}}$, $a\in \mathit{Lover}^{\mathcal{I}}$, $b\in \mathit{Beloved}^{\mathcal{I}}$.

 \bullet A as before:

 $\mathcal{A} = \{\text{loves}(\text{romeo}, \text{juliet}), \text{ Lady}(\text{juliet}), \text{ Lady } \sqsubseteq \text{Person},\}$ $loves \nightharpoonup$ knows, dom(loves, Lover), rg(loves, Beloved)}

- Does $A \models \text{Lower} \sqsubset \text{Beloved}$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret romeo $I = a$ and juliet $I = b$
- Then $\langle a, b\rangle \in \mathit{loves}^{\mathcal{I}}$, $a\in \mathit{Lover}^{\mathcal{I}}$, $b\in \mathit{Beloved}^{\mathcal{I}}$.
- With Lover $I = \{a\}$ and Beloved $I = \{b\}$, $I \not\models$ Lover \Box Beloved!

 \bullet A as before:

 $\mathcal{A} = \{\text{loves}(\text{romeo}, \text{juliet}), \text{ Lady}(\text{juliet}), \text{ Lady } \sqsubseteq \text{Person},\}$ $loves \nightharpoonup$ knows, dom(loves, Lover), rg(loves, Beloved)}

- Does $A \models \text{Lower} \sqsubset \text{Beloved}$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretation with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret romeo $I = a$ and juliet $I = b$
- Then $\langle a, b\rangle \in \mathit{loves}^{\mathcal{I}}$, $a\in \mathit{Lover}^{\mathcal{I}}$, $b\in \mathit{Beloved}^{\mathcal{I}}$.
- With Lover $I = \{a\}$ and Beloved $I = \{b\}$, $I \not\models$ Lover \Box Beloved!
- **o** Choose

$$
\mathit{loves}^{\mathcal{I}} = \mathit{knows}^{\mathcal{I}} = \{ \langle a, b \rangle \} \qquad \mathit{Lady}^{\mathcal{I}} = \mathit{Person}^{\mathcal{I}} = \{ b \}
$$

to complete the count-model while satisfying $\mathcal{I} \models \mathcal{A}$

Countermodels about Romeo and Juliet

Countermodels about Romeo and Juliet

Outline

- [Repetition: RDF semantics](#page-2-0)
- 2 [Literal Semantics](#page-103-0)
	- **[Blank Node Semantics](#page-135-0)**
- 4 [Properties of Entailment by Model Semantics](#page-183-0)
- **[Entailment and Derivability](#page-233-0)**

• Literals can only occur as objects of triples

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources: ex:me ex:likes dbpedia:Berlin .
- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin . ex:me ex:likes "food" .

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

ex:me ex:likes "food" .

• We simplify things by:

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
	- considering only string literals without language tag, and

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
	- considering only string literals without language tag, and
	- allowing either resource objects or literal objects for any predicate

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
	- considering only string literals without language tag, and
	- allowing either resource objects or literal objects for any predicate
- Five types of resources:

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
	- considering only string literals without language tag, and
	- allowing either resource objects or literal objects for any predicate
- Five types of resources:
	- Object Properties like foaf: knows

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
	- considering only string literals without language tag, and
	- allowing either resource objects or literal objects for any predicate
- Five types of resources:
	- Object Properties like foaf: knows
	- Datatype Properties like dc:title, foaf:name

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
	- considering only string literals without language tag, and
	- allowing either resource objects or literal objects for any predicate
- Five types of resources:
	- Object Properties like foaf: knows
	- Datatype Properties like dc:title, foaf:name
	- Classes like foaf: Person

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
	- considering only string literals without language tag, and
	- allowing either resource objects or literal objects for any predicate
- Five types of resources:
	- Object Properties like foaf: knows
	- Datatype Properties like dc:title, foaf:name
	- Classes like foaf: Person
	- *Built-ins*, a fixed set including rdf:type, rdfs:domain, etc.

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
	- considering only string literals without language tag, and
	- allowing either resource objects or literal objects for any predicate
- Five types of resources:
	- Object Properties like foaf: knows
	- Datatype Properties like dc:title, foaf:name
	- Classes like foaf: Person
	- · Built-ins, a fixed set including rdf: type, rdfs: domain, etc.
	- Individuals (all the rest, "usual" resources)

- Literals can only occur as objects of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
	- considering only string literals without language tag, and
	- allowing either resource objects or literal objects for any predicate
- Five types of resources:
	- Object Properties like foaf: knows
	- Datatype Properties like dc:title, foaf:name
	- Classes like foaf: Person
	- *Built-ins*, a fixed set including rdf:type, rdfs:domain, etc.
	- Individuals (all the rest, "usual" resources)
- Why? simpler, object/datatype split is in OWL

Allowed triples

Allow only triples using object properties and datatype properties as intended

Let Λ be the set of all literal values, i.e. all strings

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* of $\mathcal I$

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* of $\mathcal I$
	- Interpretations $i^\mathcal{I}\in\Delta^\mathcal{I}$, $\mathcal{C}^\mathcal{I}\subseteq\Delta^\mathcal{I}$, and $r^\mathcal{I}\subseteq\Delta^\mathcal{I}\times\Delta^\mathcal{I}$ as before

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* of $\mathcal I$
	- Interpretations $i^\mathcal{I}\in\Delta^\mathcal{I}$, $\mathcal{C}^\mathcal{I}\subseteq\Delta^\mathcal{I}$, and $r^\mathcal{I}\subseteq\Delta^\mathcal{I}\times\Delta^\mathcal{I}$ as before
	- For each datatype property URI *a*, a relation $\mathsf{a}^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \mathsf{\Lambda}$

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* of $\mathcal I$
	- Interpretations $i^\mathcal{I}\in\Delta^\mathcal{I}$, $\mathcal{C}^\mathcal{I}\subseteq\Delta^\mathcal{I}$, and $r^\mathcal{I}\subseteq\Delta^\mathcal{I}\times\Delta^\mathcal{I}$ as before
	- For each datatype property URI *a*, a relation $\mathsf{a}^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \mathsf{\Lambda}$
- **•** Semantics:

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* of $\mathcal I$
	- Interpretations $i^\mathcal{I}\in\Delta^\mathcal{I}$, $\mathcal{C}^\mathcal{I}\subseteq\Delta^\mathcal{I}$, and $r^\mathcal{I}\subseteq\Delta^\mathcal{I}\times\Delta^\mathcal{I}$ as before
	- For each datatype property URI *a*, a relation $\mathsf{a}^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \mathsf{\Lambda}$
- **•** Semantics:
	- $\mathcal{I} \models \mathsf{r}(i_1,i_2)$ iff $\left\langle i_1^\mathcal{I}, i_2^\mathcal{I} \right\rangle \in \mathsf{r}^\mathcal{I}$ for object property r

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* of $\mathcal I$
	- Interpretations $i^\mathcal{I}\in\Delta^\mathcal{I}$, $\mathcal{C}^\mathcal{I}\subseteq\Delta^\mathcal{I}$, and $r^\mathcal{I}\subseteq\Delta^\mathcal{I}\times\Delta^\mathcal{I}$ as before
	- For each datatype property URI *a*, a relation $\mathsf{a}^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \mathsf{\Lambda}$
- **•** Semantics:
	- $\mathcal{I} \models \mathsf{r}(i_1,i_2)$ iff $\left\langle i_1^\mathcal{I}, i_2^\mathcal{I} \right\rangle \in \mathsf{r}^\mathcal{I}$ for object property r
	- $\mathcal{I}\models \mathsf{a}(i,l)$ iff $\left\langle i^{\mathcal{I}},l\right\rangle \in \mathsf{a}^{\mathcal{I}}$ for datatype property a

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* of $\mathcal I$
	- Interpretations $i^\mathcal{I}\in\Delta^\mathcal{I}$, $\mathcal{C}^\mathcal{I}\subseteq\Delta^\mathcal{I}$, and $r^\mathcal{I}\subseteq\Delta^\mathcal{I}\times\Delta^\mathcal{I}$ as before
	- For each datatype property URI *a*, a relation $\mathsf{a}^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \mathsf{\Lambda}$
- **•** Semantics:
	- $\mathcal{I} \models \mathsf{r}(i_1,i_2)$ iff $\left\langle i_1^\mathcal{I}, i_2^\mathcal{I} \right\rangle \in \mathsf{r}^\mathcal{I}$ for object property r
	- $\mathcal{I}\models \mathsf{a}(i,l)$ iff $\left\langle i^{\mathcal{I}},l\right\rangle \in \mathsf{a}^{\mathcal{I}}$ for datatype property a
	- $\mathcal{I} \models \mathsf{r} \sqsubseteq \mathsf{s}$ iff $\mathsf{r}^\mathcal{I} \subseteq \mathsf{s}^\mathcal{I}$ for object properties $\mathsf{r},\ \mathsf{s}$

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* of $\mathcal I$
	- Interpretations $i^\mathcal{I}\in\Delta^\mathcal{I}$, $\mathcal{C}^\mathcal{I}\subseteq\Delta^\mathcal{I}$, and $r^\mathcal{I}\subseteq\Delta^\mathcal{I}\times\Delta^\mathcal{I}$ as before
	- For each datatype property URI *a*, a relation $\mathsf{a}^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \mathsf{\Lambda}$
- **•** Semantics:
	- $\mathcal{I} \models \mathsf{r}(i_1,i_2)$ iff $\left\langle i_1^\mathcal{I}, i_2^\mathcal{I} \right\rangle \in \mathsf{r}^\mathcal{I}$ for object property r
	- $\mathcal{I}\models \mathsf{a}(i,l)$ iff $\left\langle i^{\mathcal{I}},l\right\rangle \in \mathsf{a}^{\mathcal{I}}$ for datatype property a
	- $\mathcal{I} \models \mathsf{r} \sqsubseteq \mathsf{s}$ iff $\mathsf{r}^\mathcal{I} \subseteq \mathsf{s}^\mathcal{I}$ for object properties $\mathsf{r},\ \mathsf{s}$
	- $\mathcal{I}\models$ a \sqsubseteq b iff $a^\mathcal{I}\subseteq b^\mathcal{I}$ for datatype properties a, b

- Let Λ be the set of all literal values, i.e. all strings
	- Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation $\mathcal I$ consists of
	- A set $\Delta^\mathcal{I}$, called the *domain* of $\mathcal I$
	- Interpretations $i^\mathcal{I}\in\Delta^\mathcal{I}$, $\mathcal{C}^\mathcal{I}\subseteq\Delta^\mathcal{I}$, and $r^\mathcal{I}\subseteq\Delta^\mathcal{I}\times\Delta^\mathcal{I}$ as before
	- For each datatype property URI *a*, a relation $\mathsf{a}^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \mathsf{\Lambda}$
- **•** Semantics:

•
$$
\mathcal{I} \models r(i_1, i_2)
$$
 iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ for object property r

- $\mathcal{I} \models \iota(\eta, \eta_2) \cup \iota(\eta', \eta_2) \in \iota^*$ for datatype property a
 $\mathcal{I} \models a(i, l)$ iff $\langle i^{\mathcal{I}}, l \rangle \in a^{\mathcal{I}}$ for datatype property a
- $\mathcal{I} \models \mathsf{r} \sqsubseteq \mathsf{s}$ iff $\mathsf{r}^\mathcal{I} \subseteq \mathsf{s}^\mathcal{I}$ for object properties $\mathsf{r},\ \mathsf{s}$
- $\mathcal{I}\models$ a \sqsubseteq b iff $a^\mathcal{I}\subseteq b^\mathcal{I}$ for datatype properties a, b
- Note: Literals *l* are in Λ, don't need to be interpreted.

Example: Interpretation with a Datatype Property

$$
\bullet \ \Delta^{\mathcal{I}_1} = \left\{\begin{matrix} \mathcal{I}_2 & \mathcal{I}_3 \\ \mathcal{I}_4 & \mathcal{I}_5 \end{matrix}\right\}
$$

Example: Interpretation with a Datatype Property

$$
\Delta^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle, \left\langle \right\rangle, \left\langle \right\rangle \right\rangle, \left\langle \left\langle \right\rangle, \left\langle \right\rangle \right\rangle \right\}
$$

• $loves^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle, \left\langle \right\rangle, \left\langle \right\rangle, \left\langle \right\rangle, \left\langle \right\rangle \right\rangle \right\}$
knows ^{\mathcal{I}_1} = $\Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_1}$

Example: Interpretation with a Datatype Property

$$
\Delta^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle, \left\langle \right\rangle, \left\langle \right\rangle \right\rangle \right\}
$$

\n
$$
knows^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle, \left\langle \right\rangle, \left\langle \right\rangle, \left\langle \right\rangle \right\rangle \right\}
$$

\n
$$
have^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_1}
$$

\n
$$
age^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle, "16"\right\rangle, \left\langle \left\langle \right\rangle, "almost 14"\right\rangle, \left\langle \left\langle \right\rangle, "13"\right\rangle \right\}
$$

Outline

- [Repetition: RDF semantics](#page-2-0)
- 2 [Literal Semantics](#page-103-0)
- 3 [Blank Node Semantics](#page-135-0)
- 4 [Properties of Entailment by Model Semantics](#page-183-0)
- **[Entailment and Derivability](#page-233-0)**

• Remember: Blank nodes are just like resources...

- Remember: Blank nodes are just like resources...
- . . . but without a "global" URI.

- Remember: Blank nodes are just like resources...
- . . . but without a "global" URI.
- Blank node has a local "blank node identifier" instead.

- Remember: Blank nodes are just like resources...
- . . . but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples...

- Remember: Blank nodes are just like resources...
- . . . but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples...
- . . . but they have to be in the same "file" or "data set"

- Remember: Blank nodes are just like resources...
- . . . but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples...
- . . . but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples

- Remember: Blank nodes are just like resources...
- . . . but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples...
- . . . but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples
- But we still need to interpret single triples.

- Remember: Blank nodes are just like resources...
- . . . but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node can be used in several triples...
- . . . but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples
- But we still need to interpret single triples.
- Solution: pass in blank node interpretation, deal with sets later!
Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- \bullet ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- \bullet ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
	- ... for every blank node ID b

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- \bullet ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
	- ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- \bullet ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
	- ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
	- $i^{\mathcal{I},\beta}=i^{\mathcal{I}}$ for individual URIs *i*

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- \bullet ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
	- ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
	- $i^{\mathcal{I},\beta}=i^{\mathcal{I}}$ for individual URIs *i*
	- $l^{\mathcal{I},\beta}=l$ for literals l

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
	- ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
	- $i^{\mathcal{I},\beta}=i^{\mathcal{I}}$ for individual URIs *i*
	- $l^{\mathcal{I},\beta}=l$ for literals l
	- $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
	- ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
	- $i^{\mathcal{I},\beta}=i^{\mathcal{I}}$ for individual URIs *i*
	- $l^{\mathcal{I},\beta}=l$ for literals l
	- $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- **·** Interpretation:

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
	- ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
	- $i^{\mathcal{I},\beta}=i^{\mathcal{I}}$ for individual URIs *i*
	- $l^{\mathcal{I},\beta}=l$ for literals l
	- $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- **·** Interpretation:

•
$$
\mathcal{I}, \beta \models r(x, y) \text{ iff } \langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}} \dots
$$

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- \bullet ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
	- \bullet ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
	- $i^{\mathcal{I},\beta}=i^{\mathcal{I}}$ for individual URIs *i*
	- $l^{\mathcal{I},\beta}=l$ for literals l
	- $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- **·** Interpretation:
	- $\mathcal{I}, \beta \models r(x, y)$ iff $\langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}}. \dots$
	- \bullet ... for any legal combination of URIs/literals/blank nodes x, y

- Given an interpretation $\mathcal I$ with domain $\Delta^\mathcal I\dots$
	- A blank node valuation β ...
	- \bullet ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
	- \bullet ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
	- $i^{\mathcal{I},\beta}=i^{\mathcal{I}}$ for individual URIs *i*
	- $l^{\mathcal{I},\beta}=l$ for literals l
	- $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- **·** Interpretation:
	- $\mathcal{I}, \beta \models r(x, y)$ iff $\langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}}. \dots$
	- \bullet ... for any legal combination of URIs/literals/blank nodes x, y
	- ... and object/datatype property r

 \bullet Given a set A of triples with blank nodes...

- \bullet Given a set A of triples with blank nodes...
- $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models \mathcal{A}$ for all $\mathcal{A} \in \mathcal{A}$

- \bullet Given a set A of triples with blank nodes...
- \bullet $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models \mathcal{A}$ for all $\mathcal{A} \in \mathcal{A}$
- \bullet A is valid in $\mathcal I$

- \bullet Given a set A of triples with blank nodes...
- \bullet $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models \mathcal{A}$ for all $\mathcal{A} \in \mathcal{A}$
- \bullet A is valid in $\mathcal I$

 $\mathcal{I} \models \mathcal{A}$

- \bullet Given a set A of triples with blank nodes...
- \bullet $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models \mathcal{A}$ for all $\mathcal{A} \in \mathcal{A}$
- \bullet A is valid in $\mathcal I$

 $\mathcal{I} \models \mathcal{A}$ if there is a β such that $\mathcal{I}, \beta \models \mathcal{A}$

- \bullet Given a set A of triples with blank nodes...
- \bullet $\mathcal{I}, \beta \models \mathcal{A}$ iff $\mathcal{I}, \beta \models \mathcal{A}$ for all $\mathcal{A} \in \mathcal{A}$
- \bullet A is valid in T

 $\mathcal{I} \models \mathcal{A}$ if there is a β such that $\mathcal{I}, \beta \models \mathcal{A}$

I.e. if there exists some valuation for the blank nodes that makes all triples true.

$$
\bullet \;\Delta^{\mathcal{I}_1} = \left\{\begin{matrix} \bullet & \bullet \\ \bullet & \bullet \end{matrix} \right\}
$$

$$
\Delta^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle \right\rangle \right\}
$$

•
$$
loves^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle \right\rangle \left\langle \right\rangle \right\rangle \left\langle \left\langle \right\rangle \right\rangle \left\langle \left\langle \right\rangle \right\rangle \right\}
$$

$$
\Big\}\Big\}\qquad\textit{knows}^{\mathcal{I}_{1}}=\Delta^{\mathcal{I}_{1}}\times\Delta^{\mathcal{I}_{1}}
$$

• Let b_1 , b_2 , b_3 be blank nodes

- Let b_1 , b_2 , b_3 be blank nodes
- \blacklozenge $\mathcal{A} = \{ \text{age}(b_1, "16"), \text{knows}(b_1, b_2), \text{loves}(b_2, b_3), \text{age}(b_3, "13") \}$

- Let b_1 , b_2 , b_3 be blank nodes
- \blacklozenge $\mathcal{A} = \{ \text{age}(b_1, "16"), \text{knows}(b_1, b_2), \text{loves}(b_2, b_3), \text{age}(b_3, "13") \}$
- Valid in \mathcal{I}_1 ?

- Let b_1 , b_2 , b_3 be blank nodes
- \blacklozenge $\mathcal{A} = \{ \text{age}(b_1, "16"), \text{knows}(b_1, b_2), \text{loves}(b_2, b_3), \text{age}(b_3, "13") \}$
- Valid in \mathcal{I}_1 ?

• Pick
$$
\beta(b_1) = \beta(b_2) = \sqrt{a_1}
$$
, $\beta(b_3) = \sqrt{a_2}$

- Let b_1 , b_2 , b_3 be blank nodes
- \blacklozenge $\mathcal{A} = \{ \text{age}(b_1, "16"), \text{knows}(b_1, b_2), \text{loves}(b_2, b_3), \text{age}(b_3, "13") \}$
- Valid in \mathcal{I}_1 ?

• Pick
$$
\beta(b_1) = \beta(b_2) = \sqrt{b_1}
$$
, $\beta(b_3) = \sqrt{b_2}$.

• Then $\mathcal{I}_1, \beta \models \mathcal{A}$

- Let b_1 , b_2 , b_3 be blank nodes
- \blacklozenge $\mathcal{A} = \{ \text{age}(b_1, "16"), \text{knows}(b_1, b_2), \text{loves}(b_2, b_3), \text{age}(b_3, "13") \}$
- Valid in \mathcal{I}_1 ?

• Pick
$$
\beta(b_1) = \beta(b_2) = \sqrt{b_1}
$$
, $\beta(b_3) = \sqrt{b_2}$.

- Then $\mathcal{I}_1, \beta \models \mathcal{A}$
- So, yes, $\mathcal{I}_1 \models \mathcal{A}$.

Entailment is defined just like without blank nodes:

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B ,

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B ,
	- \bullet A entails B, written $A \models B$

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B .
	- \bullet A entails B, written $A \models B$
	- iff for any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$, also $\mathcal I \models \mathcal B$.

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B .
	- \bullet A entails B, written $A \models B$
	- iff for any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$, also $\mathcal I \models \mathcal B$.
- This expands to: for any interpretation I

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B .
	- A entails B, written $A \models B$
	- iff for any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$, also $\mathcal I \models \mathcal B$.
- This expands to: for any interpretation I
	- such that there exists a β with $\mathcal{I}, \beta \models \mathcal{A}$

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B .
	- A entails B, written $A \models B$
	- iff for any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$, also $\mathcal I \models \mathcal B$.
- \bullet This expands to: for any interpretation $\mathcal I$
	- such that there exists a β with $\mathcal{I}, \beta \models \mathcal{A}$
	- there also exists a β such that $\mathcal{I}, \beta \models \mathcal{B}$

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B .
	- \bullet A entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
	- iff for any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$, also $\mathcal I \models \mathcal B$.
- This expands to: for any interpretation I
	- such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
	- there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- **Two different blank node valuations!**

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B .
	- A entails B, written $A \models B$
	- iff for any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$, also $\mathcal I \models \mathcal B$.
- This expands to: for any interpretation I
	- such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
	- there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- **Two different blank node valuations!**
- \bullet Can evaluate the same blank node name differently in A and B.
Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B .
	- A entails B, written $A \models B$
	- iff for any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$, also $\mathcal I \models \mathcal B$.
- This expands to: for any interpretation I
	- such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
	- there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- **Two different blank node valuations!**
- Can evaluate the same blank node name differently in $\mathcal A$ and $\mathcal B$.
- **•** Example:

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B .
	- A entails B, written $A \models B$
	- iff for any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$, also $\mathcal I \models \mathcal B$.
- This expands to: for any interpretation I
	- such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
	- there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- **Two different blank node valuations!**
- Can evaluate the same blank node name differently in $\mathcal A$ and $\mathcal B$.
- **•** Example:

 $\{loves(b_1, juliet), knows(juliet,romeo), age(juliet, "13")\}$

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
	- Given sets of triples A and B .
	- A entails B, written $A \models B$
	- iff for any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$, also $\mathcal I \models \mathcal B$.
- This expands to: for any interpretation I
	- such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
	- there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- **Two different blank node valuations!**
- Can evaluate the same blank node name differently in $\mathcal A$ and $\mathcal B$.
- **•** Example:

```
\{loves(b_1, juliet), knows(juliet,romeo), age(juliet, "13")\}\models {loves(b<sub>2</sub>, b<sub>1</sub>), knows(b<sub>1</sub>, romeo)}
```
Outline

- [Repetition: RDF semantics](#page-2-0)
- 2 [Literal Semantics](#page-103-0)
- **[Blank Node Semantics](#page-135-0)**
- 4 [Properties of Entailment by Model Semantics](#page-183-0)
- **[Entailment and Derivability](#page-233-0)**

• Assume $A \models B$

- Assume $A \models B$
- Now add information to A, i.e. $A' \supseteq A$

- Assume $A \models B$
- Now add information to A, i.e. $A' \supseteq A$
- Then $\mathcal B$ is still entailed: $\mathcal A'\models \mathcal B$

- Assume $A \models B$
- Now add information to A, i.e. $A' \supseteq A$
- Then $\mathcal B$ is still entailed: $\mathcal A'\models \mathcal B$
- We say that RDF/RDFS entailment is *monotonic*

- Assume $A \models B$
- Now add information to A, i.e. $A' \supseteq A$
- Then $\mathcal B$ is still entailed: $\mathcal A'\models \mathcal B$
- We say that RDF/RDFS entailment is *monotonic*
- Non-monotonic reasoning:

- Assume $A \models B$
- Now add information to A, i.e. $A' \supseteq A$
- Then $\mathcal B$ is still entailed: $\mathcal A'\models \mathcal B$
- We say that RDF/RDFS entailment is *monotonic*
- Non-monotonic reasoning:
	- ${Bird \sqsubset CanFly, Bird(tweety)} \models CanFly(tweety)$

- Assume $A \models B$
- Now add information to A, i.e. $A' \supseteq A$
- Then $\mathcal B$ is still entailed: $\mathcal A'\models \mathcal B$
- We say that RDF/RDFS entailment is *monotonic*
- Non-monotonic reasoning:
	- \bullet {Bird \sqsubset CanFly, Bird(tweety)} \models CanFly(tweety)
	- $\bullet \{ \ldots,$ Penguin \sqsubseteq Bird, Penguin(tweety), Penguin $\sqsubseteq \neg \text{CanFly} \} \not\models \text{CanFly}$ (tweety)

- Assume $A \models B$
- Now add information to A, i.e. $A' \supseteq A$
- Then $\mathcal B$ is still entailed: $\mathcal A'\models \mathcal B$
- We say that RDF/RDFS entailment is *monotonic*
- Non-monotonic reasoning:
	- \bullet {Bird \sqsubset CanFly, Bird(tweety)} \models CanFly(tweety)
	- $\bullet \{ \ldots,$ Penguin \sqsubseteq Bird, Penguin(tweety), Penguin $\sqsubseteq \neg \text{CanFly} \} \not\models \text{CanFly}$ (tweety)
	- Interesting for human-style reasoning

- Assume $A \models B$
- Now add information to A, i.e. $A' \supseteq A$
- Then $\mathcal B$ is still entailed: $\mathcal A'\models \mathcal B$
- We say that RDF/RDFS entailment is *monotonic*
- Non-monotonic reasoning:
	- ${Bird \sqsubseteq CanFly, Bird(tweety)} \models CanFly(tweety)$
	- $\bullet \{ \ldots,$ Penguin \sqsubseteq Bird, Penguin(tweety), Penguin $\sqsubseteq \neg \text{CanFly} \} \not\models \text{CanFly}$ (tweety)
	- Interesting for human-style reasoning
	- Hard to combine with semantic web technologies

Given a knowledge base KB and a query SELECT $*$ WHERE $\{?x : p ?y$. $?y : q ?z.\}$

- Given a knowledge base KB and a query SELECT $*$ WHERE $\{?x : p ?y$. $?y : q ?z.\}$
- The query means: find x, y, z with $p(x, y)$ and $q(y, z)$

- Given a knowledge base KB and a query SELECT $*$ WHERE $\{?x : p ?y$. $?y : q ?z.\}$
- The query means: find x, y, z with $p(x, y)$ and $q(y, z)$
- Semantics: find x, y, z with

 $KB \models \{p(x, y), q(y, z)\}\$

- Given a knowledge base KB and a query SELECT $*$ WHERE $\{?x : p ?y$. $?y : q ?z.\}$
- The query means: find x, y, z with $p(x, y)$ and $q(y, z)$
- Semantics: find x, y, z with

$$
KB \models \{p(x,y), q(y,z)\}
$$

E.g. an answer

$$
x \leftarrow "a" \quad y \leftarrow 2 \quad z \leftarrow \Box
$$

means

$$
\textit{KB} \models \{ \textit{p("a", 2)}, \textit{q(2, \Box)} \}
$$

- Given a knowledge base KB and a query SELECT $*$ WHERE $\{?x : p ?y$. $?y : q ?z.\}$
- The query means: find x, y, z with $p(x, y)$ and $q(y, z)$
- Semantics: find x, y, z with

$$
KB \models \{p(x,y), q(y,z)\}
$$

E.g. an answer

$$
x \leftarrow "a" \quad y \leftarrow 2 \quad z \leftarrow \Box
$$

means

$$
\textit{KB} \models \{ \textit{p}(\text{``a''},2), \textit{ q(}2,\Box) \}
$$

• Monotonicity:

$$
\mathsf{KB} \cup \{\cdots\} \models \{p(\lq a'', 2), q(2, \square)\}
$$

- Given a knowledge base KB and a query SELECT $*$ WHERE $\{?x : p ?y : q ?z.\}$
- The query means: find x, y, z with $p(x, y)$ and $q(y, z)$
- Semantics: find x, y, z with

$$
KB \models \{p(x,y), q(y,z)\}
$$

E.g. an answer

$$
x \leftarrow "a" \quad y \leftarrow 2 \quad z \leftarrow \Box
$$

means

$$
\textit{KB} \models \{ \textit{p}(\text{``a''},2), \textit{ q(}2,\Box) \}
$$

• Monotonicity:

$$
\mathsf{KB} \cup \{\cdots\} \models \{p("a", 2), q(2, \square)\}
$$

Answers remain valid with new information!

• Knowledge base KB :

• Knowledge base KB :

Person(harald) Person(haakon) father(harald, haakon)

• Question: is there a person without a father?

• Knowledge base KB :

- Question: is there a person without a father?
- Ask a database:

• Knowledge base KB :

- Question: is there a person without a father?
- Ask a database:
	- **Nes:** harald

• Knowledge base KB :

- Question: is there a person without a father?
- Ask a database:
	- **Nes:** harald
- ask a semantics based system

• Knowledge base KB :

- Question: is there a person without a father?
- Ask a database:
	- **•** Yes: harald
- ask a semantics based system
	- find x with $KB \models x$ has no father

• Knowledge base KB :

- Question: is there a person without a father?
- Ask a database:
	- **Nes:** harald
- ask a semantics based system
	- find x with $KB \models x$ has no father
	- No answer: don't know

• Knowledge base KB :

- Question: is there a person without a father?
- Ask a database:
	- **Nes:** harald
- ask a semantics based system
	- find x with $KB \models x$ has no father
	- No answer: don't know
- Why?

• Knowledge base KB :

- Question: is there a person without a father?
- Ask a database:
	- **Nes:** harald
- ask a semantics based system
	- find x with $KB \models x$ has no father
	- No answer: don't know
- Why?
	- Monotonicity!

• Knowledge base KB :

- Question: is there a person without a father?
- Ask a database:
	- **Nes:** harald
- ask a semantics based system
	- find x with $KB \models x$ has no father
	- No answer: don't know
- Why?
	- Monotonicity!
	- KB ∪ {father(olav, harald)} \models harald does have a father

• Knowledge base KB :

- Question: is there a person without a father?
- Ask a database:
	- **Nes:** harald
- ask a semantics based system
	- find x with $KB \models x$ has no father
	- No answer: don't know
- Why?
	- Monotonicity!
	- KB \cup {father(olav, harald)} \models harald does have a father
	- \bullet In some models of KB, harald has a father, in others not.

• Closed World Assumption (CWA)

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- Typical semantics for database systems

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- Typical semantics for database systems
- Open World Assumption (OWA)

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- **•** Typical semantics for database systems
- Open World Assumption (OWA)
	- There might be things not mentioned in the knowledge base
- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- **•** Typical semantics for database systems
- Open World Assumption (OWA)
	- There might be things not mentioned in the knowledge base
	- There might be facts that are true, although they are not stated

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- **•** Typical semantics for database systems
- Open World Assumption (OWA)
	- There might be things not mentioned in the knowledge base
	- There might be facts that are true, although they are not stated
	- Typical semantics for logic-based systems

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- **•** Typical semantics for database systems
- Open World Assumption (OWA)
	- There might be things not mentioned in the knowledge base
	- There might be facts that are true, although they are not stated
	- Typical semantics for logic-based systems
- . What is best for the Semantic Web?

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- **•** Typical semantics for database systems
- Open World Assumption (OWA)
	- There might be things not mentioned in the knowledge base
	- There might be facts that are true, although they are not stated
	- Typical semantics for logic-based systems
- . What is best for the Semantic Web?
	- Will never know all information sources

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- **•** Typical semantics for database systems
- Open World Assumption (OWA)
	- There might be things not mentioned in the knowledge base
	- There might be facts that are true, although they are not stated
	- Typical semantics for logic-based systems
- . What is best for the Semantic Web?
	- Will never know all information sources
	- Can "discover" new information by following links

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- **•** Typical semantics for database systems
- Open World Assumption (OWA)
	- There might be things not mentioned in the knowledge base
	- There might be facts that are true, although they are not stated
	- Typical semantics for logic-based systems
- . What is best for the Semantic Web?
	- Will never know all information sources
	- Can "discover" new information by following links
	- New information can be produced at any time

- Closed World Assumption (CWA)
	- If a thing is not listed in the knowledge base, it doesn't exist
	- If a fact isn't stated (or derivable) it's false
	- **•** Typical semantics for database systems
- Open World Assumption (OWA)
	- There might be things not mentioned in the knowledge base
	- There might be facts that are true, although they are not stated
	- Typical semantics for logic-based systems
- . What is best for the Semantic Web?
	- Will never know all information sources
	- Can "discover" new information by following links
	- New information can be produced at any time
	- Therefore: Open World Assumption

• Robust under missing information

- Robust under missing information
- Any answer given by

- Robust under missing information
- Any answer given by
	- **•** Entailment

 $KB \models Person(juliet)$

- Robust under missing information
- Any answer given by
	- **•** Entailment

$$
KB \models Person(juliet)
$$

SPARQL query answering (entailment in disguise)

 $KB \models \{p("a", 2), q(2, \Box)\}\$

- Robust under missing information
- Any answer given by
	- **•** Entailment

$$
KB \models Person(juliet)
$$

SPARQL query answering (entailment in disguise)

 $KB \models \{p("a", 2), q(2, \Box)\}\$

- Robust under missing information
- Any answer given by
	- **•** Entailment

$$
KB \models Person(juliet)
$$

SPARQL query answering (entailment in disguise)

 $KB \models \{p("a", 2), q(2, \Box)\}\$

remains valid when new information is added to KB

• Some things make no sense with this semantics

- Robust under missing information
- Any answer given by
	- **•** Entailment

$$
KB \models Person(juliet)
$$

SPARQL query answering (entailment in disguise)

 $KB \models \{p("a", 2), q(2, \Box)\}\$

- Some things make no sense with this semantics
	- Queries with negation ("not")

- Robust under missing information
- Any answer given by
	- **•** Entailment

$$
KB \models Person(juliet)
$$

SPARQL query answering (entailment in disguise)

 $KB \models \{p("a", 2), q(2, \Box)\}\$

- Some things make no sense with this semantics
	- Queries with negation ("not")
		- might be satisfied later on

- Robust under missing information
- Any answer given by
	- **•** Entailment

$$
KB \models Person(juliet)
$$

SPARQL query answering (entailment in disguise)

 $KB \models \{p("a", 2), q(2, \Box)\}\$

- Some things make no sense with this semantics
	- Queries with negation ("not")
		- might be satisfied later on
	- Queries with aggregation (counting, adding,. . .)

- Robust under missing information
- Any answer given by
	- **•** Entailment

$$
KB \models Person(juliet)
$$

SPARQL query answering (entailment in disguise)

 $KB \models \{p("a", 2), q(2, \Box)\}\$

- Some things make no sense with this semantics
	- Queries with negation ("not")
		- might be satisfied later on
	- Queries with aggregation (counting, adding,. . .)
		- can change when more information comes

Outline

- [Repetition: RDF semantics](#page-2-0)
- 2 [Literal Semantics](#page-103-0)
- **[Blank Node Semantics](#page-135-0)**
- 4 [Properties of Entailment by Model Semantics](#page-183-0)
- 5 [Entailment and Derivability](#page-233-0)

We now have two ways of describing logical consequence. . .

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . rdfs9 :juliet a :Person .

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . rdfs9 :juliet a :Person . $Lady \sqsubseteq Person$ $Lady(juliet)$ Person(juliet) rdfs9

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . rdfs9 :juliet a :Person . $Lady \sqsubseteq Person$ $Lady(juliet)$ Person(juliet) rdfs9

2. Using the model semantics

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . rdfs9 :juliet a :Person . $Lady \sqsubseteq Person$ $Lady(juliet)$ $\frac{2aay\ (junc)}{Person(juliet)}$ rdfs9

2. Using the model semantics

• If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models$ Lady(juliet)...

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . rdfs9 :juliet a :Person . L ady \sqsubseteq Person L ady $(j$ uliet) Person(juliet) rdfs9

2. Using the model semantics

- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models$ Lady(juliet)...
- \ldots then Lady $^{\mathcal{I}} \subseteq \mathit{Person}^{\mathcal{I}}$ and juliet $^{\mathcal{I}} \in \mathit{Lady}^{\mathcal{I}} \ldots$

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . rdfs9 :juliet a :Person . $Lady \sqsubseteq Person$ $Lady(juliet)$ $\frac{1}{1}$ Person(*juliet*) rdfs9

2. Using the model semantics

- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models$ Lady(juliet)...
- \ldots then Lady $^{\mathcal{I}} \subseteq \mathit{Person}^{\mathcal{I}}$ and juliet $^{\mathcal{I}} \in \mathit{Lady}^{\mathcal{I}} \ldots$
- \ldots so by set theory, $\mathit{juliet}^{\mathcal{I}} \in \mathit{Person}^{\mathcal{I}} \ldots$

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . rdfs9 :juliet a :Person . $Lady \sqsubseteq Person$ $Lady(juliet)$ $\frac{1}{1}$ Person(*juliet*) rdfs9

- 2. Using the model semantics
	- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models$ Lady(juliet)...
	- \ldots then Lady $^{\mathcal{I}} \subseteq \mathit{Person}^{\mathcal{I}}$ and juliet $^{\mathcal{I}} \in \mathit{Lady}^{\mathcal{I}} \ldots$
	- \ldots so by set theory, $\mathit{juliet}^{\mathcal{I}} \in \mathit{Person}^{\mathcal{I}} \ldots$
	- \bullet ... and therefore $\mathcal{I} \models \mathit{Person}(\mathit{iuliet})$.

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . rdfs9 :juliet a :Person . $Lady \sqsubseteq Person$ $Lady(juliet)$ Person(juliet) rdfs9

- 2. Using the model semantics
	- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models$ Lady(juliet)...
	- \ldots then Lady $^{\mathcal{I}} \subseteq \mathit{Person}^{\mathcal{I}}$ and juliet $^{\mathcal{I}} \in \mathit{Lady}^{\mathcal{I}} \ldots$
	- \ldots so by set theory, $\mathit{juliet}^{\mathcal{I}} \in \mathit{Person}^{\mathcal{I}} \ldots$
	- \bullet ... and therefore $\mathcal{I} \models \text{Person}(\text{juliet})$.
	- Together: ${Lady \sqsubset Person, Lady(juliet)} = Person(juliet)$

- We now have two ways of describing logical consequence. . .
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . rdfs9 :juliet a :Person . $Lady \sqsubseteq Person$ $Lady(juliet)$ Person(juliet) rdfs9

- 2. Using the model semantics
	- If $\mathcal{I} \models$ Lady \sqsubseteq Person and $\mathcal{I} \models$ Lady(juliet)...
	- \ldots then Lady $^{\mathcal{I}} \subseteq \mathit{Person}^{\mathcal{I}}$ and juliet $^{\mathcal{I}} \in \mathit{Lady}^{\mathcal{I}} \ldots$
	- \ldots so by set theory, $\mathit{juliet}^{\mathcal{I}} \in \mathit{Person}^{\mathcal{I}} \ldots$
	- \bullet ... and therefore $\mathcal{I} \models \text{Person}(\text{juliet})$.
	- Together: ${Lady \sqsubset Person, Lady(juliet)} = Person(juliet)$
- What is the connection between these two?

Actually, two different notions!

- Actually, two different notions!
- **•** Entailment is defined using the model semantics.

- Actually, two different notions!
- **•** Entailment is defined using the model semantics.
- The rules say what can be *derived*

- Actually, two different notions!
- **•** Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **·** derivability

- Actually, two different notions!
- **•** Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- **•** provability

- Actually, two different notions!
- **•** Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- **•** provability
- **e** Entailment

- Actually, two different notions!
- **•** Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- **•** provability
- **e** Entailment
	- is closely related to the *meaning* of things

- Actually, two different notions!
- **•** Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- **•** provability
- **e** Entailment
	- is closely related to the *meaning* of things
	- higher confidence in model semantics than in a bunch of rules
- Actually, two different notions!
- **•** Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- **•** provability
- **e** Entailment
	- is closely related to the *meaning* of things
	- higher confidence in model semantics than in a bunch of rules
	- The semantics given by the standard, rules are just "informative"

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- provability
- **e** Entailment
	- is closely related to the *meaning* of things
	- higher confidence in model semantics than in a bunch of rules
	- The semantics given by the standard, rules are just "informative"
	- can't be directly checked mechanically (∞ many interpretations)

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- provability
- **e** Entailment
	- is closely related to the *meaning* of things
	- higher confidence in model semantics than in a bunch of rules
	- The semantics given by the standard, rules are just "informative"
	- can't be directly checked mechanically (∞ many interpretations)
- **•** Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- provability
- **e** Entailment
	- is closely related to the *meaning* of things
	- higher confidence in model semantics than in a bunch of rules
	- The semantics given by the standard, rules are just "informative"
	- can't be directly checked mechanically (∞ many interpretations)
- **•** Derivability
	- can be checked mechanically

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- provability
- **e** Entailment
	- is closely related to the *meaning* of things
	- higher confidence in model semantics than in a bunch of rules
	- The semantics given by the standard, rules are just "informative"
	- can't be directly checked mechanically (∞ many interpretations)
- **•** Derivability
	- can be checked mechanically
	- forward or backward chaining

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- provability
- **e** Entailment
	- is closely related to the *meaning* of things
	- higher confidence in model semantics than in a bunch of rules
	- The semantics given by the standard, rules are just "informative"
	- can't be directly checked mechanically (∞ many interpretations)
- **•** Derivability
	- can be checked mechanically
	- **•** forward or backward chaining
- Want these notions to correspond:

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
	- **o** derivability
	- provability
- **•** Entailment
	- is closely related to the *meaning* of things
	- higher confidence in model semantics than in a bunch of rules
	- The semantics given by the standard, rules are just "informative"
	- can't be directly checked mechanically (∞ many interpretations)
- **•** Derivability
	- can be checked mechanically
	- **•** forward or backward chaining
- Want these notions to correspond:
	- $A \models B$ iff B can be derived from A

• Two directions:

- Two directions:
	- **1** If $A \models B$ then B can be derived from A

- Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$

- **a** Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$
- Nr. [2](#page-259-0) usually considered more important:

- **a** Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$
- Nr. [2](#page-259-0) usually considered more important:
- If the calculus says that something is entailed then it is really entailed.

- **a** Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$
- Nr. [2](#page-259-0) usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.

- **a** Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$
- Nr. [2](#page-259-0) usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.
- This is known as *soundness*

- **a** Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$
- Nr. [2](#page-259-0) usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.
- This is known as *soundness*
- The calculus is said to be *sound* (w.r.t. the model semantics)

• Soundness of every rule has to be (manually) checked!

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

J.

Showing Soundness

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

Soundness means that

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- Soundness means that
	- \bullet For any choice of three classes A, B, C

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- Soundness means that
	- \bullet For any choice of three classes A, B, C

$$
\bullet \ \{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C
$$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- **•** Soundness means that
	- \bullet For any choice of three classes A, B, C

$$
\bullet \ \{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C
$$

Proof:

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- **•** Soundness means that
	- For any choice of three classes A, B, C
	- \bullet { $A \sqsubset B$, $B \sqsubset C$ } $\models A \sqsubset C$
- Proof:
	- Let $\mathcal I$ be an arbitrary interpretation with $\mathcal I \models \{A \sqsubseteq B, B \sqsubseteq C\}$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- **•** Soundness means that
	- \bullet For any choice of three classes A, B, C

$$
\bullet \ \{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C
$$

- Proof:
	- Let $\mathcal I$ be an arbitrary interpretation with $\mathcal I \models \{A \sqsubseteq B, B \sqsubseteq C\}$
	- Then by model semantics, $A^\mathcal{I} \subseteq B^\mathcal{I}$ and $B^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$

- Soundness of every rule has to be (manually) checked!
- \bullet E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- **•** Soundness means that
	- \bullet For any choice of three classes A, B, C

$$
\bullet \ \{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C
$$

- Proof:
	- Let $\mathcal I$ be an arbitrary interpretation with $\mathcal I \models \{A \sqsubseteq B, B \sqsubseteq C\}$
	- Then by model semantics, $A^\mathcal{I} \subseteq B^\mathcal{I}$ and $B^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
	- By set theory, $A^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$

- Soundness of every rule has to be (manually) checked!
- \bullet E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- **•** Soundness means that
	- \bullet For any choice of three classes A, B, C

$$
\bullet \ \{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C
$$

- Proof:
	- Let $\mathcal I$ be an arbitrary interpretation with $\mathcal I \models \{A \sqsubseteq B, B \sqsubseteq C\}$
	- Then by model semantics, $A^\mathcal{I} \subseteq B^\mathcal{I}$ and $B^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
	- By set theory, $A^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
	- By model semantics, $\mathcal{I} \models A \sqsubset C$

- Soundness of every rule has to be (manually) checked!
- \bullet E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- **•** Soundness means that
	- \bullet For any choice of three classes A, B, C

$$
\bullet \ \{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C
$$

- Proof:
	- Let $\mathcal I$ be an arbitrary interpretation with $\mathcal I \models \{A \sqsubseteq B, B \sqsubseteq C\}$
	- Then by model semantics, $A^\mathcal{I} \subseteq B^\mathcal{I}$ and $B^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
	- By set theory, $A^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
	- By model semantics, $\mathcal{I} \models A \sqsubset C$
	- Q.E.D.

- Soundness of every rule has to be (manually) checked!
- \bullet E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- **•** Soundness means that
	- \bullet For any choice of three classes A, B, C

$$
\bullet \ \{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C
$$

- Proof:
	- Let $\mathcal I$ be an arbitrary interpretation with $\mathcal I \models \{A \sqsubseteq B, B \sqsubseteq C\}$
	- Then by model semantics, $A^\mathcal{I} \subseteq B^\mathcal{I}$ and $B^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
	- By set theory, $A^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
	- By model semantics, $\mathcal{I} \models A \sqsubset C$
	- $Q.E.D.$
- This can be done similarly for all of the rules.

- Soundness of every rule has to be (manually) checked!
- \bullet E.g. rdfs11,

$$
\cfrac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C} \text{ rdfs11}
$$

- **•** Soundness means that
	- \bullet For any choice of three classes A, B, C

$$
\bullet \ \{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C
$$

- Proof:
	- Let $\mathcal I$ be an arbitrary interpretation with $\mathcal I \models \{A \sqsubseteq B, B \sqsubseteq C\}$
	- Then by model semantics, $A^\mathcal{I} \subseteq B^\mathcal{I}$ and $B^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
	- By set theory, $A^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
	- By model semantics, $\mathcal{I} \models A \sqsubset C$
	- $Q.E.D.$
- This can be done similarly for all of the rules.
	- All given RDF/RDFS rules are sound w.r.t. the model semantics!

• Two directions:

- Two directions:
	- **1** If $A \models B$ then B can be derived from A

- Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$

- Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$
- Nr. [1](#page-280-0) says that any entailment can be found using the rules.

- Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$
- Nr. [1](#page-280-0) says that any entailment can be found using the rules.
- I.e. we have "enough" rules.

- Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$
- Nr. [1](#page-280-0) says that any entailment can be found using the rules.
- I.e. we have "enough" rules.
- Can't be checked separately for each rule, only for whole rule set

- Two directions:
	- **1** If $A \models B$ then B can be derived from A
	- **2** If B can be derived from A then $A \models B$
- Nr. [1](#page-280-0) says that any entailment can be found using the rules.
- I.e. we have "enough" rules.
- Can't be checked separately for each rule, only for whole rule set
- Proofs are more complicated than soundness

Simple Entailment Rules

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel } \qquad \frac{r(u,x)}{r(b_1,x)} \text{ sel}
$$
$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

Where b_1 is a blank node identifier, that either

has not been used before in the graph, or

Ē,

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

- has not been used before in the graph, or
- \bullet has been used, but for the same URI/Literal/Blank node x resp. u.

Ē,

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

- has not been used before in the graph, or
- \bullet has been used, but for the same URI/Literal/Blank node x resp. u.
- Simple entailment is entailment

۳

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

- has not been used before in the graph, or
- \bullet has been used, but for the same URI/Literal/Blank node x resp. u.
- Simple entailment is entailment
	- With blank nodes and literals

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

- has not been used before in the graph, or
- \bullet has been used, but for the same URI/Literal/Blank node x resp. u.
- Simple entailment is entailment
	- With blank nodes and literals
	- **a** but without RDFS

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

- has not been used before in the graph, or
- \bullet has been used, but for the same URI/Literal/Blank node x resp. u.
- Simple entailment is entailment
	- With blank nodes and literals
	- **but without RDFS**
	- and without RDF axioms like rdf:type rdf:type rdf:Property .

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

- has not been used before in the graph, or
- \bullet has been used, but for the same URI/Literal/Blank node x resp. u.
- Simple entailment is entailment
	- With blank nodes and literals
	- **but without RDFS**
	- and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- \bullet has been used, but for the same URI/Literal/Blank node x resp. u.
- Simple entailment is entailment
	- With blank nodes and literals
	- **a** but without RDFS
	- and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.

 A simply entails B

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- \bullet has been used, but for the same URI/Literal/Blank node x resp. u.
- Simple entailment is entailment
	- With blank nodes and literals
	- **a** but without RDFS
	- and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.

 A simply entails B

iff $\mathcal A$ can be extended with se1 and se2 to $\mathcal A'$ with $\mathcal B\subseteq\mathcal A'.$

$$
\frac{r(u,x)}{r(u,b_1)} \text{ sel} \qquad \frac{r(u,x)}{r(b_1,x)} \text{ se2}
$$

- has not been used before in the graph, or
- \bullet has been used, but for the same URI/Literal/Blank node x resp. u.
- Simple entailment is entailment
	- With blank nodes and literals
	- **a** but without RDFS
	- and without RDF axioms like rdf:type rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.
	- A simply entails β
	- iff $\mathcal A$ can be extended with se1 and se2 to $\mathcal A'$ with $\mathcal B\subseteq\mathcal A'.$
- (requires blank node IDs in A and B to be disjoint)

 $\{loves(b_1, juliet), knows(juliet,romeo), age(juliet, "13")\}$

$\{loves(b_1, juliet), knows(juliet,romeo), age(juliet, "13")\}$

 \models {loves(b₂, b₃), knows(b₃, romeo)}

$\{loves(b_1, juliet), knows(juliet,romeo), age(juliet, "13")\}$ $loves(b_2, iuliet)$ $(b_2 \rightarrow b_1)$

 \models {loves(b₂, b₃), knows(b₃, romeo)}

 $\{loves(b_1, juliet), knows(juliet,romeo), age(juliet, "13")\}$ $loves(b_2, iuliet)$ $(b_2 \rightarrow b_1)$ $loves(b_2, b_3)$ $(b_3 \rightarrow \text{juliet})$

 \models {loves(b₂, b₃), knows(b₃, romeo)}

 $\{loves(b_1, juliet), knows(juliet,romeo), age(juliet, "13")\}$ $loves(b_2, iuliet)$ $(b_2 \rightarrow b_1)$ $loves(b_2, b_3)$ $(b_3 \rightarrow \text{juliet})$ knows(b₃, romeo) (reusing $b_3 \rightarrow$ juliet) \models {loves(b₂, b₃), knows(b₃, romeo)}

• See Foundations book, Sect. 3.3

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
	- rdfs:range rdfs:domain rdfs:Class ...

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
	- rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$
\frac{\text{dom}(r, A) \qquad r(x, y)}{A(x)} \text{ rdfs2} \qquad \qquad \frac{\text{rg}(r, B) \qquad r(x, y)}{B(y)} \text{ rdfs3}
$$

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
	- rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$
\frac{\text{dom}(r, A) \qquad r(x, y)}{A(x)} \text{ rdfs2} \qquad \frac{\text{rg}(r, B) \qquad r(x, y)}{B(y)} \text{ rdfs3}
$$
\n
$$
\frac{r \sqsubseteq s \qquad s \sqsubseteq t}{r \sqsubseteq t} \text{ rdfs5} \qquad \frac{r \sqsubseteq s \qquad r(x, y)}{s(x, y)} \text{ rdfs7}
$$

÷

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
	- rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

dom(r, A)	$r(x, y)$	rdfs2	$\frac{rg(r, B)$	$r(x, y)$	rdfs3		
$r \sqsubseteq s$	$s \sqsubseteq t$	rdfs5	$r \sqsubseteq r$	rdfs6	$\frac{r \sqsubseteq s$	$r(x, y)$	rdfs7
$A \sqsubseteq B$	$A(x)$	rdfs9	$\overline{A \sqsubseteq A}$	rdfs10	$\frac{A \sqsubseteq B}{A \sqsubseteq C}$	$B \sqsubseteq C$	rdfs11

• These rules are not complete for our RDF/RDFS semantics

- These rules are not complete for our RDF/RDFS semantics
- **•** For instance

 ${r_g(*loves*, *Beloved*), *Beloved* \sqsubset *Person*} = $rg(*loves*, *Person*)$$

- These rules are not complete for our RDF/RDFS semantics
- **•** For instance

 ${r_g(*loves*, *Beloved*), *Beloved* \sqsubseteq *Person*} = $rg(*loves*, *Person*)$$

 \bullet Because for every interpretation \mathcal{I} ,

- These rules are *not* complete for our RDF/RDFS semantics
- **•** For instance

 ${r_g(*loves*, *Beloved*), *Beloved* \sqsubset *Person*} = $rg(*loves*, *Person*)$$

- \bullet Because for every interpretation \mathcal{I} ,
	- if $\mathcal{I} \models \{rg(\text{loves}, \text{Beloved}), \text{Beloved} \sqsubseteq \text{Person}\}$

- These rules are *not* complete for our RDF/RDFS semantics
- **e** For instance

- \bullet Because for every interpretation \mathcal{I} ,
	- if $\mathcal{I} \models \{rg(\text{loves}, \text{Beloved}), \text{Beloved} \sqsubseteq \text{Person}\}$
	- then by semantics, for all $\langle x,y\rangle\in\mathit{loves}^{\mathcal{I}}$, $y\in\mathit{Beloved}^{\mathcal{I}};$ and $\mathit{Beloved}^{\mathcal{I}}\subseteq\mathit{Person}^{\mathcal{I}}.$

- These rules are *not* complete for our RDF/RDFS semantics
- **e** For instance

- \bullet Because for every interpretation \mathcal{I} ,
	- if $\mathcal{I} \models \{rg(\text{loves}, \text{Beloved}), \text{Beloved} \sqsubset \text{Person}\}\$
	- then by semantics, for all $\langle x,y\rangle\in\mathit{loves}^{\mathcal{I}}$, $y\in\mathit{Beloved}^{\mathcal{I}};$ and $\mathit{Beloved}^{\mathcal{I}}\subseteq\mathit{Person}^{\mathcal{I}}.$
	- Therefore, by set theory, for all $\langle x, y \rangle \in \textit{loves}^{\mathcal{I}}$, $y \in \textit{Person}^{\mathcal{I}}$.

- These rules are *not* complete for our RDF/RDFS semantics
- **e** For instance

- \bullet Because for every interpretation \mathcal{I} ,
	- if $\mathcal{I} \models \{rg(\text{loves}, \text{Beloved}), \text{Beloved} \sqsubset \text{Person}\}\$
	- then by semantics, for all $\langle x,y\rangle\in\mathit{loves}^{\mathcal{I}}$, $y\in\mathit{Beloved}^{\mathcal{I}};$ and $\mathit{Beloved}^{\mathcal{I}}\subseteq\mathit{Person}^{\mathcal{I}}.$
	- Therefore, by set theory, for all $\langle x, y \rangle \in \textit{loves}^{\mathcal{I}}$, $y \in \textit{Person}^{\mathcal{I}}$.
	- By semantics, $\mathcal{I} \models \text{rg}(\text{loves}, \text{Person})$

- These rules are *not* complete for our RDF/RDFS semantics
- **e** For instance

 ${rgl}$ loves, Beloved), Beloved \Box Person $\rbrace \models$ rg(loves, Person)

- \bullet Because for every interpretation \mathcal{I} ,
	- if $\mathcal{I} \models \{rg(\text{loves}, \text{Beloved}), \text{Beloved} \sqsubseteq \text{Person}\}$
	- then by semantics, for all $\langle x,y\rangle\in\mathit{loves}^{\mathcal{I}}$, $y\in\mathit{Beloved}^{\mathcal{I}};$ and $\mathit{Beloved}^{\mathcal{I}}\subseteq\mathit{Person}^{\mathcal{I}}.$
	- Therefore, by set theory, for all $\langle x, y \rangle \in \textit{loves}^{\mathcal{I}}$, $y \in \textit{Person}^{\mathcal{I}}$.
	- By semantics, $\mathcal{I} \models \text{rg}(\text{loves}, \text{Person})$
- But there is no way to derive this using the given rules

- These rules are *not* complete for our RDF/RDFS semantics
- **e** For instance

- \bullet Because for every interpretation \mathcal{I} ,
	- if $\mathcal{I} \models \{rg(\text{loves}, \text{Beloved}), \text{Beloved} \sqsubseteq \text{Person}\}$
	- then by semantics, for all $\langle x,y\rangle\in\mathit{loves}^{\mathcal{I}}$, $y\in\mathit{Beloved}^{\mathcal{I}};$ and $\mathit{Beloved}^{\mathcal{I}}\subseteq\mathit{Person}^{\mathcal{I}}.$
	- Therefore, by set theory, for all $\langle x, y \rangle \in \textit{loves}^{\mathcal{I}}$, $y \in \textit{Person}^{\mathcal{I}}$.
	- By semantics, $\mathcal{I} \models \text{rg}(\text{loves}, \text{Person})$
- But there is no way to derive this using the given rules
	- There is no rule which allows to derive a range statement.

- These rules are *not* complete for our RDF/RDFS semantics
- **•** For instance

- \bullet Because for every interpretation \mathcal{I} ,
	- if $\mathcal{I} \models \{rg(\text{loves}, \text{Beloved}), \text{Beloved} \sqsubset \text{Person}\}\$
	- then by semantics, for all $\langle x,y\rangle\in\mathit{loves}^{\mathcal{I}}$, $y\in\mathit{Beloved}^{\mathcal{I}};$ and $\mathit{Beloved}^{\mathcal{I}}\subseteq\mathit{Person}^{\mathcal{I}}.$
	- Therefore, by set theory, for all $\langle x, y \rangle \in \textit{loves}^{\mathcal{I}}$, $y \in \textit{Person}^{\mathcal{I}}$.
	- By semantics, $\mathcal{I} \models \text{rg}(\text{loves}, \text{Person})$
- But there is no way to derive this using the given rules
	- There is no rule which allows to derive a range statement.
- We could now add rules to make the system complete

- These rules are *not* complete for our RDF/RDFS semantics
- **e** For instance

- \bullet Because for every interpretation \mathcal{I} ,
	- if $\mathcal{I} \models \{rg(\text{loves}, \text{Beloved}), \text{Beloved} \sqsubset \text{Person}\}\$
	- then by semantics, for all $\langle x,y\rangle\in\mathit{loves}^{\mathcal{I}}$, $y\in\mathit{Beloved}^{\mathcal{I}};$ and $\mathit{Beloved}^{\mathcal{I}}\subseteq\mathit{Person}^{\mathcal{I}}.$
	- Therefore, by set theory, for all $\langle x, y \rangle \in \textit{loves}^{\mathcal{I}}$, $y \in \textit{Person}^{\mathcal{I}}$.
	- By semantics, $\mathcal{I} \models \text{rg}(\text{loves}, \text{Person})$
- But there is no way to derive this using the given rules
	- There is no rule which allows to derive a range statement.
- We could now add rules to make the system complete
- Won't bother to do that now. Will get completeness for OWL.

Outlook

RDFS allows some simple modelling: "all ladies are persons"

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL

Outlook

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
	- Every car has a motor

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
	- Every car has a motor
	- Every car has at least three parts of type wheel

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
	- Every car has a motor
	- Every car has at least three parts of type wheel
	- A mother is a person who is female and has at least one child

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
	- Every car has a motor
	- Every car has at least three parts of type wheel
	- A mother is a person who is female and has at least one child
	- The friends of my friends are also my friends

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
	- Every car has a motor
	- Every car has at least three parts of type wheel
	- A mother is a person who is female and has at least one child
	- The friends of my friends are also my friends
	- A metropolis is a town with at least a million inhabitants

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
	- Every car has a motor
	- Every car has at least three parts of type wheel
	- A mother is a person who is female and has at least one child
	- The friends of my friends are also my friends
	- A metropolis is a town with at least a million inhabitants
	- . . . and many more

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
	- Every car has a motor
	- Every car has at least three parts of type wheel
	- A mother is a person who is female and has at least one child
	- The friends of my friends are also my friends
	- A metropolis is a town with at least a million inhabitants
	- . . . and many more
- Modeling will not be done by writing triples manually:

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
	- Every car has a motor
	- Every car has at least three parts of type wheel
	- A mother is a person who is female and has at least one child
	- The friends of my friends are also my friends
	- A metropolis is a town with at least a million inhabitants
	- . . . and many more
- Modeling will not be done by writing triples manually:
- Will use ontology editor Protégé.