

The RDFS vocabulary

- RDFS adds the concept of "classes" which are like types or sets of resources.
- A predefined vocabulary allows statements about classes.
- Defined resources:
 - rdfs:Resource: The class of resources, everything,
 - rdfs:Class: The class of classes,
 - rdf:Property: The class of properties (from rdf).
- Defined properties:
 - rdf:type: relates resources to classes they are members of.
 - rdfs:domain: The domain of a relation.
 - rdfs:range: The range of a relation.
 - rdfs:subClassOf: Concept inclusion.
 - rdfs:subPropertyOf: Property inclusion.

INF3580/4580 :: Spring 2017

Lecture 10 :: 20th March

5./ 40

• RDFS has formal semantics.

Clear semantics

• Entailment is a *mathematically* defined relationship between RDF(S) graphs. E.g.,

Reminder: RDF

- answers to SPARQL queries are well-defined, and
- the interpretation of blank nodes is clear.
- The semantics allows for rules to reason about classes and properties and membership.
- Using RDFS entailment rules we can infer:
 - type propagation
 - property inheritance, and
 - domain and range reasoning.

Reminder: RDFS

Yet, it's inexpressive

• RDFS does not allow for complex definitions, other than multiple inheritance.

Lecture 10 :: 20th March

- We cannot express negation in RDFS.
- Hence, because of OWA, all RDFS graphs are satisfiable.

Modelling patterns

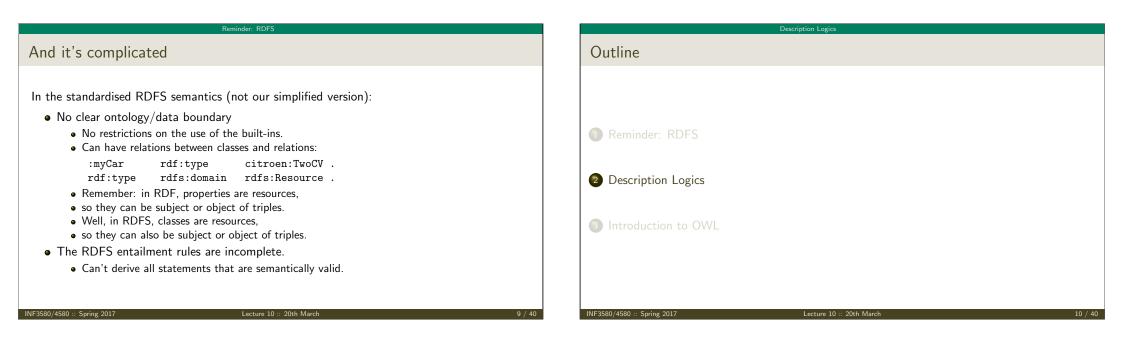
Common modelling patterns cannot be expressed properly in RDFS:

- **X** Every person has a mother.
- X Penguins eat only fish. Horses eat only chocolate.
- **X** Every nuclear family has two parents, at least two children and a dog.

Reminder: RDFS

- X No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- **X** Everything is black or white.
- **X** There is no such thing as a free lunch.
- X Brothers of fathers are uncles.
- X My friend's friends are also my friends.
- **X** If Homer is married to Marge, then Marge is married to Homer.
- **X** If Homer is a parent of Bart, then Bart is a child of Homer.

INF3580/4580 :: Spring 2017



Description Lo

Make it simple!

- Keep classes, properties, individuals and relationships apart.
- "Data level" with individuals and relationships between them.
- "Ontology level" with properties and classes.
- Use a fixed vocabulary of built-ins for relations between classes and properties, and their members—and nothing else.
- Interpret
 - classes as sets of individuals, and
 - properties as relations between individuals, i.e., sets of pairs
 - —which is what we do in our simplified semantics.
- A setting well-studied as *Description Logics*.

Description Logics

The \mathcal{ALC} Description Logic

Vocabulary

Fix a set of *atomic concepts* $\{A_1, A_2, \dots\}$, *roles* $\{R_1, R_2, \dots\}$ and individuals $\{a_1, a_2, \dots\}$.

ALC concept descriptions

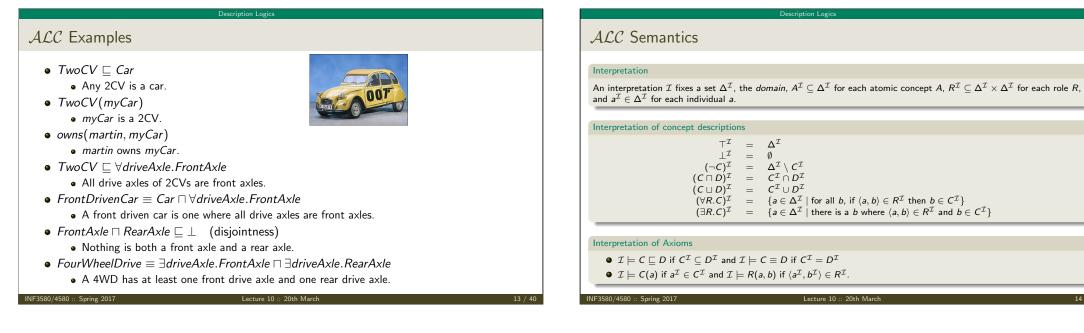
C, D ightarrow	A_i	(atomic concept)
	Т	(universal concept)
	\perp	(bottom concept)
	$\neg C$	(negation)
	$C \sqcap D$	(intersection)
	$C \sqcup D$	(union)
	$\forall R_i.C$	(value restriction)
	$\exists R_i.C$	(existential restriction)

Axioms

- $C \sqsubseteq D$ and $C \equiv D$ for concept descriptions D and C.
- C(a) and R(a, b) for concept description C, atomic role R and individuals a, b.

INF3580/4580 :: Spring 2017

INF3580/4580 :: Spring 2017



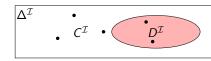
Negation	

• The interpretation \mathcal{I} satisfies the axiom $C \equiv \neg D$:

$$\begin{aligned} \mathcal{I} \vDash C &\equiv \neg D \\ &\Leftrightarrow C^{\mathcal{I}} = (\neg D)^{\mathcal{I}} \\ &\Leftrightarrow C^{\mathcal{I}} = (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) \end{aligned}$$

Description Logics

• "A C is not a D."



Example: EvenNo ≡ ¬OddNo, assuming the domain is N.
 "An even number is not an odd number."

Description Logics

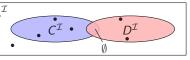
Disjointness

INF3580/4580 :: Spring 2017

• The interpretation \mathcal{I} satisfies the axiom $C \sqcap D \sqsubseteq \bot$:

$$\begin{split} \mathcal{I} \vDash \mathcal{C} \sqcap \mathcal{D} \sqsubseteq \bot \\ \Leftrightarrow (\mathcal{C} \sqcap \mathcal{D})^{\mathcal{I}} \subseteq \bot^{\mathcal{I}} \\ \Leftrightarrow \mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}} \subseteq \emptyset \\ \end{split}$$

- "Nothing is both a C and a D."
- Equivalent to $C \sqsubseteq \neg D$ (and $D \sqsubseteq \neg C$).



Example: FrontAxle ⊓ RearAxle ⊑ ⊥.
 "A FrontAxle is not a RearAxle, and vice versa."

INF3580/4580 :: Spring 2017

15 /

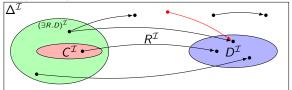
Description Logics

Existential restrictions

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \exists R.D$:

$$\begin{split} \mathcal{I} &\models C \sqsubseteq \exists R.D \\ \Leftrightarrow C^{\mathcal{I}} \subseteq (\exists R.D)^{\mathcal{I}} \\ \Leftrightarrow C^{\mathcal{I}} \subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{there is a } b \text{ where } \langle a, b \rangle \in R^{\mathcal{I}} \text{ and } b \in D^{\mathcal{I}} \} \end{split}$$

• "A C is R-related to (at least) a D."



Example: Toyota ⊑ ∃driveAxle.FrontAxle.
 "A Toyota has a front axle as drive axle."

INF3580/4580 :: Spring 2017

Lecture 10 :: 20th March

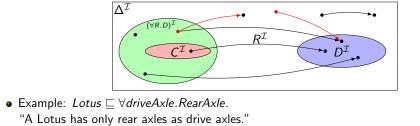
Universal restrictions

INF3580/4580 :: Spring 2017

• The interpretation \mathcal{I} satisfies the axiom $C \sqsubseteq \forall R.D$:

$$\begin{split} \mathcal{I} &\vDash C \sqsubseteq \forall R.D \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq (\forall R.D)^{\mathcal{I}} \\ &\Leftrightarrow \mathcal{C}^{\mathcal{I}} \subseteq \{a \in \Delta^{\mathcal{I}} \mid \text{for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in D^{\mathcal{I}} \} \end{split}$$

• A C has R-relationships to D's only.



Lecture 10 :: 20th March

Description Logics	Description Logics
Example interpretation	Universal Restrictions and rdfs:range
Assume \mathcal{K} is the knowledge base with the axioms: $Donkey \sqsubseteq Animal \sqcap Stubborn$ $Horse \equiv Animal \sqcap \forall eats.Chocolate$ $Mule \equiv \exists hasParent.Horse \sqcap \exists hasParent.Donkey$ $\exists hasParent.Mule \sqsubseteq \bot$ $Horse(mary) Donkey(sven) hasParent(hannah, mary) hasParent(hannah, sven) eats(mary, carl)$	 If role R has the range C, then anything one can reach by R is in C, or for any a and b, if (a, b) ∈ R^I, then b ∈ C^I, or any a is in the interpretation of ∀R.C, or the axiom T ⊑ ∀R.C holds. "Everything has R-relationships to C's only." Ranges can be expressed with universal restrictions. Example: a drive axle is either a front or a rear axle, so the range of driveAxle is FrontAxle ⊔ RearAxle. Axiom: T ⊑ ∀driveAxle.(FrontAxle ⊔ RearAxle).
INF3580/4580 :: Spring 2017 Lecture 10 :: 20th March 19 / 40	INF3580/4580 :: Spring 2017 Lecture 10 :: 20th March 20 / 40

Description Logics

Existential Restrictions and rdfs:domain

- If role *R* has the *domain C*,
- then anything from which one can go by R is in C, or
- for any *a*, if there is a *b* with $\langle a, b \rangle \in R^{\mathcal{I}}$, then $a \in C^{\mathcal{I}}$, or
- any a in the interpretation of $\exists R.\top$ is in the interpretation of C, or
- the axiom $\exists R.\top \sqsubseteq C$ holds.
- "Everything which is *R*-related (to a thing) is a *C*."
- Domains can be expressed with existential restrictions.
- Example:
 - a drive axle is something cars have, so
 - the domain of *driveAxle* is *Car*.
 - Axiom: $\exists driveAxle. \top \sqsubseteq Car$.

INF3580/4580 :: Spring 2017

Lecture 10 :: 20th March

21 / 40

What is the score?

• We still express C(a), R(x, y), $C \sqsubseteq D$ like we did in RDFS,

Description Log

- but now we can express complex C's and D's.
- A concept can be defined by use of other concepts and roles.
- Examples:
 - Person $\sqsubseteq \exists hasMother. \top$ (or Person $\sqsubseteq \exists hasParent. Woman$)
 - Penguin $\sqsubseteq \forall eats.Fish$
 - *NonSmoker* $\sqsubseteq \neg$ *Smoker* (or *NonSmoker* \sqcap *Smoker* $\sqsubseteq \bot$)
 - $\top \sqsubseteq BlackThing \sqcup WhiteThing$
 - FreeLunch $\sqsubseteq \bot$

Description Logics

Modelling patterns

So, what can we say with ALC?

- Every person has a mother.
- ✓ Penguins eat only fish. Horses eat only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.

INF3580/4580 :: Spring 201

- X Adam is not Eve (and vice versa).
- Everything is black or white.
- ✓ There is no such thing as a free lunch.
- X Brothers of fathers are uncles.
- X My friend's friends are also my friends.
- **X** If Homer is married to Marge, then Marge is married to Homer.
- **X** If Homer is a parent of Bart, then Bart is a child of Homer.

March

• Historically, description logic axioms and assertions are put in boxes.

Description Logic

• The TBox

Little Boxes

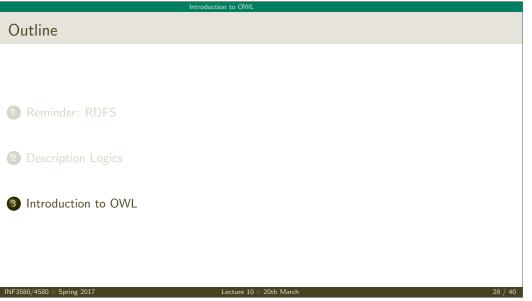
- is for *terminological knowledge*,
- $\ensuremath{\,\bullet\,}$ is independent of any actual instance data, and
- for \mathcal{ALC} , it is a set of \sqsubseteq axioms and \equiv axioms.
- Example TBox axioms:
 - $TwoCV \sqsubseteq \forall driveAxle.FrontAxle$
 - FrontDrivenCar \equiv Car $\sqcap \forall$ driveAxle.FrontAxle.
- The ABox
 - is for assertional knowledge,
 - contains facts about concrete instances a, b, c,
 - a set of concept membership assertions C(a),
 - and role assertions R(b, c).
 - Example ABox axioms:
 - driveAxle(myCar, axle)
 - (FrontAxle ⊔ RearAxle)(axle).

24 / 40

ture 10 :: 20th March

TBox Reasoning ABox Reasoning Remainder: Entailment A entails B, written $A \models B$, if • ABox consistency: Is there a model of $(\mathcal{T}, \mathcal{A})$, i.e., is there an interpretation \mathcal{I} such that $\mathcal{I} \models B$ for all interpretations where $\mathcal{I} \models A$. $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$? • Concept membership: Given C and a, does $(\mathcal{T}, \mathcal{A}) \models C(a)$? • Many reasoning tasks use only the TBox: • Retrieval: Given C, find all a such that $(\mathcal{T}, \mathcal{A}) \models C(a)$. • Concept unsatisfiability: Given C, does $\mathcal{T} \models C \sqsubseteq \bot$? • Conjunctive Query Answering (SPARQL). • Concept subsumption: Given C and D, does $\mathcal{T} \models C \sqsubseteq D$? • Concept equivalence: Given C and D, does $\mathcal{T} \models C \equiv D$? • Concept disjointness: Given C and D, does $\mathcal{T} \models C \sqcap D \sqsubseteq \bot$? NF3580/4580 :: Spring 2017 Lecture 10 :: 20th Mare

Description Logics		
More Expressive Description Logics		Outline
 There are description logics including axioms about roles, e.g., hierarchy, transitivity cardinality data types, e.g., numbers, strings individuals etc. 		 Reminde
• We'll see more in later lectures.		 Descripti
 The balance of expressivity and complexity is important. Too much expressivity makes reasoning tasks first more expensive, then undecidable. 		3 Introduct
Much research on how expressivity affects complexity/decidability.	27 / 42	INF2500 (4500 - C
INF3580/4580 :: Spring 2017 Lecture 10 :: 20th March	27 / 40	INF3580/4580 :: Sprir



Quick facts

OWL:

- Acronym for The Web Ontology Language.
- Became a W3C recommendation in 2004.
- The undisputed standard ontology language.
- Superseded by OWL 2;
 - a backwards compatible extension that adds new capabilities.
- Built on Description Logics.
- Combines DL expressiveness with RDF technology (e.g., URIs, namespaces).
- Extends RDFS with boolean operations, universal/existential restrictions and more.

OWL Syntaxes

- Reminder: RDF is an abstract construction, several concrete syntaxes: RDF/XML, Turtle,...
- Same for OWL:
- Defined as set of things that can be said about classes, properties, instances.
- DL symbols $(\Box, \sqcup, \exists, \forall)$ hard to find on keyboard.
- OWL/RDF: Uses RDF to express OWL ontologies.
 - Then use any of the RDF serializations.
- OWL/XML: a non-RDF XML format.
- Functional OWL syntax: simple, used in definition.
- Manchester OWL syntax: close to DL, but text, used in some tools.

Introduction to OW

INF3580/4580 :: Spring 2017

Lecture 10 :: 20th Marcl

29 / 40

Lecture 10 :: 20th March

30 / 4

Introduction to OWL

OWL vocabulary in OWL/RDF

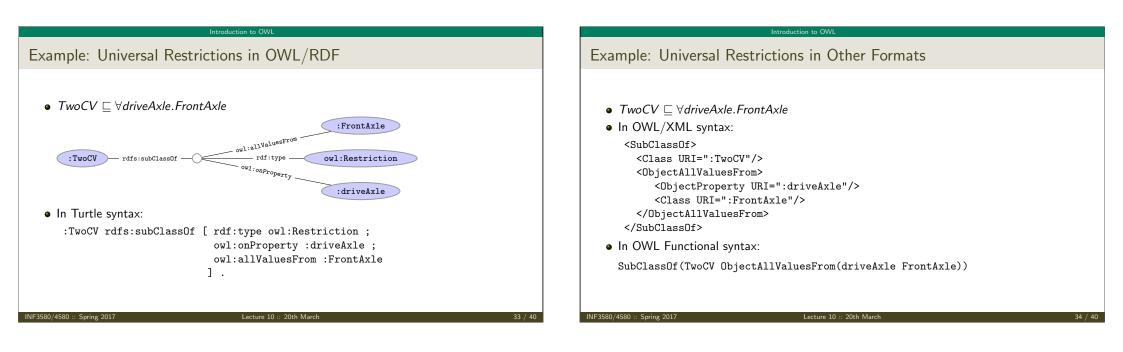
- New: owl:Ontology, owl:Class, owl:Thing, properties (next slide), restrictions (owl:allValuesFrom, owl:unionOf, ...), annotations (owl:versionInfo, ...).
- From RDF: rdf:type, rdf:Property
- From RDFS: rdfs:Class, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, rdfs:label, rdfs:comment, ...
- (XSD datatypes: xsd:string, ...)

Properties in OWL

Three kinds of *mutually disjoint* properties in OWL:

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- owl:ObjectProperty
 - link individuals to individuals.
 - Example: :hasFather, :driveAxle.
- owl:AnnotationProperty
 - has no logical implication, ignored by reasoners.
 - anything can be annotated.
 - Examples: rdfs:label, dc:creator.

31 /



			introduction
Manchester	OWL	Syntax	

- Used in Protégé for concept descriptions.
- Also has a syntax for axioms, less used.
- Correspondence to DL constructs:

Manchester
C and D
C or D
not C
R only C
R some C

to OWL

• Examples:

DL	Manchester
FrontAxle 🗆 RearAxle	FrontAxle or RearAxle
∀driveAxle.FrontAxle	driveAxle only FrontAxle
$\exists driveAxle.RearAxle$	driveAxle some RearAxle

	oduction to OWL	
Demo: Using Protégé		
- Create a Car class		
Create an Axle class.		
Create ErontAxle and RearAxle as subclasses.		
 Make the axle classes disjoint. 		
 Add a driveAxle object property. 		
 Add domain Car and range Axle. 		
- Add 2CV, subclass of Car.		
 Add superclass driveAxle only FrontAxle. 		
- Add Lotus, subclass of Car.		
 Add superclass driveAxle only RearAxle. 		
 Add LandRover, subclass of Car. 		
 Add superclass driveAxle some FrontAxle. 		
 Add superclass driveAxle some RearAxle. 		
 Add 4WD as subclass of Thing. 		
 Make equivalent to driveAxle some RearAxle and driv 	eAxle some FrontAxle.	
- Classify.		
 Show inferred class hierarchy: Car ⊒ 4WD ⊒ LandRe 		
 Tell story of 2CV Sahara, which is a 2CV with two me 	otors, one front, one back.	
 Add Sahara as subclass of 2CV. 		
 Add 4WD as superclass of Sahara. 		
- Classify.		
- Show that Sahara is equivalent to bottom.		
- Explain why. In particular, disjointness of front and re	ear axles.	
INF3580/4580 :: Spring 2017	Lecture 10 :: 20th March	

The Relationship to Description Logics

- Protégé presents ontologies almost like an OO modelling tool.
- Everything can be mapped to DL axioms!
- We have seen how domain and range become ex./univ. restrictions.
- C and D disjoint: $C \sqsubseteq \neg D$.
- Many ways of saying the same thing in OWL, more in Protégé.
- Reasoning (e.g., Classification) maps everything to DL first.

OWL in Jena

- Can use usual Jena API to build OWL/RDF ontologies.
- Cumbersome and error prone!
- Jena class OntModel provides convenience methods to create OWL/RDF ontologies, e.g., OntModel model = ModelFactory.createOntologyModel(); Property driveAxle = model.createProperty(CARS+"driveAxle"); OntClass car = model.createClass(CARS+"Car"); OntClass frontAxle = model.createClass(CARS+"FrontAxle"); Resource r = model.createAllValuesFromRestriction(
 - null, driveAxle, frontAxle);

Introduction to OWI

ntroduction to OW

car.addSuperClass(r);

- Can be combined with inferencing mechanisms from lecture 7.
 - See class OntModelSpec.

INF3580/4580 :: Spring 2017

Lecture 10 :: 20th Marc

37 / 40

Lecture 10 :: 20th March

38 / 40

The OWL API

- OWL in Jena means OWL expressed as RDF.
- Still somewhat cumbersome, tied to OWL/RDF peculiarities.

Introduction to OWL

• For pure ontology programming, consider OWL API:

http://owlapi.sourceforge.net/

- Works on the level of concept descriptions and axioms.
- Can parse and write all mentioned OWL formats, and then some.

Next lecture

More about OWL and OWL 2:

- Individuals:
 - = and \neq , and
 - for class and property definition.
- Properties:
 - cardinality.
 - transitive, inverse, symmetric, functional properties, and
 - property chains.
- Datatypes.
- Work through some modelling problems.